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Abstract

A controlled retrial queueing system with two heterogerseservers, first-come first-served discipline for the cus-
tomers on the orbit, possible direct access for the primasganers, Poisson arrivals and finite retrial group is con-
sidered. According to the optimal policy the faster serveistrbe active whenever the customer enters the service
area while the slower one can be active only when the numbzrstbmers in the orbit exceeds a prescribed threshold
level. The problem of deriving the equilibrium waiting tiraad sojourn time distributions is formulated. We introduce
the recursive method for the calculation of the correspugdiaplace-Stiltjes transforms and the inversion methods
are used to get the distribution functions. Also the resersnethod for the obtaining-transforms is used to get
some discrete distributions for the number of directly sdrgrimary customers and the number of retrials made by
a customer until the service starts. The methods are applsedfor other heuristic control policies, namely for the
Scheduling threshold policy (STP), Fastest Free Serve8YBFRandom Server Selection (RSS)

Keywords: Retrial queue, Controlled queueing system, Steady-state probabilitieshibhd control policy,
Waiting time distribution, Sojourn time distribution

1 Introduction

We consider controllable retrial queueing system with several expohsatigers, functioning at different
rates. The arriving customers form a Poisson process and can liineziaaccess to the service area. In
our previous paper [8] we minimized the expected sojourn time over all cust@and found that there is a
threshold policy which uses a slow server only if the orbit size exceeeldaircthreshold level. With respect
to this policy we have applied the matrix-geometric method for the calculation afysstates probabilities
and different mean performance characteristics.

In this paper we formulate the problem of determining the stationary waiting @odra time distri-
butions. For the uncontrolled classical queueing systems without retriatedaderiving of the waiting
time distribution it is enough to consider the system state at the arrival time ofadamstomer, e.g. as
is presented by Kleinrock [11]. In controlled case [20] it was showhtti@waiting and sojourn time dis-
tributions correspond to the linear combination of Erlang distributions. Theéngdime in uncontrolled
retrial queues is more difficult. Some methods are described in the mondyrdgatiin and Tempelton [9].
For retrial systems (uncontrolled or controlled) with direct access of pyimiastomers to the service area
the waiting time analysis becomes more complicated because the waiting time of a custtine case
depends also on future arrivals. In systems with classical retrial pelicgre the retrial rate depends on
the number of orbiting customers, it is necessary to take into account thatlater arrived customer can
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be earlier served according to the random order policy for the orbitiapmers. The recursive scheme for
the computation of the Laplace-Stiltjes transforms of the waiting time of a taggeaheoeisis introduced by
Artalejo et al. [4]. This paper motivate us to perform the waiting time analysithéocontrolled queue with
constant retrial policy, where the retrial rate is independent of the nuaflmebiting customers.

In systems with constant retrial rate with FCFS service discipline for the gglatistomers for a thresh-
old policy future arrivals can influence the waiting time of the tagged custognerfloencing the servers
that can be active in the future. Therefore it is also necessary to evris&larrival process after the arrival
of the tagged customer up to the time where service of this customer startselsystem under consider-
ation the calculation of the waiting time distribution is achieved by analysing thderdandarkov process
with absorption at the time the tagged customer starts service. This requiegteasion of the state rep-
resentation since we have to know at each time the position of the tagged custah list of orbiting
customers.

In this paper we express the Laplace transforms of the waiting and sojournlisinibutions. Repre-
senting the Laplace-Stiltjes transforms of the waiting or sojourn time densitieg ¢agiged customer as
vector we get that for threshold system it satisfies the threshold depéiumtk-threediagonal system. For
uncontrolled queue with classical retrial rate such a structure was shdwh But in case of FIFO disci-
pline for the orbiting customers this system is recurrent with respect to gigqroof the tagged customer
in the orbit.

