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Abstract. Heterogeneous servers which can differ in service speed and
reliability are getting more popular in modeling of modern communica-
tion systems. For a two-server queueing system with unreliable servers
the allocation of customers between the servers is performed via a thresh-
old control policy which prescribes to use the fastest server whenever it is
free and the slower one only if the number of waiting customers exceeds
some threshold level depending on the state of faster server. The main
task of the paper consists in reliability analysis of the proposed system
including evaluation of the stationary availability and reliability function.
The effects of different parameters on introduced reliability characteris-
tics are analyzed numerically.

Keywords: Reliability analysis · Quasi-birth-and-death process · Het-
erogeneous servers · Threshold policy · Matrix-geometric solution
method

1 Introduction

To make modern communication systems superior in performance and reliabil-
ity to the previous generation systems they can be supplied with heterogeneous
communication links. Such links can differ in availability, link data throughputs,
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power consumption and reliability characteristics. To model the dynamic behav-
iour of the data transmission links subject to breakdowns a queueing system with
non-reliable servers can be used. The analysis of multi-server queueing systems
generally assume the servers to be homogeneous. Mitrany and Avi-Izhak [11] and
Neuts and Lucantoni [13] have studied the M/M/s queueing system with server
breakdowns and repairs. In paper of Levi and Yechiali [9] the queue M/M/s
with servers’ vacations was analyzed. A recent paper of Efrosinin et al. [3] deals
with an stationary analysis performed on the busy period for the multi-server
Markovian queueing system with simultaneous failures of servers. The queues
with heterogeneous non-reliable servers occur quite rarely as a research subject.
A queueing system with two heterogeneous servers and multiple vacations was
studied by Kumar and Madheswari [6], who obtained the stationary queue length
distribution by using matrix geometric method and provided analysis of busy
period and waiting time. In Kumar et al. [7] the same authors have introduced
the M/M/2 queueing system with heterogeneous servers subject to catastrophes
and provided a transient solution for the system under study. A heterogeneous
two-server queueing system with balking and server breakdowns has been studied
by Yue et al. [16]. In their study, some stationary mean performance measures
are obtained using the matrix-geometric solution method.

In heterogeneous queueing system with one common queue, especially in
case of the service without preemption, when the customer can not change the
server during a service time, the customer allocation mechanism between the
servers must be specified. The majority of heterogeneous systems investigated use
heuristic service policies (e.g. the Fastest Free Server (FFS) or Random Service
Selection (RSS) policies). In fact these policies are not optimal, if e.g. the mean
response time must be minimized. As it is already known, see. e.g. the results of
Efrosinin [1], Koole [5], Legros and Jouini [8], Lin and Kumar [10], Rykov and
Efrosinin [15], for the heterogeneous queueing systems the optimal allocation
policy belongs to a class of threshold policies, where the less effective server
must be used only if the number of customers in the queue has reached some pre-
specified threshold level. The same result was confirmed for the queueing system
with faster non-reliable server and absolutely reliable slower server in Efrosinin
[2], Özkan and Kharoufeh [14] and for two non-reliable heterogeneous servers
in system with a constant retrial discipline in Efrosinin and Sztrik [4]. In the
latter paper it was shown that for the fixed threshold policy the corresponding
Markov process is of the QBD (Quasi-birth-and-death) type with a tri-diagonal
block infinitesimal matrix with a large number of bounding states.

While the first steps in performance analysis of controllable heterogeneous
queueing systems have already been performed for completely reliable servers, a
missing link to an applicability of heterogeneous models is a reliability analysis
of such queues with servers subject to failures. In this paper we use a forward-
elimination-backward-substitution method expressed in matrix form in terms
of the Laplace-Stiltjes transforms (LST) combined with probability generating
function (PGF) approach to evaluate reliability measures such as reliability func-
tion, which represents the complementary cumulative distribution function of the
life time, and mean time to the first failure for each server separately and for the
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group of servers under the fixed threshold allocation control policy. The reliabil-
ity functions are obtained in terms of the Laplace transform (LT) and numerical
inversion algorithm is used to get the time dependent functions. Additionally
a new discrete reliability metric in form of the distribution of the number of
failures during a certain life time is introduced. We expect that the proposed
results can be generalized to the case of an arbitrary controllable non-reliable
queueing model with a QBD structure.

