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Abstract

We report on the use of HPC resources for the performance analysis of
the mobile cellular network model described in “A New Finite-Source Queue-
ing Model for Mobile Cellular Networks Applying Spectrum Renting” by Tien
Van Do et al. That paper proposed a new finite-source retrial queueing model
with spectrum renting that was analyzed with the MOSEL-2 tool. Our re-
sults show how this model can be also appropriately described and analyzed
with the probabilistic model checker PRISM, although at some cost consid-
ering the formulation of the model; in particular, we are able to accurately
reproduce most of the analytical results presented in that paper and thus
increase the confidence in the previously presented results. However, we also
outline some discrepancies which may hint to deficiencies of the original anal-
ysis. Moreover, by applying a parallel computing framework developed for
this purpose, we are able to considerably speed up studies performed with
the PRISM tool. The investigations are illustrated by figures and conclusions
are drawn.

1. Introduction

We report in this paper on the application of high performance computing (HPC)
resources for the performance analysis of mobile networks. We use the mobile
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cellular network system that was introduced in [4] where a number of sources (cell
phone subscribers) compete for access to a number of servers (channels). Sources
produce requests at rate \; a free server processes these requests at rate yu. However,
the number of available channels varies: if it gets to small, the cell phone operator
may rent additional frequency blocks from another operator, partition these blocks
into channels, and add these new channels to its own pool. If sufficiently many
channels have become free again, the rented blocks may be released. This model
is an extension of the mobile cellular network model presented in [2] which for the
first time considered the renting of frequencies that are organized in blocks but
did not yet consider the retrial phenomenon; in [3], the phenomenon of impatient
customers waiting in the orbit was further investigated.

In [4], this model was originally analyzed with the help of the performance
modeling tool MOSEL-2 [1] which is however not supported any more. Our own
results are derived with the help of the probabilistic model checker PRISM [6, 7]
which is actively developed and has been used for numerous purposes, among them
the performance analysis of computing systems. In [9], we have developed an initial
version of the model in PRISM which was subsequently refined and corrected in [8].
Furthermore, we have in [8] described a parallel computing framework that we
applied to analyze the PRISM model with the use of HPC resources, i.e., we have
sped up the analysis of our model by running experiments on a massively parallel
non-uniform memory architecture (NUMA).

However, in [9, 8] only a small number of experiments were performed, some
of which derived different results than were originally reported in [4]. This paper
complements our work by presenting all experiments that were also described in [4]
and illustrating for the whole set of experiments the speedup that can be achieved
by their execution in our parallel computing framework. Tool supported analysis
of cellular networks with finite-source retrial queuing system was treated in |[5],
too.

The remainder of this paper is structured as follows: to make this paper self-
reliant, we summarize in Section 2 the previously introduced model and the parallel
execution framework. In Section 3, we present our new results and contrast them
to those reported in [4]. Section 4 presents our conclusions and open issues for
further work.

2. The model

Appendix B presents the PRISM model that was introduced in [9]: it applies the
concept of spectrum renting for mobile cellular networks introduced in [4]. However,
that paper also shows results for a corresponding model (that is not described
in detail there) without spectrum renting. In order to repeat the corresponding
experiments, we give in Appendix A a version of our PRISM model from which
spectrum renting has been stripped but which is otherwise identical.

The experiments of this paper were performed with the execution script listed
in Appendix C; it applies the parallel execution framework (command parallel)
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introduced in [9]. This command is implemented by a C program with the help of
the POSIX multithreading API; it uses a manager/worker scheme to execute an
arbitrary number of commands by a fixed number of processes. In detail, when
started as parallel T, the program creates a pool of T" worker threads and then
starts an auxiliary thread that reads an arbitrary number of command lines from
the standard input stream into an internal queue. At the same time the main thread
acts as the manager and schedules the execution of the commands among the T
worker threads: whenever a worker thread becomes idle, the manager removes one
command from the queue and assigns it to the thread which then spawns (by the
Unix system call) a process to execute that command, waits for its termination, and
becomes free again to receive another command. Additionally the manager thread
prints out status information for every command whose execution has terminated.
If the command is executed on a multi-core/multi-processor system, the commands
are thus executed by at most T processor cores.