The organization of the paper is as follows. In sections 2 and 3, the st¢atdydistributions are derived
for a general threshold system and heuristic control policies. In secicand 5, we develop recursive
equations for the calculation of the stationary waiting and sojourn time distrilsuf@mna system under
threshold and heuristic control policies as well as the corresponding nisroethe arbitrary orders. In
sections 6 and 7, we obtain, respectively, discrete distribution functa@rsdé number of directly served
customers and number of retrials made by a customer. In section 8 we grestiits of numerical inversion
of Laplace- and z-transforms and compare them for threshold anitieaontrol policies.

In further sections we will use the notatioa:), e;(n) and I, for the column-vector of dimensiom
consisting of 1's, column vector of dimensienwith 1 in the j-th (beginning from0-th) position and)
elsewhere, and an identity matrix of dimension n. The notations without specifying the dimensions will
be used for the suitably dimensioned vectors and matrices.

2 Description of the mathematical model

Consider the queueing mod#f /M /c in which primary customers arrive according to a Poisson stream
with rate\, two heterogeneous exponential servets 2 with ratesu; > ps, constant retrial rate > 0 and
the number of places in the retrial orBit< K < oo. According to the control policy an arriving customer
can join the orbit or have direct access to the accessible idle servarsariival process, service times and
retrial times are assumed to be mutually independent.

Let Q(t) is the number of customers in the retrial orbit at tim® (¢), D2(t) describe the states of the
servers at this time,

Dalt) — 0, ifthe j-th serverisidle at tim¢ and
i) = 1, ifthe j-th server is busy.

The observed process
{X () }=0 = {Q(), D1(t), D2(t) }>0 1)
is a continuous-time Markov process with state space defined as
E={x=(q,dy,d);0<q<K,d; ={0,1},i=1,2} =N x {0,1}?

whereq andd;, i = 1, 2 denote, respectively, the number of customers on the orbit and statessafrtrers.
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Theorem 1 The optimal policy for the retrial queueing systéfy M /2 with heterogeneous servers and
constant retrial rate is of threshold and monotone type, i.e. the fastestedersmust be switched on
whenever a primary or retrial customer arrives and another one rbesswitched on if and only if the
fastest server is busy and the orbit length reaches the thresholdjlevet;.

The analytical representation of the threshold level is quite complicatetiybueans of the value iteration
algorithm it can be done numerically. If future arrivals are not taken intmant (scheduling problem), i.e.
when the objective is to minimize the sojourn time for an individual customer, thicisolution for the
threshold level exists

Theorem 2 If A = 0 then there exists a threshold level

| (m
Q2_Lt1+7<u2 1>J+1’ @

such that ifg > ¢; in statex = (g, 1,0) then upon retrial arrival it is optimal to dispatch a customer to the
slower server, if; < g5 — 1 then the slower server must be idle.

3 Steady-state distribution of the system under optimal policy

In this section we derive the equilibrium state distribution under the optimalhtbi@policy (OTP). The
derivation works via a standard matrix-geometric approach [13], takitogaocount the special structure
of the boundary states where not all servers are active. To distintheéssystem under OTP from other
control policies which will be discussed later we will use the upper irfiiex for the concerned values. Let
¢ be the threshold level for activation of the second server. As it was nmeatiabove they can be found
numerically (e.g. using the value iteration algorithm [10]).

Consider a Markov processX () }+>o defined by (22) with a state spaée This process is a QBD
process with block - three-diagonal infinitesimal matrix. Note that the bloaks tifferent sizes depending
on the queue length.