The rest of the paper is organized as follows. In Sect. 2, we describe the mathe-
matical model and give a presentation of the stationary distribution of the system
state using a matrix-geometric solution method. In Sect. 3, we develop compu-
tational analysis for the stationary reliability characteristics, for the reliability
function and mean time to failure. The number of failures during a certain life
time is investigated in Sect. 4. In Sect. 5, numerical illustrations are provided to
highlight the effect of some parameters on the derived reliability characteristics.

Hereafter, the notations e(n), ej(n), and In are used respectively for the
column-vector consisting of 1’s, the column vector with 1 in the j-th (beginning
from 0-th) position and 0 elsewhere, and an identity matrix of the dimension n.
When there is no need to emphasize the dimension of these vectors the suffix
will be suppressed and dimension is determined by the context. The expressions
diag(a1, . . . , an), diag+(a1, . . . , an), and diag−(a1, . . . , an) denote respectively
the diagonal matrix, the upper diagonal matrix, and the lower diagonal matrix
with entries a1, . . . , an that could be scalars or matrices.

2 Mathematical Model and Stationary Distribution

In the present paper we deal with a two-server heterogeneous non-reliable queue-
ing model of the type M/M/2. The customers arrive according to a Poisson
process with arrival rate λ. The service times are exponentially distributed with
rates μ1 and μ2, where μ1 ≥ μ2. We assume that the server fails respectively
at an exponential rate α1 and α2. The servers can fail only if they are busy.
The failed server is repaired immediately and the time required to repair it is
exponentially distributed respectively with rate β1 and β2. The customer being
served at the failure moment is left at this server during the repair time and can
be served when the server becomes operational again. The allocation mechanism
between two servers is based on a threshold policy: depending on the state of
faster server the slower one is used whenever the number of customers in the
queue exceeds a certain threshold level.

Let Q(t) and D(t) = {D1(t),D2(t)} denote, respectively, the number of cus-
tomers in the queue and the vector state of servers at time t, where

Dj(t) =

⎧
⎪⎨

⎪⎩

0, the server j is idle,
1, the server j is busy and operational,
2, the server j is failed.

The threshold policy f = (q1, q2) is defined by two threshold levels 1 ≤ q2 ≤
q1 < ∞. According to this policy server 1 must be activated whenever it is free
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and there are customers in the queue, whereas server 2 is used only if server 1 is
in state 1 or 2 and the number of customers in the queue has reached the value
q1 or q2. The process

{X(t)}t≥0 = {Q(t),D(t)}t≥0 (1)

is a continuous-time Markov chain with a state space given by

E = {x = (q, d1, d2); q ∈ N0, (d1, d2) ∈ ED}, (2)

where ED is a set of states of servers which is defined as

ED =

⎧
⎪⎪⎨

⎪⎪⎩

(d1, d2);

dj ∈ {0, 1, 2}, j ∈ {1, 2}, q = 0
d1 ∈ {1, 2}, d2 ∈ {0, 1, 2}, 1 ≤ q ≤ q2 − 1,
d1 ∈ {1, 2}, d2 ∈ {0, 1, 2}, (d1, d2) �= (2, 0), q2 ≤ q ≤ q1 − 1,
dj ∈ {1, 2}, j ∈ {1, 2}, q ≥ q1,

⎫
⎪⎪⎬

⎪⎪⎭

.

Next we partition E in blocks as follows,

(0,0) = {(0, 0, d2); d2 ∈ {0, 1, 2}},

(q,1) =

⎧
⎪⎨

⎪⎩

{(q, 1, 0), (q, 2, 0), (q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, 0 ≤ q ≤ q2 − 1,

{(q, 1, 0), (q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, q2 ≤ q ≤ q1 − 1,

{(q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, q ≥ q1.