The experiments were performed on an SGI Altix UltraViolet 1000 supercom-
puter installed at the Johannes Kepler University Linz. This machine is equipped
with 256 Intel Xeon E78837 processors with 8 cores each which are distributed
among 128 nodes with 2 processors (i.e. 16 cores) each; the system thus supports
computations with up to 2048 cores. Access to this machine is possible via interac-
tive login; by default every user may execute threads on 4 processors with 32 cores
and 256 GB memory. Since PRISM is implemented in Java, we applied the execu-
tion script prism-java described in [9] which calls java with memory allocation
and optimization optimized for execution on a NUMA system.

3. The analysis

With the help of our parallel execution framework, we have performed for our
PRISM model all the experiments that were also reported in [4]; the results are
depicted in Figures 2 to 10 (with references to the corresponding figures presented
in [4]). The experiments shown in Figure 2 (corresponding to Figure 2 in [4]) are
performed in the model without spectrum renting (see Appendix A); all other ones
are performed in the model with spectrum renting (see Appendix B); in the later
case appropriate variants of the model were used as required by the different sets
of parameters with varying respectively fixed values.

From the 29 experiments (comprising in total 920 PRISM runs to produce the
various data points of each experiment), 25 show results that are virtually identical
to those presented in [4]. This correspondence strongly increases the confidence in
both the original MOSEL-2 model and in our PRISM model. However, there are
also four notable discrepancies:

o As already stated in [8], in Figure 3 (corresponding to Figure 3 of [4]) the two
bottom diagrams show in our model (especially for low traffic intensity po) a
lower mean number of rented blocks mB and a lower mean number of busy
channels mC' than originally reported (while the overall shape of the curves
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Figure 1: Execution Times and Speedups

are similar).

e Figures 9 and 10 (corresponding to Figures 9 and 10 of [4]) reporting on the
impact of retrials on the average profit rate (APR) and on the average number
of busy channels (mC') show for the first parameter set py = 0.4, p;, = 0.8
the same results as originally reported; however for the two other parameter
sets our experiments report significantly lower figures, i.e., the three lines are
much farther apart than in [4].

Since in all other cases the results are identical to the other reports and we have
both carefully checked our model and the deviating experiments, the possibility
remains that the errors are in solvers of the MOSEL and PRISM. One should
know that these details are hidden and we have no information about the solution
methods.

As for the time needed for executing the analysis, Figure 1 lists the times (in
seconds) for performing all the 920 PRISM runs illustrated in Figures 2-10 with
P processes, 1 < P < 32 (the maximum number of processor cores available to
us for this experiment). The analysis was performed five times from which we
have excluded the fastest and the slowest run. This leads to three values for the
execution time ¢, with average execution time 7},; the speedup for this average is
reported as Sy,

We see that significant speedups up to a maximum of 15.3 can be achieved.
The main reason that from P = 16 to P = 32 the speedup does not grow so
much any more is that we have have attached to every Java thread that executes
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Figure 2: Performance Measures Without Renting (cf. Fig. 2
from [4])

one instance of PRISM by the command line option -XX:ParallelGCThreads a
number of garbage collection threads that concurrently reclaim the memory of
objects that are not accessible any more; since the experiment was performed
on only 32 processor cores; the number of concurrently executing threads thus
significantly exceeded the number of cores. With more cores available, we can
expect also for P = 32 a considerably higher speedup.

4. Conclusions

We have shown in this report how the PRISM analysis of a non-trivial mobile
cellular network can be efficiently performed on a modern high performance com-
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Figure 4: Further Performance Measures for to = 6 (cf. Fig. 4
from [4])

puting system and how by this analysis the results performed with the older (and
not any more supported) MOSEL-2 tool can be essentially confirmed. However,
as already reported in [8], a crucial difference between MOSEL-2 and PRISM (the
existence respectively lack of zero-time/infinite-rate transitions) makes the PRISM
model somewhat more unhandy than originally thought; more efforts are needed
in PRISM to express the desired models in an economical way.