3.1 Finite retrial group

First consider the system with finite retrial group, i&. < oo. In this case the states are partitioned as
follows:

e block O includes the single stat@, 0, 0);

e block 1 includes the statef, 0, 1), (0,1,0), (1,0,0);

block 2 includes the statefd, 1,1), (1,0,1), (1,1,0), (2,0,0);

blocksi, 3 <i < K include the states:
(i — 2,1, 1), (i — 1,0, 1), (z’ — 1, 1,0), (i,0,0);

block K + 1 includes the states:
(K—l,l,l), (K,O,l), (K,I,O);

block K + 2 includes the single statéi(, 1, 1);



Denote byA(!) the infinitesimal matrix of dimensiot( K + 1) for the system under OTP,

AD — 3)
-2 AW 0 0 0 0 : 0
DV —cM - BM) AM 0 0 0 : 0
0 p{" —c§V - BM) A 0 0 : 0
0 0 DY —cfV - BM) AW 0 : 0
0
0 0 D§Y —(c{” - B{Y) AP o |
0 0 0 DV —(c§V — By A 0
0 0 0 0 p§Y —(cV —BMy a4t
0 0 0 0 0 DY -M
where

A+ A(ll)e = D(()l)e — (C’F) — B%l))e + Agl)e = D%l)e — (Cél) — Bél))e + A:(,)I)e =
DVe — (Y - B§)e + Ale = (DY — (¢ — BM) + AM)e = DMVe — (G5 — B{Y)e + ale =
Dél)e - (Cil) - Bil))e + Aél)e = Dfll)e - M =0,

M = p1 + po. MatricesAl(l) andBi(l) represent primary and retrial arrivals, respectively, depending on
whether the queue length are above or below threshold level:

N A0 0 0 A0 0 0 A0 0
(1) _ (1) _ (1) _ A0 0 O (1) _ A0 O O (1) A 0 O
Al_(OAO)’A2—(88§8)’A3— 00 x o0 "M Tl x o000 | T X0 o0
0O 0 X O 0 0 X O 0 0 A
A
A = A
A
and
00 0 0 0 0 0 0
0 0 0 0 0 0
W _ Wm_| v 0 0 0 Ww_| vy 0 00 1 _
31(803)732 000 o0 ' T4 00 0| PF 788 '
v 00 v 0 00 v O v
. 1 .
MatrlcesCZ.( ) represent cases when the system stays at certain states:
A+ M 0 0 0
A+ p2 0 0
oM = 0 Atm 0 Lol = 8 A*%ﬁ"’ AO 8 ,
0 0 A+ +
0 0 0 Aty
A+ M 0 0 0
A+ M 0 0
Cél): 0 A+ p2 + v 0 0 ’Czil): 0 A+ po +v 0 .
0 0 Adtpit+y 0 0 0 At pn +
0 0 0 A+ p
. 1 . . .
Matrlcele( ) represent departures with elements depending on active servers:

pr p2 0 0 w1 p2 O
H2 0 w1 p2 O
0 0 0 0 0
D= |, DY = r2 o pi = P2 p®P =10 0 0 p |,DPV=(0 p p)
0 0 0 m 0 0 0 m 0 0 0
0 0 0 0 0 0 o0 m



Denote byr(V) = (z{". 7{") ) the row-vector of the steady-state probabilities,

D = {7755;1) = WE;?dth) creE} = tlirgoP{X(t) =z},
by {ﬂ,il) : k > 0} — the subvectors that specify the states wifobs in the system.
Obviously the row-vectorr(!) of the steady-state probabilities of the system under optimal policy satis-
fies the equations
WA =0, 7We =1. 4)

The probabilities for the system states can be represented in the forrouo$ive relation with some

matricesM,El),

D =AM, k0L

namely

1 1) (1)1 1, .01

77(()) _ 7T§)D(())X=7T£)Mé);

7751) _ wé ) g )(C(l) (1) _ D((Jl%Agl))—l _ §”M1(”,

Wél) _ é (C(l) 1) _ Ml(l)Agl))—l _ wél)Mél);

A= DD B AP = A

7%(1) _ I(+)1D(1)(C( ) B(l) ( )A( )) 1_ i(Jlr)lMi(l)7 4<i<q

771(1) _ f+)1D(1)(C( ) B(l) Mi(i)lAEll))—1 _ ”Z(Jlr)lM(l)’ GH1<i<K-1;
1 1 1 1 1), 1

() _ ﬁ()HD”(C” B() M()A())l §<)+1M()

1 1 1 1 1

WE(ZA = 77&()+2Dz(1 )(Ci ) Bi - My )A( )) §<)+2M1(<11 (5)

To calculate the valu%“) itis necessary:
Step 1.Evaluate the matriceM(l), k=0,...,K + 1according to relation (5).