Due to above notation, the infinitesimal generator olude the rates of transi-
tion fromf the Markov chain {X(t)}t≥0 has the block-tridiagonal structure,

Λ = [λxy]x,y∈E = diag(Q1,0, Q1,1, . . . , Q1,1
︸ ︷︷ ︸

q2−1

, Q1,2, Q1,3, . . . , Q1,3
︸ ︷︷ ︸

q1−q2−1

, Q1,4, Q1,5, . . . )

+ diag+(Q0,1, Q0,2, . . . , Q0,2
︸ ︷︷ ︸

q2−1

, Q0,3, Q0,4, . . . , Q0,4
︸ ︷︷ ︸

q1−q2−1

, Q0,5, Q0,6, . . . )

+ diag−(Q2,1, Q2,2, . . . , Q2,2
︸ ︷︷ ︸

q2−1

, Q2,3, Q2,4, . . . , Q2,4
︸ ︷︷ ︸

q1−q2−1

, Q2,5, Q2,6, . . . ).

The square matrices Q1,n, 0 ≤ n ≤ 5, include the rates of the output from
the current block of states,

Q1,0 =

⎛

⎝
−λ 0 0
μ2 −(λ + α2 + μ2) α2

0 β2 −(λ + β2)

⎞

⎠ ,
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Q1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(λ + μ1 + α1) α1 0 0 0 0

β1 −(λ + β1) 0 0 0 0

μ2 0 −(λ + μ + α) α1 α2 0

0 μ2 β1 −(λ + α2 + β1 + μ2) 0 α2
0 0 β2 0 −(λ + α1 + β2 + μ1) α1
0 0 0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q1,2 = Q1,1 + λe1(6) ⊗ e
′
3(6),

Q1,3 =

⎛
⎜⎜⎜⎜⎜⎝

−(λ + μ1 + α1) 0 0 0 0

μ2 −(λ + μ + α) α1 α2 0

0 β1 −(λ + α2 + β1 + μ2) 0 α2
0 β2 0 −(λ + α1 + β2 + μ1) α1
0 0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎟⎟⎠

,

Q1,4 = Q1,3 + λe0(5) ⊗ e
′
1(5),

Q1,5 =

⎛
⎜⎜⎜⎝

−(λ + μ + α) α1 α2 0

β1 −(λ + α2 + β1 + μ2) 0 α2
β2 0 −(λ + α1 + β2 + μ1) α1
0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎠ .

The rectangular matrices Q0,n, 1 ≤ n ≤ 6, include the rates of transitions
from subsequent block to the current one,

Q0,1 = λ

⎛

⎝
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞

⎠ , Q0,3 = λ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q0,5 = λ

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

Q0,2 = λI6, Q0,4 = λI5, Q0,6 = λI4, μ = μ1 + μ2, α = α1 + α2, β = β1 + β2.

The rectangular matrices Q2,n, 1 ≤ n ≤ 6, include the rates of transition
from the previous block to the current one,

Q2,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ1 0 0
0 0 0
0 μ1 0
0 0 0
0 0 μ1

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q2,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ1 0 0 0 0 0
0 0 0 0 0 0
0 0 μ1 0 0 0
0 0 0 0 0 0
0 0 0 0 μ1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q2,3 =

⎛

⎜
⎜
⎜
⎜
⎝

μ1 0 0 α1 0 0
0 0 μ1 0 0 0
0 0 0 μ2 0 0
0 0 0 0 μ1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

Q2,4 =

⎛

⎜
⎜
⎜
⎜
⎝

μ1 0 α1 0 0
0 μ1 0 0 0
0 0 μ2 0 0
0 0 0 μ1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, Q2,5 =

⎛

⎜
⎜
⎝

0 μ 0 0 0
0 0 μ2 0 0
0 0 0 μ1 0
0 0 0 0 0

⎞

⎟
⎟
⎠ , Q2,6 =

⎛

⎜
⎜
⎝

μ 0 0 0
0 μ2 0 0
0 0 μ1 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Denote by π = (π0,0,π0,1,π1,1,π2,1, . . . ) the stationary probability vector
of Λ which satisfies