Furthermore, while most of the originally reported results (25 of 29 experiments)
could be confirmed, still some discrepancies (in 4 experiments) have to be resolved.
While the error may well be in the PRISM model or its analysis, it might as
well be true that there are errors in the originally reported results (we have asked
one author of the original paper for a re-examination of these experiments). This
demonstrates that the performance analysis of computing systems by analyzing
system models alone cannot give full confidence in the correctness of the results:
further verification (by comparison against measurements of the actual system) or
validation (by comparison with the analysis of another model by another tool) is
highly recommended.
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Figure 5: Performance Measures for po = 0.6 (cf. Fig. 5 from [4])
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Figure 6: APR vs. t; and d for po = 0.6 (cf. Fig. 6 from [4])
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Figure 7: APR vs. t; and d for po = 4.6 (cf. Fig. 7 from [4])
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Figure 10: Impact of retrials on the average number of busy chan-
nels (cf. Fig. 9 from [4])

Acknowledgment

The publication was supported by the TAMOP 4.2.2. C-11/1/KONV-2012-0001
project. The project has been supported by the European Union, co-financed by
the European Social Fund.

The authors are grateful to the reviewers for their comments and suggestions

which improved the quality of the paper.

References

1
2]
3]

4]

[5]

(6]

K. Begain, G. Bolch, and Herold H. Practical Performance Modeling Application of
the MOSEL Language. Kluwer Academic Publisher, 2012.

T. V. Do, N. H. Do, and R. Chakka. A New Queueing Model for Spectrum Renting
in Mobile Cellular Networks. Computer Communications, 35:1165-1171, 2012.

T. V. Do, N.H. Do, and J. Zhang. An Enhanced Algorithm to Solve Multiserver Retrial
Queueing Systems with Impatient Customers. Computers & Industrial Engineering,
65(4):719-728, 2013.

T. V. Do, P. Wiichner, T. Bérczes, J. Sztrik, and H. de Meer. A New Finite-
Source Queueing Model for Mobile Cellular Networks Applying Spectrum Renting.
Asia-Pacific Journal of Operational Research, 31(2):14400004, 2014. 19 pages, DOI:
10.1142/S0217595914400041.

N. Gharbi, B. Nemmouchi, L. Mokdad, and J. Ben-Othma. The Impact of Breakdowns
Disciplines and Repeated Attempts on Performances of Small Cell Networks. Journal
of Computational Science, 2014. http://dx.doi.org/10.1016/j.jocs.2014.02.011.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Interna-



134 W. Schreiner, T. Bérczes, J. Sztrik

[7]
18]

[9]

tional Conference on Computer Aided Verification (CAV’11), volume 6806 of Lecture
Notes in Computer Science, pages 585—591. Springer, 2011.

PRISM — Probabilistic Symbolic Model Checker, 2013. http://www.
prismmodelchecker.org.

W. Schreiner, N. Popov, T. Bérczes, J. Sztrik, and G. Kusper. Applying High Per-
formance Computing to Analyzing by Probabilistic Model Checking Mobile Cellular
Networks with Spectrum Renting. Technical report, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University Linz, Austria, July 2013.

Wolfgang Schreiner. Initial Results on Modeling in PRISM Mobile Cellular Networks
with Spectrum Renting. Technical report, Research Institute for Symbolic Computa-
tion (RISC), Johannes Kepler University Linz, Austria, March 2013.

A. The PRISM model without spectrum renting

1/

Spectrum0.prism
A model for mobile cellular networks.

The model serves as the comparison basis for the improvements
introduced by the application of "spectrum renting" in

Tien v. Do, Patrick Wiichner, Tamas Berczes, Janos Sztrik,
Hermann de Meer: A New Finite-Source Queueing Model for
Mobile Cellular Networks Applying Spectrum Renting,
September 2012.

Use for fastest checking the "Sparse" engine and the "Gauss-Seidel"
solver and switch off "use compact schemes".