Step 2Evaluate the valueﬁ(,gr2 = w((}() 1,1y from the normalization condition

(6)

K+2 K41 K+1 { K41 K41 ]

1_Z7Tk€_7rK+2+ K+ZZ H M 1+Z H M;l)e
k=0

=0 j=K+41—1i =0 j=K+41—1i

Step 3.Substitute;r§)+2 into

K+1
Wl(l)—ﬂg+2 H MJQ), 1=0,....,. K +1
j=K+1—1

Note that this method works efficiently as long/s< oo is not too large. But for larg&’ the matrix
geometric solution corresponding #6 = oo is a good approximation.

3.2 Infinite retrial group

In case of infinite retrial groufk = oo the infinitesimal matrixA(!) has infinite size and is obtained from
the matrix (3) by removing the last three rows.
We consider first the matrix-geometric part of the equations, above trehtiiddlevelg;:

(1) (1) ( ) 1 _ () (1) 1)y -
q +JA q +]+2D - 7Tq’2“+j+1(03 - Bs )» Jj=>0.



Conjecturing the matrix-geometric form
M _ () p1)y;
Tas+i =~ Ta3 (R( ))]
we substitute this guess into the last equation, then we get the following eqfatioatrix R(!)
(RV)2DSY — ROV — By + AV = . )

This is a quadratic equation in the matii%"), which is typically solved numerically using the following
iteration procedure:

R (0) =0, (8)
RO +1) = 4757 = B+ (RO D5 (57 - B,

where the iteration halts when entriesith!) (n + 1) and R() (n) differ in absolute value by less that a given
small constant.
The general theory [13] states that the necessary and sufficieditioorfor stability is

p(l)Dél)e > p(l)Ail)e,

wherep® = (pi, p{V p{M pV) is a stationary probability vector given ) (A{Y — (c{ — By 4+
D;l)) =0,pMe = 1.

Theorem 3 For the system under optimal policy, the stationary veptét of Aff) — (Cél) — Bél)) + Dgl)
is given by

o A +7)2A+p2+9)

O T O+ N+ N+ 20 +7) + M)’
RO (1)

L R

1 A+ M+y)
TN+ )P
1 _ mp22A+v) + M) @)
W IO W pREy LU

)

The system is stable if and only if the load fagt6? satisfies

1 _ AA+7)2 A+ p2 +7)
MAyN+9)? + yurp2(3A +9) + p1) + p3y(A + p1 +9)
Proof: By elementary calculations.

O
Equations for the boundary states below the threshold level are still tdveEsaamely:

1 1) ~(1) 1 1 1
A= DT — O,
B e, C D(()l)% AT = g0,
ﬂ.él) — (1)D(1)(C§ ) Bél) o Ml(l)Agl))fl — Wél)Mg(l);
A0 20D b gD 40yt 00,
0 D B MO DY, a<i< gt
2D = WD) AR 4 RODO) D - By (10)



The following algorithm is used to in the calculations:
Step 1.Solve (7) for matrixk?), using iterations (8).
Step 2.Evaluate the MatriceMj(l) forj=0,...,¢5 — 1.