πΛ = 0, πe = 1. (3)

The computation of the stationary distribution is reduced to solving a block-
tridiagonal system. The process {X(t)}t≥0 is in the format of a quasi-birth-
and-death (QBD) process which allows to apply the matrix-analytic approach.
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By [12, Theorem 3.1.1] it is well known that the stationary probability vector π
of the QBD process exists if and only if

pQ0,6e(4) < pQ2,6e(4),

where p = (p1, p2, p3, p4) is the invariant probability of the matrix Q0,6 +Q1,5 +
Q2,6. This vector can be obtained by solving the system p(Q0,6 + Q1,5 + Q2,6) =
0 and pe(4) = 1. After some routine manipulation we can obtain the condition

ρ =
λ

∑2
j=1

βjμj

αj+βj

< 1. (4)

Theorem 1. The vectors of stationary probabilities πq,i, q ≥ 0, can be com-
puted as follows,

π0,0 = πq1,1

q1∏

j=0

Mq1−j , (5)

πq,1 = πq1,1

q1−q−1∏

j=0

Mq1−j , 0 ≤ q ≤ q1 − 1,

πq,1 = πq1,1R
q−q1 , q ≥ q1,

where the matrices Mi, 0 ≤ i ≤ q1, are recursively defined

M0 = −Q2,1Q
−1
1,0, M1 = −Q2,2(M0Q0,1 + Q1,1)−1, (6)

Mq = −Q2,2(Mq−1Q0,2 + Q1,1)−1, 2 ≤ q ≤ q2 − 1,

Mq2 = −Q2,3(Mq2−1Q0,2 + Q1,2)−1, Mq2+1 = −Q2,4(Mq2Q0,3 + Q1,3)−1,

Mq = −Q2,4(Mq−1Q0,4 + Q1,3)−1, q2 + 2 ≤ q ≤ q1 − 1,

Mq1 = −Q2,5(Mq1−1Q0,4 + Q1,4)−1.

The vector πq1,1 is a unique solution of the system of equations

πq1,1

[ q1−1∑

q=−1

q1−q−1∏

j=0

Mq1−j + (I − R)−1
]
e(4) = 1, (7)

πq1,1(Mq1Q0,5 + Q1,5 + RQ2,6) = 0.

The matrix R is a minimal solution of the matrix quadratic equation,

R2Q2,6 + RQ1,5 + Q0,6 = 0. (8)

Proof. The last row of (5) and equation R2Q2,6 + RQ1,5 + Q0,6 = 0 follow from
the properties of the QBD process [12]. If the stability condition holds, then (3)
yields the system,
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π0,0Q1,0 + π0,1Q2,1 = 0,

πq−1,1Q0,1 + πq,1Q1,1 + πq+1,1Q2,2 = 0, 2 ≤ q ≤ q2 − 1,

πq2−1,1Q0,2 + πq2,1Q1,2 + πq2+1,1Q2,3 = 0,

πq2,1Q0,3 + πq2+1,1Q1,3 + πq2+2,1Q2,4 = 0,

πq−1,1Q0,4 + πq,1Q1,3 + πq+1,1Q2,4 = 0, q2 + 2 ≤ q ≤ q1 − 1,

πq1−1,1Q0,4 + πq1Q1,4 + πq1+1Q2,5 = 0,

πq1,1R
q−q1−1Q0,5 + πq1,1R

q−q1Q1,5 + πq1,1R
q−q1+1Q2,6 = 0, q ≥ q1 + 1.

The routine of substitution applied to the previous system leads to recursive
relations,

π0,0 = π0,1M0, (9)
πq,1 = πq+1,1Mq+1, 1 ≤ q ≤ q1 − 1,

where Mq is defined by (6). Hence it implies the first two rows of (5). Finally
the vector πq1,1 is obviously a unique solution of the system of equations (7)
which consists of the normalizing condition and the balance equation for the
probability vector πq1,1 of the boundary states.