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2013, Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

continuous time markov chain (ctmc) model

ctmc

//
/7
//

//

system parameters

bounds

const int K = 100; // population size
const int n; // number of servers/channels

//

rates

const double rho; // normalized traffic intensity

const double mu
const double lambda

1/53.22; // service rate
rho*n*mu/K; // call generation rate

const double nu =1; // retrial rate

const double eta

1/300; // rate of queueing users
// getting impatient
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// probabilities
const double p_b

I
o
=

~
~

prob. that user gives up

// (-> sources)

prob. that user presses button
// (-> queue)

prob. that user retries later
// (-> orbit)
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~
~

const double p_q

const double p_o =

|
e
|
©
T
©
Q
~
~

const double p_io = 0.8; // prob. that impatient user retries
// later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up

// (-> sources)

A ——
// system model

// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one

A —

// available servers accept requests
module Servers
servers: [0..n] init O;
[sservers] servers < n -> (servers’ = servers+1);
[oservers] servers < n -> (servers’ = servers+1);
[ssourcesl] servers > 0 & queue = 0 ->
servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->
servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources
sources: [0..K] init K;
[sservers] sources > 0 ->
sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = n ->
sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = n ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[gsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);
endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit
// orbit: [0..K-n] init O;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit 0 -> orbit*nu : true;
[oqueue] orbit 0 & servers = n -> orbit*nu*p_q : true;
[osources] orbit > O & servers = n -> orbit*nu*p_b : true;
endmodule
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// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init O;

[squeue] queue < K-n -> (queue’ = queue+l);
[oqueue] queue < K-n -> (queue’ = queue+l);
[qorbit] queue > 0 & servers = n ->

queue*eta*p_io : (queue’ = queue-1);
[gsources] queue > 0 & servers = n ->
queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);
endmodule

.

// system rewards

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mQ0"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

A —

// Spectrum0.props

A —

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
|ImKII : K_IImMII

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=7? [ S 1 ;

// mean goodput
"mlgood" : "mC"*mu ;
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//

probability that arriving customer gets served

"Pgood" : "milgood"/"m1l"

/7

mean response time (served and unserved)

"mT" “HlM"/"ml"

1/

mean number of idle servers

"mAS" : n-"mC"

// utilization of available servers
"Sutil" : "mC"/n ;

// blocking probability

"Pblock" : S=7? [ servers =n ] ;

// mean queue length

quu . R{"mQ"}=? [ S ] ;

//

mean time spent in queue

"mTQ" : "mQ" / "mi"

//

mean orbit length

"m0" : R{"m0"}=7 [ S 1] ;

/7

mean time spent in orbit

"mT0" : "m0" / "m1"

B. The PRISM model with spectrum renting

/7

Spectrum.prism
A model for mobile cellular networks applying spectrum renting.

The model is described in

Tien v. Do, Patrick Wiichner, Tamas Berczes, Janos Sztrik,
Hermann de Meer: A New Finite-Source Queueing Model for
Mobile Cellular Networks Applying Spectrum Renting,
September 2012.

Use for fastest checking the "Sparse" engine and the "Gauss-Seidel"
solver and switch off "use compact schemes".

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2013, Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

continuous time markov chain (ctmc) model

ctmc
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// system parameters

.

// renting tresholds
const int ti1; // block renting treshold
const int t2 = 6; // block release treshold

// bounds
const int K = 100; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2%r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls
// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu =1; // retrial rate
const double eta = 1/300; // rate of queueing users getting
// impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release reate
// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_.q = 0.5; // prob. that user presses button
// (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later
// (-> orbit)
const double p_io = 0.8; // prob. that impatient user retries
// later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up
// (-> sources)
const double p_.r = 0.8; // block rental success probability
const double p_f = 1l-p_r; // block rental failure probability

A ——w—
// system model

// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one

A ———

// number of currently available servers/channels
formula servAvail = nt+blocksx*r;

