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The aim of the paper is to derive the distribution of the number of retrial of the tagged
request and as a consequence to present the waiting time analysis of a finite-source M/M/1
retrial queueing system by using the method of asymptotic analysis under the condition of
the unlimited growing number of sources. As a result of the investigation, it is shown that
the asymptotic distribution of the number of retrials of the tagged customer in the orbit
is geometric with given parameter, and the waiting time of the tagged customer has a
generalized exponential distribution. For the considered retrial queuing system numerical
and simulation software packages are also developed. With the help of several sample
examples the accuracy and range of applicability of the asymptotic results in prelimit
situation are illustrated showing the effectiveness of the proposed approximation.
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1. INTRODUCTION

Retrial queues (RQ) have been widely used to model many problems arising in telephone
switching systems, telecommunication networks, computer networks and computer systems,
call centers, wireless communication systems, and so on. For a systematic account of the fun-
damental methods and the latest results, furthermore an accessible classified bibliography
on this topic, the interested reader is referred to, for example Artalejo and Gomez-Corral [8],
Gómez-Corral and Phung-Duc [16], Kim and Kim [18], and references therein.
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In many practical situations, it is important to take into account the fact that the rate
of generation of new primary calls decreases as the number of customers in the system
increases. This can be done with the help of finite-source, or quasi-random input models.
RQ with quasi-random input are a recent interest in modeling among others magnetic disk
memory systems, cellular mobile networks, computer networks, and local-area networks with
non-persistent CSMA/CD protocols, with a star topology, with random access protocols,
and with multiple-access protocols, see, for example Alfa and Isotupa [1], Ali and Wei [2],
Almási et al. [3], Do et al. [9], Dragieva [12], Ikhlef, Lekadir and Aı̈ssani [17], Lebedev and
Ponomarov [21], Wüchner, Sztrik and de Meer [31].

One of the most complicated problems in the RQ-systems is the distribution of the
waiting time, the time a customer spends in the orbit. More information concerning the
investigation of waiting time can be found, for example in the papers Gomez-Corral and
Ramalhoto [15], Neuts [27], Nobel and Tijms [28] for RQ-system with an infinite number of
sources, and Artalejo, Chakravarthy and Lopez-Herrero [6], Artalejo and Gomez-Corral [5],
Artalejo and Gomez-Corral [7], Falin and Artalejo [13], for finite retrial group or sources.

In this paper, we will investigate the distribution of the number of retrials of a customer
together with the distribution of the waiting time of a request in a RQ-system since they are
connected to each other. Related results can be found, for example in Alfa and Isotupa [1],
Dragieva [10], Dragieva [11], Falin and Artalejo [13], Gharbi and Dutheillet [14], Kvach and
Nazarov [20], Nazarov, Kvach and Yampolsky [25], Nazarov and Sudyko [22], Wang, Zhao
and Zhang [29], Wang, Zhao and Zhang [30], Zhang and Wang [32]. We will use the method
of asymptotic analysis under limiting condition of a growing number of sources as it has
been applied, for example in Kvach and Nazarov [20], Nazarov, Kvach and Yampolsky [25],
Nazarov and Moiseeva [22].

Although the state space is finite in the case of prelimit situation, that is when N
is finite, an exact analysis of the steady-state waiting time distribution, see Falin and
Artalejo [13] and the distribution of the number of retrials, see Dragieva [10] is very com-
plicated, for that reason, our main contribution is to propose an asymptotic analysis of
these measures by sending the number of sources N to infinity and using of course some
proper form of scaling or normalizing. The main advantage of the proposed method is that
it directly works on the asymptotic solution to the system of balance equations without
deriving explicit expressions of the exact generating and characteristic functions.

The rest of the paper is organized as follows. In Section 2 we describe the mathematical
model of the RQ-system and define the main problem of obtaining probability characteris-
tics of the waiting time. In Section 3 the Kolmogorov’s equations with respect to the systems
state and the residual number of retrials are derived. Section 4 is devoted to the asymptotic
analysis of the probability distribution of servers states and we obtain the first order asymp-
totics (the law of large numbers) for the distribution of the number of customers in the orbit.
In Section 5 asymptotic analysis of the generating functions for the residual number and
the number of retrials is treated, respectively. Section 6 deals with the approximation of the
distribution of the waiting time in the orbit in prelimit situation. In Section 7 with the help
of several sample results obtained by numerical and simulation methods the accuracy and
range of applicability of the asymptotic results in prelimit situation are illustrated showing
the effectiveness of the proposed approximation. Finally, the paper ends with a Conclusion.

2. MATHEMATICAL MODEL

Let us consider a single server RQ-system where primary requests are generated by a finite
number of N sources. If the server is idle, then the service of an incoming request starts
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ASYMPTOTIC WAITING TIME ANALYSIS OF A FINITE-SOURCE 3

immediately; after the service, this request leaves the service facility and the source starts to
generate a new primary request for service. If the server is busy, then the incoming request
joins to the orbit, and after a random delay, each request generates a retrial attempt in
order to capture the server. If the server is idle at the moment of the retrial, then this
request occupies the server; otherwise, it returns to the retrial pool thus being delayed by
a random amount of time.