Step 3.Evaluate the value(%) by solving the normalisation condition

QQ_l QQ_l )
1 = Zﬂ'k 6—71'* Z H M 6+7T Z (11)
=0 j=q5—-1—1 7=0
QQfl QQ 1
1 1 —
= Wég)[z H Mj( )e—i—(I—R(l)) 16:|.

i=0 j=q5—1—i
with the equation
(P 48— (e - BY) + RODY) = 0.
Step 4.Substituter§§) in
a5—1
=) I MY (12)

j:q;—l—i

for the values = 0, ..., ¢; — 1 and calculate

o=y ®

for j > 0.

4 Steady-state distributions of the system under heuristic police

To measure the advantages of optimal threshold policy (OTP) three moszseselection disciplines will
be considered, namely

e Scheduling threshold policy (STP)
e Fastest free server selection (FFS)
e Random server selection (RSS)

The policies STP, FFS and RSS will be denoted by indiees {2, 3,4}, respectively. The formulas
for the calculation of the steady-state distribution of the system under tha&TéXactly the same as for
the optimal policy with only one exception that the threshold level may diffenfitee optimal one.

In the next subsections calculation procedures are treated for systelesthe FFS and RSS policies.

4.1 Finite retrial group

In STP case the fastest server must be busy whenever the arrotalsoshereas the slower server can
be switched on only if upon arrival of a primary or retrial customer thetdras length defined by (2).
The policy FSS means that the fastest free server must be occupiecduorival of a primary or retrial
customer. Under the policy RSS arrivals choose any free server witd pgpbability.

Since the system under FFS and RSS control policies is described byrtb&/kakov proces§ X (¢)}:>0
with the state spacE as under the optimal control policy, we have a similar states partitioning.
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Analogously as in previous sections we can write down the three-diagdimidesimal block matrices

A m = {2,3,4} of dimensiond(K + 1). It is obvious that for STP matrix has the same form as for
the optimal policy. For policies FFS and RSS policies in case oo the infinitesimal matrices are of the
form,

-2 A 0 0 0
Alm) 0 0 ng) —(C3 (m) B{™) Aim) 0
: : : . 0
0 0 p{m™ (c<'"> B“’“) Alm) 0
0 0 0 p§™ —c${m™ — B{mhy  alm
0 0 0 p{™ M
A0 0 0
where A% =AM A = x 0 0 o ) LAB =AM i—a 56, B® =BV B® = M B® = p® = V),
00 X 0
B =™ — oM o® —c® — oW j=34 D®—p®-p® o<i<a,
A0 0 0 A0 0
A0 0 O
A0 0 0 A0 0
AV=(3 3 0). 4= (A 00 0>A514)= No oo oM =lX 0 ol
R N R
0 o 0O 0 0 O
) _ 4 g@ _ BW—| 2 0 00
Ag _A61’Bl_(9 9 ) v 0 00
2 2 o X 2
2 2
The steady-state probability vectef™, m = {2, 3, 4} satisfies the system
rmMA(m) — 0, rMe = 1.
To solve the system for FFS and RSS policies we represent the equattbegdnm
1
ﬂ(()m) _ 7Tyn)D(()m)X :ﬂm)M(m)’
1
ng) _ é ( £ (m) _ D(()m)XAgm))A _ Wém)Ml(m);
) - o OB A
5 = DI — B AT AT, i<k
- mg O B M, A =
P ) D) _ gm) g gyt _pm) pn) s gy (14
To calculate the valuezs(m), m = {3,4} it is necessary:
Step 1.Evaluate matrlceMlgm), k=0,..., K+ 1by relation (14).
Step 2Evaluate the vaIueﬁ?ﬁZQ from the normalization condition
K+2 K+1 K+1 K+1 K+1
1_Z7Tk 6—7TK+2+7TK+2Z H M ezw&?ﬁQ 1—1—2 H Mj(m)e . (15)
1=0 j=K+1—1t 1=0 j=K+1—1

Step 3.Substitutezr§?”_‘22 into

K+1
=gl T
j=K+1—i

fori=0,...,K +1.