3 Reliability Characteristics of the System and Servers

In this section we consider some reliability quantities of the system and servers.
Denote by

A1(t) = P[X(t) = (q, d1, d2); d1 �= 2 ∨ d2 �= 2],
A2(t) = P[X(t) = (q, d1, d2); d1 �= 2 ∧ d2 �= 2],
A3(t) = P[X(t) = (q, d1, d2); d1 �= 2],
A4(t) = P[X(t) = (q, d1, d2); d2 �= 2],

the pointwise availability of the system and servers. The stationary availability
in case n, 1 ≤ n ≤ 4, is defined as An = limt→∞ An(t).

Corollary 1. The stationary availability can be computed by

An = π0,0xn,1 +
q2−1∑

q=0

πq,1xn,2 +
q1−1∑

q=q2

πq,1xn,3 + πq1,1(I − R)−1xn,4, 1 ≤ n ≤ 4,
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where A2 = A3 + A4 − A1 and

x1,1 = e(3), x1,2 =
4∑

k=0

ek(6), x1,3 =
3∑

k=0

ek(5), x1,4 =
2∑

k=0

ek(4),

x2,1 =
1∑

k=0

ek(3), x2,2 =
1∑

k=0

e2k(6), x2,3 =
1∑

k=0

ek(5), x2,4 = e0(4),

x3,1 = e(3), x3,2 =
2∑

k=0

e2k(6), x3,3 = e0 +
1∑

k=0

e2k+1(5), x3,4 =
1∑

k=0

e2k(4),

x4,1 =
1∑

k=0

ek(3), x4,2 =
3∑

k=0

ek(6), x4,3 =
2∑

k=0

ek(5), x4,4 =
1∑

k=0

ek(4).

Corollary 2. The stationary failure frequency of the server l ∈ {1, 2} can be
computed by

Bl = αlπ0,0yl,1 +
q2−1∑

q=0

πq,1yl,2 +
q1−1∑

q=q2

πq,1yl,3 + πq1,1(I − R)−1yl,4, 1 ≤ l ≤ 2,

where

y1,1 = 0, y1,2 =
2∑

k=0

e2k(6), y1,3 = e0(5) +
1∑

k=0

e2k+1(5), y1,4 =
1∑

k=0

e2k(4),

y2,1 = e1(3), y2,2 =
3∑

k=2

ek(6), y2,3 =
2∑

k=1

ek(5), y2,4 =
1∑

k=0

ek(4).

Denote by T the random time to the first failure of one of server. The corre-
sponding reliability function, which is the same as the complementary cumulative
distribution function of the life time T , is then defined as

R(t) = P[T > t].

In this section we intend to obtain this function in terms of the Laplace
transform R̃(s) =

∫ ∞
0

R(s)e−stdt,Re[s] > 0. In order to realize it we let the cor-
responding failure states be absorbing states. In this case we obtain new process
which can be modelled by the auxiliary continuous-time absorbing Markov chains
{X̂(t)}t≥0 with state space Ê = E \ {x = (q, d1, d2); q ∈ N0, d1 = 2 ∨ d2 = 2}.
We describe two main approaches to get the function R̃(s): By means of the
transient solution of the absorbing Markov chain and using the remaining life
time.

Theorem 2. The Laplace transform of R(t) is given by

R̃(s) = P̃1,0(s, 1) + P̃1,1(s, 1) + P̃1,2(s, 1), (10)
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where

P̃1,0(s, 1) =
1 + α1π̃(0,0,0)(s) − λπ̃(q1−1,1,0)(s) + μ2P̃1,1(s, 1)

s + α1
, (11)

P̃1,1(s, 1) =
α1π̃(0,0,1)(s) + λ(π̃(q1−1,1,0)(s) − π̃(q1−1,1,1)(s)) + μπ̃(q1,1,1)(s)

s + α + μ2
,

P̃1,2(s, 1) =
λπ̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s)

s + α
,

the functions π̃x(s) are of the form,

π̃(q1,1,1)(s) =
λz(s)L̃q1(s)e1(2)

μ − λz(s)M̃q1(s)e1(2)
, (12)