We suppose that each source during a random time, which is exponentially distributed
with parameter λ/N , generates a request, the service time of which is exponentially
distributed with parameter μ. The inter retrial times are supposed to be exponentially
distributed with parameter σ/N . Assuming that all durations are independent random
variables the aim of our investigation is to get the distribution of the number of retrials and
the waiting time in this RQ-system. Supposing that the system is in the stationary regime
and denoting the length of the waiting time of the tagged customer by W , and by R the
number of retrial attempts to capture the server before beginning the service, it is easy to
see that the value R is a non-negative integer; R is equal to zero when the primary request
finds the server idle and the service starts immediately.

It is obvious that

W =

{
0, if R = 0
τ1 + τ2 + · · · + τR, if R > 0

(1)

where τi denotes the inter retrial times of the tagged customer, which are supposed to be
independent and exponentially distributed random variables with parameter σ/N .

Let us define two random variables for the tagged request: the residual waiting time
Wres(t) as the length of interval from the moment t until the server start servicing the
tagged request and the residual number of retrials Rres(t) as the number of attempts until
the tagged request finds the server idle. Note that Wres(t) and Rres(t) have positive values
and they have the following relation

Wres(t) = τ1 + τ2 + · · · + τRres(t). (2)

It is clear that W , Wres(t), R, Rres(t) and the number of requests in the orbit depend on
N and they are prelimit random variables. But for the simpler notation, this dependence is
not shown directly, but we should remember to this fact.

In this paper, we will first deal with the asymptotic (for N −→ ∞) distribution of
Rres(t), R and then the approximation of the prelimit (for N < ∞) distribution of Wres(t)
and W . The asymptotic distributions will be obtained by the asymptotic method, whereas
the prelimit distributions by numerical and simulation approaches. Then our aim is to
compare these distributions and to show the effectiveness of the asymptotic method.

3. KOLMOGOROV’S EQUATIONS

This section is important for the investigations carried out in the following sections. The
used asymptotic methods are similar but they are different and our aim is that the readers
understand this effective approach. That is the reason why we show the detailed analysis
in the given sections.

Let us derive first the steady-state Kolmogorov’s equations. Let Q(t) be the number of
requests in the orbit at the time t, and let C(t) define the state of the server at the time t

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000207
Downloaded from https://www.cambridge.org/core. University of Debrecen, on 18 Sep 2018 at 09:46:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000207
https://www.cambridge.org/core
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as follows:

C(t) =

{
0, if the server is idle,
1, if the server is busy.

Due to the exponential distribution of the times involved in the model construction, it is easy
to see that (C(t), Q(t)) is a two-dimensional Markov process. Let us denote its distribution
by

Pk(j, t) = P (C(t) = k,Q(t) = j).

Since the described Markov chain is homogeneous and irreducible, having a finite number of
states, its stationary distribution Pk(j) = P (C = k,Q = j) exists and satisfy the following
balance equations

λP0(0) = μP1(0),(
λ

N − 1
N

+ μ

)
P1(0) = λP0(0) + σ

1
N

P0(1), j = 0,

(
λ

N − j

N
+ σ

j

N

)
P0(j) = μP1(j),(

λ
N − j − 1

N
+ μ

)
P1(j) = λ

N − j

N
P0(j) (3)

+ σ
j + 1
N

P0(j + 1) + λ
N − j

N
P1(j − 1), 1 ≤ j ≤ N − 2,(

λ
1
N

+ σ
N − 1

N

)
P0(N − 1) = P1(N − 1)μ,

μP1(N − 1) = λ
1
N

P0(N − 1) + λ
1
N

P1(N − 2), j = N − 1.

This can be written in a shorter form as

(
λ

N − j

N
+ σ

j

N

)
P0(j) = μP1(j),(

λ
N − j − 1

N
+ μ

)
P1(j) = λ

N − j

N
P0(j) + σ

j + 1
N

P0(j + 1) + λ
N − j

N
P1(j − 1),

with the convention that P0(N) = P1(−1) = 0.
Let us denote the conditional generating functions for the residual number of retrials

Rres(t) of the tagged request by

Gk(z, j, t) = E{zRres(t) | C(t) = k,Q(t) = j}. (4)

Since (C(t), Q(t)) is in stationary regime these generating functions do not depend on t.
Thus using standard method it is easy to see that the steady-state generating functions
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Gk(z, j) = E{zRres | C = k,Q = j} satisfy the following system of equations

λG0(z, 0) = λG1(z, 0),(
λ

N − 1
N

+ μ

)
G1(z, 0) = μG0(z, 0) + λ

N − 1
N

G1(z, 1), j = 0,

(
λ

N − j

N
+ σ

j

N

)
G0(z, j) = λ

N − j

N
G1(z, j) + σ

j − 1
N

G1(z, j − 1) + σ
1
N

z,

(
λ

N − j − 1
N

+ σ
1
N

+ μ

)
G1(z, j) = μG0(z, j) + λ

N − j − 1
N

G1(z, j + 1) (5)

+ σ
1
N

zG1(z, j), 1 ≤ j ≤ N − 2,(
λ

1
N

+ σ
N − 1

N

)
G0(z,N − 1) = λ

1
N

G1(z,N − 1) + σ
N − 2

N
G1(z,N − 2) + σ

1
N

z,

(
σ

1
N

+ μ

)
G1(z,N − 1) = μG0(z,N − 1) + σ

1
N

zG1(z,N − 1), j = N − 1.