// blocks are rented at rate lam_r and released at rate mu_r
// renting is successful with probability p_r and fails with
// probability p_f retrying a failed attempt is performed at rate nu_r
module Blocks
blocks: [0..m] init O;
trial: [0..1] init O;
[success1] trial = 0 & servAvail-servers <= t1 & blocks < m & queue=0 ->
lam_r*p_r: (blocks’ = blocks+1);
[success2] trial = 0 & servAvail-servers <= t1 & blocks < m ->
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lam_r*p_r: (blocks’ = blocks+1);
0 & servAvail-servers <= tl & blocks < m ->

[failure] trial =

lam_r*p_f: (trial’

1);

servAvail-servers <= tl1 & blocks < m & queue=0

[retriall] trial = 1 &
nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1l) ;

[retrial2] trial = 1 & servAvail-servers <= t1 & blocks < m ->
nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1l) ;

[interrupt] trial
9999 : (trial’

= 1 & servAvail-servers > t1 ->
0); // "immediately"

[release] servAvail-servers >= t2+r & blocks > 0 ->
mu_r : (blocks’ = blocks-1);

endmodule

// available servers accept requests

module Servers

servers: [0..M] init O;

[sservers] servers < servAvail ->

(servers’ = servers+l);

[oservers] servers < servAvail -> (servers’ = servers+1);
[success2] servers < M -> (servers’ = servers+1);
[retrial2] servers < M -> (servers’ = servers+1);
[ssourcesl] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);

[ssources2] servers > 0 ->

servers*mu : true ;

endmodule

// generate requests at rate sources*lambda

module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->
sources*lambda :

[sorbit]

[squeue]

sources > 0 & servers =
sources*lambda*p_q :

(sources’ = sources-1);

sources > 0 & servers = servAvail ->
sources*lambda*p_o

(sources’ = sources-1);
servAvail ->
(sources’ = sources-1);

[ssources1] sources < K -> (sources’ = sources+1);

[ssources2] sources < K -> (sources’ = sources+1);

[gsources] sources < K -> (sources’ = sources+1);

[osources] sources < K -> (sources’ = sources+1);
endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual

module Orbit
// orbit: [0..K-n

]

init 0;

. true;

0 & servers = servAvail -> orbit*nu*p_q :
0 & servers = servAvail -> orbit*nu*p_b

[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu
[oqueue]  orbit >
[osources] orbit >

endmodule

// if no server is

module Queue

available, requests are redirected
// with probability p_q to the queue

true;

¢ true;
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queue: [0..K-n] init O;

[squeue] queue < K-n -> (queue’ = queue+l);
[oqueue] queue < K-n -> (queue’ = queue+l);
[qgorbit] queue > 0 & servers = servAvail ->

queue*eta*p_io : (queue’ = queue-1);

[gsources] queue > O & servers = servAvail ->

queue*eta*p_is : (queue’ = queue-1);

[ssources2] queue > 0 -> (queue’ = queue-1);
[success2] queue > 0 -> (queue’ = queue-1);
[retrial2] queue > 0 -> (queue’ = queue-1);

endmodule

A

// system rewards

/]

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mQ0"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

/e

// Spectrum.props

A —

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
llmKll . K_llIanl

// mean throughput (served and unserved)
"m1" : "mK"*xlambda ;

// mean number of active calls
"mC" : R{"mC"}=7? [ S 1] ;
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// mean goodput
"migood" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" . "mlgood"/"ml" ;

// mean response time (served and unserved)
P
l|mT|| : limM"/llmlll

// mean number of rented blocks
"mB" : R{"mB"}=? [ S 1 ;

// mean number of available servers
||mS|| : n+||mB||*r ;

// mean number of idle servers
|ImASII H "ms "_ Ilmcll .