(π̃(q1−1,1,0)(s), π̃(q1−1,1,1)(s)) = π̃(q1,1,1)(s)M̃q1(s) + L̃q1(s), (13)

(π̃(0,0,0)(s), π̃(0,0,1)(s)) = π̃(q1,1,1)(s)
q1∏

i=0

M̃q1−i(s) (14)

+
q1∑

i=0

L̃q1−i(s)
q1∏

j=i+1

M̃q1−j(s),

the matrices M̃i(s) and L̃i(s) are evaluated recursively,

M̃0(s) = μ1Ñ0(s), L̃0(s) = e
′
0(2)Ñ0(s), Ñ0(s) = −(Q̂1,0 − sI2)

−1
, (15)

M̃q(s) = μ1Ñq(s), L̃q(s) = λL̃q−1(s)Ñq(s), Ñq(s) = −(Q̂1,1 − sI2 + λM̃q−1(s))
−1

q = 1, q1 − 1,

M̃q1 (s) = −μe
′
1(2)Ñq1 (s), L̃q1 (s) = −λL̃q1−1Ñq1 (s), Ñq1 (s) = (Q̂1,2 − sI2 + λM̃q1−1(s))

−1
,

the matrices Q̂1,0, Q̂1,1 and Q̂1,2 are of the form

Q̂1,0 =
(−λ 0

μ2 −(λ + α2 + μ2)

)

, Q̂1,1 =
(−(λ + α1 + μ1) 0

μ2 −(λ + α + μ)

)

,

Q̂1,2 =
(−(λ + α1 + μ1) λ

μ2 −(λ + α + μ)

)

,

the function z(s) is defined as

z(s) =
s + α + λ + μ

2λ
−

√
(s + α + λ + μ

2λ

)2

− μ

λ
. (16)

Proof. The absorbing states of the process {X̂2(t)} are x = (q, 2, d2), d2 ∈
{0, 1, 2} and x = (q, d1, 2), d1 ∈ {0, 1, 2}. Using the same notations as in pre-
vious section we can get the following set of Kolmogorov differential equations,
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π′
(0,0,0)(t) = −λπ(0,0,0)(t) + μ1π(0,1,0)(t) + μ2π(0,0,1)(t), (17)

π′
(q,1,0)(t) = −(α1 + λ + μ1)π(q,1,0) + λπ(q−1,1,0)(t) + μ1π(q+1,1,0)(t) + μ2π(q,1,1)(t),

0 ≤ q ≤ q1 − 2,

π′
(q1−1,1,0)(t) = −(α1 + λ + μ1)π(q1−1,1,0) + λπ(q1−2,1,0)(t) + μ2π(q1−1,1,1),

π′
(0,0,1)(t) = −(α2 + λ + μ2)π(0,0,1)(t) + μ1π(0,1,1)(t),

π′
(0,1,1)(t) = −(α2 + λ + μ2)π(0,0,1)(t) + λπ(0,0,1)(t) + μ1π(0,1,1)(t),

π′
(q,1,1)(t) = −(α + λ + μ)π(q,1,1)(t) + λπ(q−1,1,1)(t) + μ1π(q+1,1,1)(t), 1 ≤ q ≤ q1 − 2,

π′
(q1−1,1,1)(t) = −(α + λ + μ)π(q1−1,1,1)(t) + λπ(q1−1,1,0)(t) + λπ(q1−2,1,1)(t) + μπ(q1,1,1)(t)

with initial conditions π(0,0,0)(0) = 1 and πx(0) = 0,x ∈ Ê2. By taking Laplace
transforms of these equations, where π̃x(s) =

∫ ∞
0

πx(t)e−stdt, Re[s] ≥ 0, and
using then their partial generating functions,

P̃1,0(s, z) = π̃(0,0,0)(s) +
q1−1∑

q=0

π̃(q,1,0)(s)zi+1,

P̃1,1(s, z) = π̃(0,0,1)(s) +
q1−1∑

q=0

π̃(q,1,1)(s)zi+1,

P̃1,2(s, z) =
∞∑

q=q1

π̃(q,1,1)(s)zi+1

for |z| < 1, after some manipulation the system (17) is transformed into the set
of equations for the introduced double transforms,