4.2 Infinite retrial group

In case of infinite retrial groupiy’ = oo, the infinitesimal matriced ™), m = {2,3,4} are obtained from
the above matrices by removing the last three rows. In this case we cogjdatunatrix-geometric form

) =™ (RO)T, > 0

where the matrix?("™ is to be found by solving the following quadratic equation

(R™)2p§™ — Rem (c{™ — BI™) 4 AU™ = o. (16)
As before the necessary and sufficient condition for stabili/8 D{™ e > p(™ A(™ e, wherep(™ is a
stationary probability vector given y™ (A{™ (C?()m) — B?Em)) + D™y =0, pime = 1.

Theorem 4 For the system under STP and FFS control policies, the stationary pitityatector p(™ of
A —(c§™ — BY™Y + D™, m = {2,3} is given by formulas 3. The system is stable if and only if the
load factorp(™), defined by (9) satisfies

p™ <1, m={2,3}.

Theorem 5 For the system under RSS control policy, the stationary probability vettbof Aff) — (C§4) —
B§4)) + D§4) is given by

) (A +7)?
po - 9
A+ 7N+ M + ) + 2p1 1o
p(4) _ p(4)
1 Y + v 0 »
(4) _ _H2 (4
pQ - )\ + ’yp[) 9
@) _ 2mpe (1)
PR
The system is stable if and only if the load fagit? satisfies
A +7)?
® = 17
g Mry(A+7) + 2yppo a7)
Proof: By elementary calculations.
]
Probabilitiest™ andr{™ satisfy relations
m m m 1 m m
m” = m"Dg T = Mg, (18)
m m m m m m 1 m)\ — m m
7 = DO - B - D LA =
In casem = {3, 4} the following algorithm is used for the calculations:
Step 1.Solve equations (16) for matriR(™), using iterations starting frol(™ (0) = 0.
Step 2.Evaluate matriceMO(m) andMl(m).
Step 3.Evaluate valuerém) by solving the normalisation condition
1 = Z w,(cm)e = wém)Ml(m)Mém)e + 7T§ ™ pM™e 4 7T2 Z (19)
k=0 j=0

= g™ [Ml(m) M{™e + M™e + (1 - R(m))_le] .

9



with the equation
A — (€4~ B+ R D) <o

Step 4. Substituter\™ into

g™ = xd M ME™, 7™ = 7 ™ (20)
and calculate
) =™ (R, j>o. (21)

5 Stationary distribution of the waiting time

In this section we find the distribution of the waiting time. For the controllable quéteheterogeneous
servers the waiting time of some customer can depend on the future agtalde in this case the number
of active servers can be changed. Therefore, the waiting time of thedaggtomer in the system under
OTP strongly depends not only on its position in the queue, but also on guedength during its waiting
time. In the alternative models we have also consider not only the system tsthéeaarival time of the
tagged customer, but also the possibility that the customer who comes later sélhezd by free server.

Thus, to calculate the waiting time distribution we will consider the process jtest thfe arrival of
the tagged customer with absorption at the time when he starts the services ib&toduce the transient
Markov process

X(t) = (Q(t), D1(t), D2(t), J (t)) (22)
with the same genenerators as the models of the previous section. The atat® sp
E={x=(q,d1,d2,j);0<q<K,d; ={0,1},i=1,2,0 < j < q},

where the last componeti(t) denotes the position of the fixed job in the list of waiting jobs at timEhis
component can take the valuf 1, 2, ...}, and decreases for the system under threshold policy

e at time of a retrial arrival when the first server is idle,

e at time of a retrial arrival when at least one of the servers is idle andubeeglength is greater than
a3,
and for other systems - at time of a retrial arrival when at least oneisisridle.
The process is absorbed when the compowgnt become equal to zero. Note th@tt) > J(¢) at
any timet when the targed customer has to wait in the orbit. We denote the state of tlesskae) by

x = (q,dy,ds, 7). At the point of time of a new arrivalt (the initial time for the transient Markov process)
it is obvious that

J(t") = Q(t7)
if tagged customer has to wait in the orbit a¢¢™) = 0 if upon arrival the customer can be served
immediately.
Define
W™ — r.v. of the waiting time in the system under poliay,
Wﬁ”t r.v. of the residual waiting time of the tagged customer given that the syst&rista
x t)— the dencity function of the residual waiting time,

™
W™ (s) = Ele *SW(m)] = [y e tw ™ (¢)dt, Re[s] > 0 corresponding Laplace-Stieltjes transform.