Eqs. (3) and (5) will be used for the investigation of the asymptotic distribution of the
residual number retrials and then for the approximation of the distribution of the waiting
time of the tagged request.

First, we consider the method of asymptotic analysis under the limiting condition N →
∞, then in Section 7, we perform a numerical and simulation analysis for the prelimit
situation N < ∞ to show the efficiency of the asymptotic method.

4. ASYMPTOTIC ANALYSIS OF THE DISTRIBUTION OF THE SERVER’S STATES
AND THE NUMBER OF CUSTOMERS IN THE ORBIT

Let us introduce the following steady-state partial characteristic functions

Hk(u) =
N−1∑
j=0

eiujPk(j) (6)

where i =
√−1 is the imaginary unit. It can easily be seen that

N−1∑
j=0

eiujjPk(j) = −i
∂Hk(u)

∂u
. (7)

For functions Hk(u) according to Eqs. (7) and (3) we can obtain the following equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i

N
(σ − λ)

∂H0(u)
∂u

− λH0(u) + μH1(u) = 0,

− i

N

(
e−iuσ − λ

) ∂H0(u)
∂u

− i

N
λ

(
1 − eiu

) ∂H1(u)
∂u

+λH0(u) −
{

μ + λ
N − 1

N

(
1 − eiu

)}
H1(u) = 0.

Denoting ε = 1/N , and making the following substitutions

u = εw, Hk(u) = Fk(w, ε), (8)
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on the one hand, we can simplify the equations and the other hand, we can use some
asymptotics for certain functions. Of course, since it is a substitution u remains fix. In
probabilistic term, this substitution results in the scaled number of requests in the orbit,
or the normed number of requests as we will refer to it later on. The interpretation is clear
since if the number of sources increases the request in the orbit also increases.

Thus for functions Fk(w, ε) we can get the following system of equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i(σ − λ)
∂F0(w, ε)

∂w
− λF0(w, ε) + μF1(w, ε) = 0,

−i
(
e−iεwσ − λ

) ∂F0(w, ε)
∂w

− iλ
(
1 − eiεw

) ∂F1(w, ε)
∂w

+λF0(w, ε) − {μ + λ(1 − ε)
(
1 − eiεw

)}F1(w, ε) = 0.

(9)

Since it is very complicated to get the exact solution of this system, we will use asymp-
totics methods. Let us investigate this system in two stages as the authors carried in
Kvach and Nazarov [20], Nazarov and Sudyko [23], Nazarov and Sudyko [24], Nazarov
and Moiseeva [22].

Stage 1. Passing to the limit as ε → 0 in system Eq. (9), after denoting

lim
ε→0

Fk(w, ε) = Fk(w),

we obtain the following system⎧⎪⎨
⎪⎩

i(σ − λ)
∂F0(w)

∂w
− λF0(w) + μF1(w) = 0,

−i(σ − λ)
∂F0(w)

∂w
+ λF0(w) − μF1(w) = 0.

(10)

Let us notice that this system consists of two equivalent equations.
Stage 2. Adding together equations of system Eq. (9) we get

iσ
(
1 − e−iεw

) ∂F0(w, ε)
∂w

+ iλ
(
eiεw − 1

) ∂F1(w, ε)
∂w

+ λ(1 − ε)
(
eiεw − 1

)
F1(w, ε) = 0.

Using first order asymptotics to the exponential function this equation can be
rewritten as follows

iσ (iεw + o(ε))
∂F0(w, ε)

∂w
+ iλ (iεw + o(ε))

∂F1(w, ε)
∂w

+ λ(1 − ε) (iεw + o(ε)) F1(w, ε) = 0.

Passing to the limit ε → 0 here, we have

iσ
∂F0(w)

∂w
+ iλ

∂F1(w)
∂w

+ λF1(w) = 0

which together with Eq. (10) we obtain the following system of equations⎧⎪⎪⎨
⎪⎪⎩

i(σ − λ)
∂F0(w)

∂w
− λF0(w) + μF1(w) = 0,

iσ
∂F0(w)

∂w
+ iλ

∂F1(w)
∂w

+ λF1(w) = 0.
(11)
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ASYMPTOTIC WAITING TIME ANALYSIS OF A FINITE-SOURCE 7

We give a constructive solution to this system, namely, we find the solution in
the following form

Fk(w) = R(k) exp
{
iwκ

}
, (12)

where R(k) = P (C = k), k = 0, 1.
Substituting Eq. (12) into system Eq. (11) for the probability distribution
R(k) we get a homogeneous system of two algebraic equations, namely{

i(σ − λ)iκR(0) − λR(0) + μR(1) = 0,

iσiκR(0) + iλiκR(1) + λR(1) = 0.