P̃1,0(s, z) =
z + π̃(0,0,0)(s)(μ1(z − 1) + α1z) − λzq1+2π̃(q1−1,1,0)(s) + μ2zP̃1,1(s, z)

−λz2 + (s + α1 + λ + μ1)z − μ1
,

P̃1,1(s, z) =
π̃(0,0,0)(s)(z(α1 + μ1) − μ1) + λ(π̃(q1−1,1,0)(s) − zq1+1π(q1−1,1,1)(s)) + μπ̃(q1,1,1)(s)

−λz2 + (s + α + λ + μ)z − μ1
,

P̃1,2(s, z) =
zq1+1(λzπ̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s))

−λz2 + (s + α + λ + μ)z − μ
.

Denote by F (s, z) = −λz2 + (s + α + λ + μ)z − μ the auxiliary function for
the denominator of P̃1,2(s, z). It is easy to see that

F (s, 0) = −μ < 0, F (s, 1) = s + α ≥ 0.

Thus the square equation F (s, z) = 0 has for any s > 0 two roots and the
minimal of them takes the value in the interval [0, 1]. This root we denote by

z(s) =
s + α + λ + μ

2λ
−

√
(s + α + λ + μ

2λ

)2

− μ

λ
.

Since the function P̃1,2(s, z) is analytical, the numerator of this function must
be zero at point z = z(s) as well, i.e.

λz(s)π̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s) = 0. (18)
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To have a second equation for the boundary transforms π̃(q1−1,1,1)(s) and
π̃(q1,1,1)(s) denote by

π̃0,0(s) = (π̃(0,0,0)(s), π̃(0,0,1)(s)), π̃q,1(s) = (π̃(q,1,0)(s), π̃(q,1,1)(s)), 1 ≤ q ≤ q1 − 1.

For the system of the Laplace transforms π̃x(s) obtained from (17) we can
get the following relations in matrix form,

π̃0,0(s) = −μ1π̃0,1(s)(Q̂1,0 − sI2)
−1 − e′

0(2)(Q̂1,0 − sI2)
−1 = π̃0,1(s)M̃0(s) + L̃0(s).

The substitution of the last expression into the matrix relation for π̃0,1(s)
yields

π̃0,1(s) = −μ1π̃1,1(s)(Q̂1,1 − sI2 + λM̃0(s))
−1 − λL̃0(s)(Q̂1,1 − sI2 + λM̃0(s))

−1

= π̃1,1(s)M̃1(s) + L̃1(s).

Sequential application of such forward-elimination-backward-substitution
method leads to the following recursive relations

π̃q−1,1(s) = π̃q,1(s)M̃q(s) + L̃q(s), 1 ≤ q ≤ q1 − 2,

π̃q1−1,1(s) = π̃(q1,1,1)(s)M̃q1(s) + L̃q1(s),

where M̃q(s) and L̃q(s) can be calculated by (15). By combining the relation

π̃(q1−1,1,1)(s) = (πq1,1,1(s)M̃q1(s) + L̃q1(s))e1(2)

and (18), we may express π̃(q1,1,1)(s) in form (12). The transforms for the rest of
boundary states can be hence evaluated as a functions of π̃(q1−1,1,1)(s). Finally
the double transforms are calculated at point z = 1 and substituted into (10).

4 Numerical Results

In this section we present some numerical examples to study the effect of system
parameters on proposed reliability measures. First we fix the systemparameters
at values

λ = 1.7, μ1 = 2.4, μ2 = 0.4, α1 = 0.1, α2 = 0.2,

β1 = 0.3, β2 = 0.3, ρ = 0.83, q1 = 9, q2 = 6.

In all cases presented below the parametric values are chosen in such a way
that the ergodicity condition holds.

