Optimal Design of Queueing Systems using Queueing Systems Assistance (QSA)

Chesoong Kim, János Sztrik

Sangji University, Wonju, South Korea University of Debrecen, Debrecen, Hungary

dowoo@sangji.ac.kr, sztrik.janos@inf.unideb.hu

http://irh.inf.unideb.hu/user/jsztrik

20th EUROpt Workshop, Budapest, Hungary, 2023

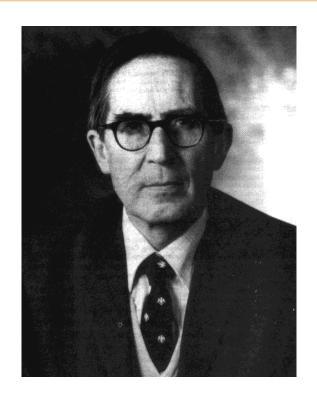
Outline

- Classifications of Queueing Systems
- Software Support
- QSA, Queueing Systems Assistance
- Optimal Design of Queueing Systems
- Case Studies
- References

Origin of Queueing Theory

Agner Krarup Erlang, 1878-1929

- "The Theory of Probabilities and Telephone Conversations", Nyt Tidsskrift for Matematik B, vol 20, 1909.
- "Solution of some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges", Elektrotkeknikeren, vol 13, 1917.
- "The life and works of A.K. Erlang", E. Brockmeyer, H.L. Halstrom and Arns Jensen, Copenhagen: The Copenhagen Telephone Company, 1948.


Queueing Theory Homepage

http://web2.uwindsor.ca/math/hlynka/queue.html

Applications

- Telephony, Call Centers
- Manufacturing
- Inventories
- Dams
- Supermarkets
- Computer and Communication Systems
- Sensor Networks, IoT
- Infocommunication Networks, Clouds
- Hospitals
- Many others

Kendall's Notation

David G. Kendall, 1918-2007

A/B/c/K/m/Z

Performance Metrics

- Utilizations
- Mean Number of Customers in the System / Queue
- Mean Response / Waiting Time
- Mean Busy Period Length of the Server
- Distribution of Response / Waiting Time
- Distribution of the Busy Period
- Distribution of Number of Customers Served during a Busy Period
- Distribution of Number of Retrials until Service Completion

Solution Methodologies

- Analytical
- Numerical
- Asymptotic
- Simulation
- Tool Supported Solutions

Tool Supported Modeling

- University of Dortmund: HIT, HiQPN, APNN http://ls4-www.infromatik.uni-dortmund.de/tools.html/
- University of Illinois at Urbana-Champaign: MÖBIUS http://www.mobius.uiuc.edu/
- University of Erlangen: PEPSY, MOSEL
 http://www4.informatik.uni-erlangen.de/Projects/MOSEL/
- University of Oxford: PRISM http://www.prismmodelchecker.org/

Software and Information

http://web2.uwindsor.ca/math/hlynka/qsoft.html

http://mason.gmu.edu/~jshortle/QtsPlus-4-0.zip

QSA (Queueing Systems Assistance)

https://qsa.inf.unideb.hu

Lecture Notes

https://irh.inf.unideb.hu/~jsztrik/education/16/SOR_Main_Angol.pdf

https://irh.inf.unideb.hu/~jsztrik/education/16/Queueing_Problems_Solutions_2021_Sztrik.pdf

Introduction of QSA and Case Studies

Example 1

Customers arrive to a 2-server system according to a Poisson process with rate 3. The service times are exponentially distributed with parameter 2.

Find the minimum capacity of the system for which the probability of blocking is less than 0.01 and the probability that the waiting time exceeds 1.8 minutes is less than 0.05.

Case Studies

Example 2

We have a finite-source system with 50 sources, the request generation times are exponentially distributed with rate 0.5. The service times are exponentially distributed for all the 5 servers with intensity 2.

Find the minimum capacity of the system for which the probability of blocking is less than 0.05 and the probability that the waiting time exceeds 21 minutes is less than 0.05.

Case Studies

Example 3

Let us see an M/M/1 system with arrival intensity 1 and the following costs, cost of service per server per unit time CS = 2, cost of waiting in the system per customer per unit time CW =2, cost of idleness per server per unit time Cl=10, cost of service rate per server per unit time CSR=10, reward per customer per unit time R=5.

Find the optimal value for the service intensity which minimize the expected total cost per unit time with linear objective function.

Bibliography on Queueing

- © COOPER, R.B. Introduction to Queueing Theory, Third Edition, Ceep Press, 1990
- GNEDENKO, B.V. KOVALENKO I.N. Introduction to Queueing Theory, Second Edition, Birkhauser, 1989
- GROSS, D. HARRIS, C.M. Fundamentals of Queueing Theory, Second Edition, John Wiley and Sons, 1985
- KHINTCHINE, A.Y. Mathematical Methods in the Theory of Queueing, Second Edition, Hafner Publication Company, 1969
- KLEINROCK, L. Queueing Systems, Vol. I-II, John Wiley Sons, 1976
- TAKÁCS, L. Introduction to the Theory of Queues, Oxfrod University Press, 1962

Bibliography on Applications

- ALLEN, A.O. Probability, Statistics, and Queueing Theory with Computer Science Applications, 2nd Edition, Academic Press, 1990
- DATTATREYA, G. Performance Analysis of Queueing and Computer Networks, CRC Press, 2008
- JAIN, R. The Art of Computer Systems Performance Analysis, John Wiley Sons, 1991
- NELSON, R. Probability, Stochastis Processes, and Queueing Theory, The Mathematics of Computer Performance Modeling, Springer, 1995
- TRIVEDI, K. Probability and Statistics with Reliability, Queueing, and Computer Science Applications, John Wiley Sons, 2002

Bibliography on Applications

- BEGAIN, K., BOLCH, G., HEROLD, H. Practical

 Performance Modeling, Application of the MOSEL Language,

 John Wiley Sons, 2001
- CAI, L., SHEN, X., MARK, J.W. Multimedia Services in Wireless Internet, Modeling and Analysis, John Wiley Sons, 2009
- GEBALI, F. Analysis of Computer and Communication Networks, Springer, 2008
- KOUVATSOS, D. Network Performance Engineering, A Handbook on Convergent Multi-Service Networks and Next Generation Internet, Springer, 2011
- MISIS, J., MISIC, V.B. Performance Modeling and Analysis of Bluetooth Networks: Polling, Scheduling and Traffic Control, Auerbach Publications, 2006

Thank You for Your Attention