This can be rewritten as{ − {λ(1 − κ) + σκ}R(0) + μR(1) = 0,

− σκR(0) + λ(1 − κ)R(1) = 0.
(13)

The homogeneous system Eq. (13) has a non-trivial solution if and only if its
determinant vanishes, therefore we have

λ(1 − κ)
[
λ(1 − κ) + σκ

] − μσκ = 0, (14)

resulting the following quadratic equation

q(κ) = λ(λ − σ)κ2 + {σ(λ − μ) − 2λ2}κ + λ2 = 0, (15)

which determines the value of κ for Eq. (12).

Note that q(0) = λ2 and q(1) = −σμ, therefore there exists at least one root in (0, 1).
Since κ1κ2 = λ/(λ − σ) the other root cannot be in (0, 1) thus 0 < κ < 1 is unique for all
values of parameters λ, μ and σ.

According to system Eq. (13) and by considering the normalization condition R(0) +
R(1) = 1, the probability distribution R(k) can be calculated as

R(0) =
μ

λ(1 − κ) + σκ + μ
, R(1) =

λ(1 − κ) + σκ

λ(1 − κ) + σκ + μ
. (16)

Consequently, since the asymptotic partial characteristic functions Fk(w) has the form
Eq. (12) and the characteristic function is the sum of the partial characteristic functions it
is not difficult to see that we get the law of large numbers in probability theory, namely the
normalized number of requests in the orbit under limiting condition of growing number of
sources N → ∞ converges weakly to the deterministic value κ, which has been determined
from Eq. (15). Actually, it is the mean of the normalized number of requests in the orbit.
With the help of formulas, this statement can be stated in the following way

lim
N→∞

E exp
{

iw
Q

N

}
= exp {iwκ} . (17)

Hence the mean number of requests in the orbit E(Q) can be approximated by Nκ.
Using characteristic functions instead of generating functions is preferable since it helps us
to get the law of large numbers and in case we are interested in the distribution we can
apply the inversion formula.
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8 E. Sudyko et al.

5. ASYMPTOTIC ANALYSIS OF THE GENERATING FUNCTIONS FOR THE
RESIDUAL NUMBER OF RETRIALS

Similarly, let us solve the system of equations Eq. (5) for the conditional generating functions
Gk(z, i) by the method of asymptotic analysis under growing number of sources N → ∞.

Denoting ε = 1/N and making the following substitutions

j

N
= jε = x, Gk(z, j) = Sk(z, x, ε), (18)

system Eq. (5) can be rewritten by the help of functions Sk(z, x, ε) and we get a system of
two equations, namely

− [λ(1 − x) + σx]S0(z, x, ε) + λ(1 − x)S1(z, x, ε)

+ σ(x − ε)S1(z, x − ε, ε) + εσz = 0,

− [λ(1 − x − ε) + σε + μ]S1(z, x, ε) + μS0(z, x, ε)

+ λ(1 − x − ε)S1(z, x + ε, ε) + εσzS1(z, x, ε) = 0.

(19)

As before let us investigate this system in two stages.

Stage 1. Passing to the limit as ε → 0 in system Eq. (19), denoting

lim
ε→0

Sk(z, x, ε) = Sk(z, x)

for functions Sk(z, x) we obtain the system of equations

− [λ(1 − x) + σx]S0(z, x) + λ(1 − x)S1(z, x) + σxS1(z, x) = 0,

− [λ(1 − x) + μ]S1(z, x) + μS0(z, x) + λ(1 − x)S1(z, x) = 0.

This system consists of two equivalent equations for which we may write

S0(z, x) = S1(z, x) = S(z, x). (20)

Stage 2. Let us write the solution Sk(z, x, ε) of the system Eq. (19) in the form of a
decomposition, which is first order asymptotic

Sk(z, x, ε) = S(z, x) + εSk(z, x) + o(ε) (21)

and rewrite system Eq. (19) as follows

− [λ(1 − x) + σx]S0(z, x, ε) + [λ(1 − x) + σx]S1(z, x, ε)

+ ε
∂(σxS1(z, x, ε))

∂x
+ εσz = o(ε),

− [λ(1 − x) + μ + ε(σ − λ)]S1(z, x, ε) + μS0(z, x, ε) + λ(1 − x)S1(z, x, ε)

+ ε
∂(λ(1 − x)S1(z, x, ε))

∂x
+ εσzS1(z, x, ε) = o(ε).

Substituting decomposition Eq. (21) into this system after simple algebraic
calculations we have

− [λ(1 − x) + σx]S0(z, x) + [λ(1 − x) + σx]S1(z, x) =
∂(σxS(z, x))

∂x
− σz,

− μS1(x, z) − μS0(x, z) =
∂(λ(1 − x)S(z, x))

∂
x − (σz − σ + λ)S(z, x).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000207
Downloaded from https://www.cambridge.org/core. University of Debrecen, on 18 Sep 2018 at 09:46:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000207
https://www.cambridge.org/core


ASYMPTOTIC WAITING TIME ANALYSIS OF A FINITE-SOURCE 9

As a result for function S(z, x) we obtain the following equation

{[λ(1 − x) + σx]λ(1 − x) − μσx}∂S(z, x)
∂

x

+ {[λ(1 − x) + σx]σ(z − 1) − σμ}S(z, x) + μσz = 0.