// utilization of available servers
llsutilll : llmcll/llmsll

// blocking probability
"Pblock" : S=7 [ servers = servAvail ] ;

const int B;

// probability that B blocks are partially utilized
"Pb" : S=7 [ n+r*(B-1) < servers & servers <= n+r*B ] ;

// mean queue length
llmqll : R{llmqll}z? [ S ] ;

// mean time spent in queue
llmTQll . anll / llmlll

// mean orbit length
"m0" : R{"m0"}=? [ S ] ;

// mean time spent in orbit
llmTOII . nmoll / llmlll

const int d;

// average profit rate
"APR" : "mC" - (r/d) * "mB"

C. The parallel execution script

#!/bin/sh

# the program locations
export PRISM_JAVA="prism-java"
PRISM="prism"
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PARALLEL="./parallel"
TIME="time"

# the input/output locations
MODELFILE="Spectrum.prism"
MODELFILEO="SpectrumO.prism"
MODELFILE2="Spectrum2.prism"
MODELFILE3="Spectrum3.prism"
PROPSFILE="Spectrum.props"
PROPSFILEO="Spectrum0.props"
RESULTDIR="Results"
LOGDIR="Logfiles"
LOGFILE="LOGFILE"

# the checker settings
PRISMOPTIONS="-sparse -gaussseidel -nocompact"

# the number of processes to be used
for PROC in 1 2 4 8 16 32 ; do

# the properties to be checked and the parameters for the experiment

# Figure 2
for PROPERTY in Pblock m0 mTO mQ mTQ mAS ; do
for RHO in $(seq 0.6 0.5 4.6) ; do
for N in 8 16 24 32 ; do

echo "$PRISM $PRISMOPTIONS $MODELFILEO $PROPSFILEO -prop $PROPERTY \

-const rho=$RHO,n=$N \

-exportresults $RESULTDIR/Fig2-$PROPERTY-$N-$RHO \

> $LOGDIR/Fig2-$PROPERTY-$N-$RHO"
done
done
done

# Figure 3

for PROPERTY in Pblock m0 mTO mB mQ mTQ mC mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \

-const rho=$RHO,t1=$T1 \

-exportresults $RESULTDIR/Fig3-$PROPERTY-$T1-$RHO \

> $LOGDIR/Fig3-$PROPERTY-$T1-$RHO"
done
done
done

# Figure 4
PROPERTY="Pb"
for B in $(seq 1 1 4) ; do
for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \

-const B=$B,rho=$RHO,t1=$T1 \

-exportresults $RESULTDIR/Fig4-$PROPERTY-$B-$T1-$RHO \
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> $LOGDIR/Fig4-$PROPERTY-$B-$T1-$RHO"
done
done
done

# Figure 5
RHO="0.6"
for PROPERTY in mB Pblock mQ m0 mTQ mTO ; do
for T1 in $(seq 0 1 4) ; do
for T2 in $(seq 5 1 8) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2 \
-exportresults $RESULTDIR/Fig5-$PROPERTY-$T1-$T2 \
> $LOGDIR/Figb-$PROPERTY-$T1-$T2"
done
done
done

# Figures 6-7
PROPERTY="APR"
for RHO in 0.6 4.6 ; do
for T1 in $(seq 0 1 4) ; do
for T2 in 5 8 ; do
for D in 1 2 4 8 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO \
> $LOGDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO"
done
done
done
done

# Figure 8, T1 apparently 2
PROPERTY="APR"
T1=2
for RHO in $(seq 0.6 0.5 4.6) ; do
for T2 in 5 8 ; do
for D in 1 8 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig8-$PROPERTY-$T2-$D-$RHO \
> $LOGDIR/Fig8-$PROPERTY-$T2-$D-$RHO"
done
done
done

# Figures 9,10
PROPERTY="APR"
T1=2
T2=5
D=2
for PROPERTY in "APR" "mC" ; do
P0=0.2
PI0=0.4
for RHO in $(seq 4.55 0.01 4.6) ; do
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echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o0=$P0,p_i0=$PI0 \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$P0-$PI0-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$P0O-$PI0-$RHO"
done
P0=0.4
PI0=0.8
for RHO in $(seq 4.55 0.01 4.6) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$P0,p_i0=$PI0 \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$P0-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$P0-$PI0-$RHO"
done
P0=0.000000001
PI0=0.000000001
for RHO in $(seq 4.55 0.01 4.6) ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$P0,p_i0o=$PI0 \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$P0-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PI0-$RHO"
done
done

# execute the experiments in parallel with PROC processes
) | $TIME -p $PARALLEL $PROC > $LOGDIR/$LOGFILE 2>&1

done