In Figs. 1 and 2 the stationary availabilities Ai, 1 ≤ i ≤ 4, are plotted against
the arrival rate λ versus failure rates α1, α2 and repair rates β1, β2, respectively.
As we expect, Ai decreases with increasing λ. The upper curves correspond to the
lower value of α1 and α2 and to the higher value of β1and β2. The availabilities
A1, A2 and A3 take different values by changing of failure and repair rates of
servers. We notice that descriptor A3 changes by varying α1 and β1 but it is
insensitive to the change of α2 and β2. It happens since the parameters α1 and
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)b()a(

Fig. 1. The availability Ai, 1 ≤ i ≤ 4, for α1 = 0.1, 0.3 (a) and α2 = 0.1, 0.3 (b) vs. λ

)b()a(

Fig. 2. The availability Ai, 1 ≤ i ≤ 4, for β1 = 0.2, 0.4 (a) and β2 = 0.2, 0.4 (b) vs. λ

)b()a(

Fig. 3. The failure frequency Bi, i = 1, 2, for α1 = 0.1, 0.2, 0.3 (a) and α2 = 0.1, 0.2, 0.3
(b) vs. λ

β1 influences the busy state of server 2 due to the threshold policy, which in turn
makes a contribution to the availability A3.

In Figs. 3 and 4 we plot the failure frequency Bl for

αl = {0.1, 0.2, 0.3} and βl = {0.2, 0.3, 0.4}, l = 1, 2,
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)b()a(

Fig. 4. The failure frequency Bi, i = 1, 2, for β1 = 0.2, 0.3, 0.4 (a) and β2 = 0.2, 0.3, 0.4
(b) vs. λ

Fig. 5. The function R(t) vs. λ

respectively. These characteristics monotonously increase by increasing of λ.
Moreover we notice that B1 > B2, since the probability to be in state x with
d1(x) = 1 is higher than the probability for d2(x) = 1, since server 2 is used
according to the threshold control policy. We observe that the function B1 is
insensitive to changes of α2, β1 and β2, and the function B2 is almost insensitive
to change of β2.

In Fig. 5 we analyze the effect of the arrival rate λ to the reliability function
R(t). To evaluate this function we have used a numerical inversion algorithm for
the corresponding Laplace transforms R̃(s), which must be calculated in sym-
bolic form. For the calculations we have used the program Mathematica of the
Wolfram Research. This program has some limitation on the volume of sym-
bolic representations. Due to this reason and in order to reduce the algorithm’s
evaluation time, we had to restrict the number of items of the sums in (10) by
assuming that q1 = 2 and q2 = 1. We notice that the illustrated function for the
higher values of λ exhibit heavier tails.
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)b()a(

Fig. 6. The function R(t) vs. α1 (a) and α2 (b)

)b()a(

Fig. 7. The function R(t) vs. μ2 for μ1 = 2.4 (a) and μ1 = 4.8 (b)

In Figs. 6 and 7 we illustrate respectively the influence of α1, α2, μ1 and μ2

on the reliability function R(t). Obviously, for

α1 = 0.01, α2 = 0.01, μ1 = 4.8, μ2 = 1.2

we observe that the corresponding distribution function exhibits a heavier tail.
Finally, we calculate the moment of the life time E[T ] by varying λ,

λ = {0.5, 0.8, 1.2, 1.7}, E[T ] = {42.81, 23.51, 13.81, 9.03}.

As is to be expected, the mean life time is decreasing function of λ.

5 Conclusion

The paper provides reliability analysis of a two-server heterogeneous unreliable
queueing system with a threshold control policy for the allocation of customers
between the servers. The proposed results complement the classical performance
analysis of the unreliable queueing models which can be described by the quasi-
birth-and-death processes. The matrix-geometric solution method has been used
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to obtain the stationary state probabilities and some stationary reliability mea-
sures like availability and failure frequency. The combination of the forward-
elimination-backward-substitution method for the boundary states with gener-
ating function approach for the states above the highest threshold level has led to
a closed form solution in terms of Laplace transform for the reliability function
and as a consequence for the mean time to the first failure. We finally performed
numerical experiments to explore the effect of various system parameters on
reliability of servers.
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