(22)

Let us remember that in the previous section we have obtained the normalized
number of requests in the orbit Q/N under a growing number of sources
N → ∞ (ε → 0) converges to a deterministic value κ, therefore substituting
jε = x in Eq. (18), value x satisfies x = κ.
Since κ is the solution to equation Eq. (14) which is the coefficient of the
derivative ∂S(z, x)/∂x then the coefficient is zero in Eq. (22) and x = κ.
Denoting S(z) = S(z, κ) we can rewrite equation Eq. (22) as follows

{[λ(1 − κ) + σκ](z − 1) − μ}S(z) + μz = 0. (23)

Obviously the solution S(z) of Eq. (23) is

S(z) =
μz

μ − [λ(1 − κ) + σκ](z − 1)
= z

1 − R(1)
1 − zR(1)

, (24)

where R(1) was given in Eq. (16).
Denoting R(1) = ρ, we may write the generating function S(z) in Eq. (24) in
the form

S(z) = lim
N→∞

EzRres = z
1 − ρ

1 − zρ
. (25)

Then according to Eq. (25) it is easy to see that the asymptotic probability
distribution of the residual number of retrials Rres for the tagged request is
geometric

P (r) = lim
N→∞

P (Rres = r) = (1 − ρ)ρr−1, r = 1, 2, 3, . . . (26)

where

ρ = R(1) =
λ(1 − κ) + σκ

λ(1 − κ) + σκ + μ
. (27)

Thus

P (Rres = r) ≈ (1 − ρ)ρr−1, r = 1, 2, 3, . . .

6. DISTRIBUTION OF THE WAITING TIME IN THE ORBIT

The probability distribution P (r) given in Eq. (26) allows us to obtain other steady-state
performance measures of the systems such as the approximation of the residual waiting
time Wres, asymptotic distribution of the number of retrials R and the approximation of
the distribution of the waiting time W for the tagged request.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000207
Downloaded from https://www.cambridge.org/core. University of Debrecen, on 18 Sep 2018 at 09:46:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000207
https://www.cambridge.org/core


10 E. Sudyko et al.

6.1. Residual waiting time

Using equality Eq. (2), let us find the Laplace transform of the residual waiting time in
steady state

g(α) = E{e−αWres}. (28)

Let us notice that even the number of retrials depends on the inter retrial times occurred so
far, due to the memoryless property of the exponentially distributed inter retrial times and
the geometrically distributed number of retrials which also holds the memoryless property,
the conditional waiting time is Erlang distributed. Thus by the help of the law of total
probability we get

E{e−αWres} =
∞∑

r=1

E{e−αWres |Rres = r}P (Rres = r)

=
∞∑

r=1

E{e−α(τ1+τ2+···+τr)}P (Rres = r).

Since the inter retrial times τk are independent and identically distributed, denoting by
Ee−ατk = ϕ(α) their common Laplace transform, we may approximate function g(α) in the
form

g(α) ≈
∞∑

r=1

ϕ(α)r(1 − ρ)ρr−1 = ϕ(α)
(1 − ρ)

1 − ρϕ(α)
.

Since τk are exponentially distributed with parameter σ/N thus their common Laplace
transform is

ϕ(α) =
σ/N

α + σ/N
,

therefore

g(α) ≈ σ/N

α + σ/N

(1 − ρ)

1 − ρ σ/N
α+σ/N

=
(1 − ρ)σ/N

α + σ/N − ρσ/N
=

(1 − ρ)σ/N

α + (1 − ρ)σ/N
.

It means that the distribution of the residual waiting time Wres can be approximated by an
exponential distribution with parameter (1 − ρ)σ/N .

We are confident that our method is correct. In our recently submitted paper Nazarov
et al. [26], we have used the same asymptotic method directly to the asymptotic distribution
of the waiting time in prelimit situation. Then the limiting distribution of the number of
retrials has been obtained and consequently by using the same approach presented here
the asymptotic distribution of the waiting time has been determined resulting in the same
distribution.

6.2. Number of retrials

If the primary request finds the server idle, which has the probability R(0) = 1 − R(1) =
1 − ρ its service starts immediately. In this case, the number of retrials R for such request
is equal to zero. Otherwise, if the primary request finds the server busy with probability
R(1) = ρ , then the tagged request joins to the orbit and in this case the number of retrials R
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is equal to the residual number of retrials Rres, therefore by using the law of total probability
we get

lim
N→∞

P (R = 0) = 1 − ρ,

lim
N→∞

P (R = r) = R(1)(1 − ρ)ρr−1 = (1 − ρ)ρr, r = 1, 2, 3, . . .

Consequently, the asymptotic distribution of the number of retrials can be written as

lim
N→∞

P{R = r} = (1 − ρ)ρr, r = 0, 1, 2, 3, . . . (29)

6.3. Waiting time

According to Eqs. (1) and (26), using the law of total probability the Laplace transform of
the waiting time can be approximated by

gW (α) = E{e−αW } ≈ P (R = 0) +
∞∑

r=1

ϕ(α)rP (R = r) = 1 − ρ +
∞∑

r=1

ϕ(α)r(1 − ρ)ρr−1

= 1 − ρ +
ϕ(α)(1 − ρ)ρ
1 − ρϕ(α)

= 1 − ρ + ρ
(1 − ρ)σ/N

α + (1 − ρ)σ/N
.

Thus the waiting time W is equal to zero with probability 1 − ρ, and it is exponentially
distributed with parameter (1 − ρ)σ/N with probability ρ. This mixed-type distribution is
called generalized exponential (GE) distribution with parameters 1 − ρ and (1 − ρ)σ/N ,
or other words the conditional waiting time is exponentially distributed, see Kouvat-
sos [19], Wüchner, Sztrik and de Meer [31]. Consequently, the mean waiting time can be
approximated as

E(W ) ≈ ρ
1

(1 − ρ)σ/N
=

ρ

1 − ρ

1
σ/N

. (30)

This formula gives us an approximation for the mean waiting time in the prelimit situation.
However, this expectation could be calculated with the help of the Little-formula, too. It is
not difficult to see that μR(1) = λ(1 − κ) which is the average arrival rate of the requests,
thus E(W ) ≈ Nκ/(μR(1). We can use these two different formulas to verify our calculations
since the results should be identical.

7. NUMERICAL AND SIMULATION RESULTS AND COMPARATIVE ANALYSIS

The probability distribution P (r) given in Eq. (26) has been obtained by the method of
asymptotic analysis under the limiting condition N → ∞.
However, it is worth investigating the range of applicability of these asymptotic results for
prelimit situations for a finite value of N .

Let us denote the prelimit probability distribution by π(r) = P{Rres = r} and since it
is an essential contribution to the comparison, we show how it can be obtained by numerical
methods. In Dragieva [10], a similar problem was treated by a rather complicated way that
is, we did not want to use that method. Instead, we propose our own way which is also
standard but has not been used frequently since the investigation of a number of retrials is
not so popular due to its complexity.
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According to Eqs. (4) and (5), the conditional generating functions Gk(z, j) can be
written as

Gk(z, j) = E{zRres |C = k,Q = j} =
∞∑

r=1

zrP{Rres = r|C = k,Q = j}. (31)

Denoting the conditional probability by

Πk(r, j) = P{Rres = r|C = k,Q = j}

Equation (31) can be rewritten as follows

Gk(z, j) =
∞∑

r=1

zrΠk(r, j). (32)

It should be noted that these conditional probabilities are well defined for each
j = 0, . . . , N − 1 even for j = 0 because it gives the conditional probability of the resid-
ual number of retrials given the orbit is empty. Since Rres(t) denotes the residual number of
retrial from time t which are positive it means that the request does not enter to the server
immediately thus the orbit can be empty.

Using the law of total probability we can get

π(r) =
N−1∑
j=0

{Π0(r, j)P0(j) + Π1(r, j)P1(j)}, (33)

where the unconditional probabilities Pk(j) are solutions to the Kolmogorov’s system of
Eq. (3) and normalization condition. To obtain the conditional probabilities Πk(r, j), let us
substitute power series Eq. (32) into system Eq. (5) and equate coefficients of the corre-
sponding powers of z. Then for the probabilities Πk(r, j) we can obtain the following systems
of equations

For r = 1

− λΠ0(1, 0) + λΠ1(1, 0) = 0,

−
(

λ
N − 1

N
+ μ

)
Π1(1, 0) + μΠ0(1, 0) + λ

N − 1
N

Π1(1, 1) = 0, j = 0,

−
(

λ
N − j

N
+ σ

j

N

)
Π0(1, j) + λ

N − j

N
Π1(1, j) + σ

j − 1
N

Π1(1, j − 1) = 0,

−
(

λ
N − j − 1

N
+ σ

1
N

+ μ

)
Π1(1, j) + μΠ0(1, j)

+ λ
N − j − 1

N
Π1(1, j + 1) = 0, 1 ≤ j ≤ N − 2,

−
(

λ
1
N

+ σ
N − 1

N

)
Π0(1, N − 1) + λ

1
N

Π1(1, N − 1) + σ
N − 2

N
Π1(1, N − 2) = 0,

−
(

σ
1
N

+ μ

)
Π1(1, N − 1) + μΠ0(1, N − 1) = 0, j = N − 1.

(34)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964818000207
Downloaded from https://www.cambridge.org/core. University of Debrecen, on 18 Sep 2018 at 09:46:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000207
https://www.cambridge.org/core


ASYMPTOTIC WAITING TIME ANALYSIS OF A FINITE-SOURCE 13

Table 1. Comparisons for exact and asymptotic results

N 10 50 100 200 300 N → ∞

π(1) 0.4228 0.3933 0.3896 0.3878 0.3872 0.3860
π(1) − P (1) 0.0368 0.0073 0.0036 0.0018 0.0012

For r ≥ 2

− λΠ0(r, 0) + λΠ1(r, 0) = 0,

−
(

λ
N − 1

N
+ μ

)
Π1(r, 0) + μΠ0(r, 0) + λ

N − 1
N

Π1(r, 1) = 0, j = 0,

−
(

λ
N − j

N
+ σ

j

N

)
Π0(r, j) + λ

N − j

N
Π1(r, j) + σ

j − 1
N

Π1(r, j − 1) = 0,

−
(

λ
N − j − 1

N
+ σ

1
N

+ μ

)
Π1(r, j) + μΠ0(r, j)

+ λ
N − j − 1

N
Π1(r, j + 1) + σ

1
N

Π1(r − 1, j) = 0, 1 ≤ j ≤ N − 2,

−
(

λ
1
N

+ σ
N − 1

N

)
Π0(r,N − 1) + λ

1
N

Π1(r,N − 1)

+ σ
N − 2

N
Π1(r,N − 2) = 0,

−
(

σ
1
N

+ μ

)
Π1(r,N − 1) + μΠ0(r,N − 1) + σ

1
N

Π1(r − 1, N − 1) = 0, j = N − 1.

(35)

Solving Eqs. (3) and (34) by numerical methods for given values of parameters λ, μ, σ and
N , we find values of unconditional probabilities Pk(j) and conditional probabilities Πk(1, j)
for all 0 ≤ j ≤ N − 1. After that, substituting these values into Eq. (33), we can get the
probability π(1) as the first step for our comparisons

π(1) =
N−1∑
j=0

{Π0(1, j)P0(j) + Π1(1, j)P1(j)}.

It should be noted since the distribution P (r) is geometric it is enough to calculate the first
term from which the consecutive terms can be obtained multiplying them by ρ. Thus the
first terms play an important role. As the main contribution of our paper is the analysis of
the number of retrials we would like to show the effectiveness of the asymptotic approach
in details. As an example in Table 1 the values of π(1) are listed for different N while the
parameters λ = 1.2, μ = 1, σ = 2 are fixed.
The value in the last column of Table 1 has been determined from Eq. (26) for probability
P (1), which has been obtained by the method of asymptotic analysis, while the second row
of Table 1 shows us the difference π(1) − P (1) for several values of N . The results show
what we have expected, namely by increasing number of sources the corresponding prelimit
probabilities decrease and tend to the limiting value.

Assuming that the acceptable error to obtain the prelimit probability π(1) is not more
than 0.01, it may be approximated by the asymptotic probability P (1) for N ≥ 50.
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Table 2. Comparisons for exact and asymptotic probabilities

r 1 2 3 4 5 6 7 8 9

π(r) 0.393 0.235 0.144 0.088 0.054 0.033 0.020 0.013 0.008
P (r) 0.386 0.237 0.146 0.089 0.055 0.034 0.021 0.013 0.008

Table 3. Kolmogorov distance between exact and asymptotic distribution

N 10 30 50 100 200 300

Δ(N) 0.0368 0.0192 0.0073 0.0024 0.0018 0.0012

Similarly, solving systems of equations Eq. (35) by numerical methods for given values
of parameters λ, μ, σ and N , we can find the values of conditional probabilities Πk(r, j) for
all 0 ≤ j ≤ N − 1 and any range of r = 1, 2, 3, . . . ..

Substituting these values into Eq. (33), we can calculate the prelimit probability
distribution π(r) of the number of retrials for the tagged request.

Particularly, in Table 2 for the parameters λ = 1.2, μ = 1, σ = 2 and N = 50 values of
the prelimit probabilities π(r), and the asymptotic probabilities P (r) are listed and could
be compared.

The results confirm us again that under these parameters setup the obtained distribu-
tions are very close to each other and the asymptotic method is very effective.
Another method to measure the proximity of π(r) and P (r) distributions is, for example
the Kolmogorov’s distance defined as follows

Δ = max
1≤r<∞

∣∣∣∣∣∣
r∑

j=0

P (j) −
r∑

j=0

π(j)

∣∣∣∣∣∣ ,

which means the maximum absolute difference between the distribution functions.
In Table 3 values of Δ(N) of the Kolmogorov’s distance between the asymptotic distri-

bution P (r) and the prelimit distribution π(r) are listed for various N and under parameters
λ = 1.2, μ = 1, σ = 2.

We can observe again what we expected, namely by increasing N the error should
decrease. It is acceptable to approximate the prelimit distribution π(r) by the asymptotic
distribution P (r) when the values of the Kolmogorov’s distance Δ(N), which characterizes
the error of approximation, are small enough. Assuming that the acceptable error is not
more than 0.01, we can conclude that the approximation is reasonable and acceptable for
N ≥ 50.

To see the effectiveness of the approximation, let us consider further examples collected
in Table 4 in which we can see the impact of λ when μ = 1, σ = 2 are fixed. Additional
performance measures, such as the mean number of retrials in prelimit and limiting case and
their differences are added. Tested by the numerical results a simulation software package has
been developed with the aim to investigate finite-source RQ systems with non-exponentially
distributed random variables. We could estimate the distribution of the number of customers
in the system, distribution of a number of retrials, mean and variance of the waiting and
response times. Our results for the non-exponential case will be the topic of a future paper.
Since the approximation of the mean waiting time basically depends on the approximation
of the mean number of retrials these measures are not listed.
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Table 4. Comprehensive comparisons of exact and asymptotic metrics

λ N 10 50 100 200 300 N → ∞

1,2 π(1) 0,4228 0,3933 0,3896 0,3878 0,3872 0,3861
Difference 0,0367 0,0072 0,0035 0,0017 0,0011
E(Number of retrials) 1,4318 1,5588 1,5736 1,5817 1,5847 1,5906
Difference 0,1588 0,0318 0,017 0,0089 0,0059
Δ(N) 0,0368 0,0073 0,0036 0,0018 0,0012

5 π(1) 0,3163 0,2966 0,2943 0,2932 0,2928 0,2918
Difference 0,0245 0,0048 0,0025 0,0014 0,001
E(Number of retrials) 2,1594 2,3685 2,3949 2,4073 2,4129 2,4271
Difference 0,2677 0,0586 0,0322 0,0198 0,0142
Δ(N) 0,0833 0,0176 0,0087 0,0041 0,0028

10 π(1) 0,3092 0,2853 0,2824 0,2811 0,2806 0,2796
Difference 0,0296 0,0057 0,0028 0,0015 0,001
E(Number of retrials) 2,5003 2,3684 2,5368 2,5534 2,5599 2,5765
Difference 0,0762 0,2081 0,0397 0,0231 0,0166
Δ(N) 0,1545 0,0341 0,01687 0,0084 0,0056

20 π(1) 0,3133 0,2817 0,2777 0,2756 0,2751 0,2736
Difference 0,0397 0,0081 0,0041 0,002 0,0015
E(Number of retrials) 2,1568 2,5421 2,5953 2,6231 2,6313 2,6549
Difference 0,4981 0,1128 0,0596 0,0318 0,0236
Δ(N) 0,2706 0,0663 0,0337 0,0166 0,0111

50 π(1) 0,3281 0,2851 0,2778 0,2741 0,2726 0,2702
Difference 0,0579 0,0149 0,0076 0,0039 0,0024
E(Number of retrials) 1,8131 2,4898 2,5905 2,6427 2,6621 2,7009
Difference 0,8878 0,2111 0,1104 0,0582 0,0388
Δ(N) 0,4495 0,1568 0,0827 0,0421 0,0283

We can observe that λ/N has the highest impact on the measures. The smaller its
value the better the approximation is. The Difference stands for the difference between
the prelimit and asymptotic values. These examples illustrated us the effectiveness of the
proposed asymptotic method by the help of which it is much easier to approximate the
prelimit distributions than by applying numerical procedures (if possible) or simulation
methods. It can easily be seen because the distribution of the number of retrials in the
asymptotic and prelimit case are close to each other, measured by the Kolmogorov’s distance
therefore the asymptotic and prelimit distribution of the waiting time are also close to each
due to the law of total probability.

Finally, it should be underlined again that the exact determination of the distribution
of the waiting time and the number of retrials is a much more complicated task as we could
see, for example in Artalejo [4], Artalejo and Gomez-Corral [8], Dragieva [10], and Falin and
Artalejo [13]. We believe that the asymptotic method will play even more important role in
investigating more complicated systems when the exact distributions are almost impossible
to obtain. We have some yet unpublished results concerning systems when only simulation
and asymptotic results are available.

8. CONCLUSION

In this paper, an analysis of the number of retrials and the waiting time in a finite-source
retrial queuing system was presented. The research has been conducted by the method of
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asymptotic analysis under the condition of an unlimited growing number of sources. As a
result of the investigation, it was shown that the asymptotic distribution of the number
of retrials of the customers in the orbit is geometric, and the distribution of the waiting
time of the customers can be approximated by a GE distribution with given parameters.
For the considered retrial queueing system a numerical and simulation software package
has been developed with the help of which using several sample examples the accuracy and
range of applicability of the asymptotic results in prelimit situation were illustrated and
thus demonstrated the efficiency of the proposed approximations. In the near future, we
would like to investigate these type of systems with non-exponentially distributed random
variables by using asymptotic and simulation methods.
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26. Nazarov, A., Sztrik, J., Kvach, A., & Tóth, A. (2017). Asymptotic sojourn time analysis of Markov finite-
source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs.
Markov Processes and Related Fields Submitted.

27. Neuts, M. (1968). The joint distribution of the virtual waiting time and the residual busy period for
the M/G/1 queue. Journal of Applied Probability 5, 224–229.

28. Nobel, R. & Tijms, H. (2006). Waiting-time probabilities in the M/G/1 retrial queue. Statistica
Neerlandica 60, 73–78.

29. Wang, J., Zhao, L., & Zhang, F. (2010). Performance analysis of the finite source retrial queue with
server breakdowns and repairs. In: Proceedings of the 5th International Conference on Queueing Theory
and Network Applications. Beijing, China: ACM , pp. 169–176.

30. Wang, J.,, Zhao, L., & Zhang, F. (2011). Analysis of the finite source retrial queues with server
breakdowns and repairs. Journal of Industrial and Management Optimization 7(3): 655–676.
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