10



Because of the markovity of the proceXst), the residual waiting time in stateconsists of the time
the system spend in stateuntil the next transition with density,e~** plus the residual time in a new
statey after possible transition from the statewhich take place with probabilitg’%. Thus from the low
of total probability for the densitw, (¢) we get :

WM () = 3028 et @) 2 € B (23)
ytz

where * denotes convolution.
Applying the Laplace-Stieltjes transforms to the relation (23) we get

D (s) =) Aay @™ (s), z € E. (24)

We partition the above Laplace-Stieltjes transforms according to the partittbe sfstem states: define

the column—vectors;z(?)(s) in which ¢ denotes the number of customers in the systemjahd position of
the tagged customer:

B (s) = w0 (5), 1 <G < K (25)
(m) oy _ (o (m) - (m) - (m) :
51508 = (@501, (8): B5105) (5 OGr,00)())s 1< T < K~ 1,
m)

B(5) = (@0 11y (5B 015y (5B 1oy (8, Bl () 1< j<i—2< K -2,
(B 1 11 () B 1 () B () 1< G < K —1,

“7%21,1{(5) = (TDE;,)O,LK)(S)’@Eg?l,o,K)(s))tv

B0y (5) = B L (), 1 <G < K,

(K71)07j)

WK+2,5 K.1,1,j)

W™ (s) = (@™ (), @™ (s), ..., @, (), 1<j< K
J JsJ VgL K42, P ESIE R,

W (s) = (W™ (5), W5 (s), ..., Wig (s))".

The following theorem gives recurrent relation for the vect@rggl)(s), 1 < j < K of the Laplace-

Stieltjes transforma?g(ﬂm), x € F of the conditional waiting time denciti (m) (t).

Theorem 6 The vectors of the Laplace-Stieltjes transfomﬁgl)(s), 1 < j < K of the conditional waiting
time dencities under the control poliey = {1, 2, 3,4} are related by the following recurrent block three-
diagonal system

AL (s)wi™ (s) = T e, (26)
A" (5) = T (), 2 < j < K

The matricesAE,”V?;(s) = (<I>§.m) — slyx—j4+1)) and Fé.m), j > 1 are of the dimensiod(K — j + 1). All
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matrices have< + 3 — j block-columns and< + 3 — j block-rows. The matrice@gm) for are of the form:

(A5 A 0 0 0 0 0
p{m  —efm Al 0 0 0 - 0
0 p{m  —cfm Al 0 0 - 0
0 0 p§m  —cfm Al 0 . 0
. . 5 —7—2,1<j<q5—2,m={1,2}
i 0 - 0 p{m —c§m Al - 0
: : : : . K—-q5—1
0 R S s
0 0 0 0 D —c{m Al
0 0 0 0 0 p\™ M
~(A+q) A 0 0 0 0
p{m  —efm Al 0 0 0
0 p{™  —c{™ A 0 0
o) _ 0 0 p{™  —c{m™ A 0
O 3 : . . K—j=2j=q~1m={12}
0 A
0 0 0 D —cfm Al
0 - 0 0 0 p\™ M
(A +7) Agm) 0 0 0 0
p{™ i AT 0 0 0
0 p{m  —clm Al 0 0
(m) (m)  4(m)
o™ _ 0 0 Dy =Cg™ A" 0 G <j<K-—2m={1,2}
= . K—j-2
;- - - 1<j<K—2m={34}
’ ’ o C}’E )) Aé( )> o
0 0 0 D —cfm Al
0 0 0 0 p\™  —m
—(A+q)  A™ 0 0 R
§3<m> : CEtm A g () A0
M) _ 0 3 5 oM = | pum T _am) 4
K1 0 pim om0 | PR 0 Cy 6
1 4 6 0 plm
(m) 4
0 0 DY -M
where
) A A0 0 A A A0 0 0
A™ = (0 A, A A0 0 |om={123LA" = (2 2), A = X 0 0 0 |,m= {12},
0 0 A 00 XA 0
) A 00
AL = AS™ = (3,43, A0 = [ A 0 0 JLA = (A A )m={1,2,3,4}
A A
0 3 3
. A+ p2 +y 0 0 . A+ p2 +y 0 0
C§m> 0 A+ p1 0 om = {1,2}, C’gm) = 0 A4 p1 4+ 0 ,
0 0 At~y 0 0 Aty
p1oop2 0
A(m) _ (At p2 0 Am) _ (m2 Y\ plm) _ Am) _ _
‘ 7( 0 Admtny P =0 )P = 8 8 llﬁ D = op2 ) m={1,2,3,4}

12



The matricesl‘§.m) are of the form

B{™ o 0O 0 0 0 .. 0
o B™ o o 0o o0 0
0 o B™ o 0 o0 0
. g5 —j-1,1<j<q—2m={12}
(m)
T =
’ 0 0 0 B{™ 0 0 i
. ) K-q
0 0 0 o o B™ o
0 0 0 0O 0 0 0
B{™ o 0 0 0
o B™ 0o o0 0
(m)
0 o B™ o 0 o
i = _ } K—j—1,j=g5—1,m={1,2)
0 0 o ... B! o
0 0 0 0 o0
Bi™ 0 0 0 0
o B™ 0o 0 0
(m)
0 0 B 0 0 S K2 m—
F;m): 3 }K—j—L ¢ <j<K-2m={1,2}
' ' S 1<j<K—2m={34}
0 0 o ... B! o
0 0 0 0 0
B{™ 0 0 0 B
pow [0 B0 o | pem [0 sy | ) ( B o
K=1~— (m) g T = A L g = 0 0 )’
0 o B™ o 0 b
0 0 0 0
where

o oo

B{™ =(0 ~ 0),B§m)(

=2 OO
[l e N en]

) om={1,2,3}, BV = ( }

0 (m) v 0 0
Hm _ _
8 , By —< v 0 0 >,m—{1,2,3,4}.

Proof: Consider the model under optimal poligy = 1. Note that if.J(¢) = 0 then the fixed job should be
immediately served, so the waiting time is 0, i.e.

=]
o
ooy
nN o~
k)
I
//

R Y
(1,2}, BYY = ( 5
0

NR O O
DR O O

wém)(s) = 17 T = (q,dlad270) €E.

For other states and positions of the tagged customer according to the ed@ddiche problem reduces
to the above case by backward induction. This is always possible singesit®n./(¢") is a decreasing

13



integer.

(1) _ 1 (1) -(1)
w(Qvlvorl)(s) T St AN+t [)‘w(q,l,l,l)(s) + “1w(q,o,o,1)(5) + 7} (27)
for ¢ <¢<K,
-(1) _ 1 -(1) - (1)
W10 = T e+ i () + ]
for 1<¢<K,
-(1) _ 1 (1)
Tanon® = 53377 Mlaran® +7]
for 1<¢<K,
(1) _ 1 -(1) -(1)
wmwm“)_'S+A+M[M@Hmmﬂﬁ+mw@mw“ﬂ
for 1<j<q 1<¢<¢ -2,
-(1) _ 1 -(1) -(1)
D109 = T4 g1 (5) + g (5)
for 1<j<q q=¢ —1,
- (1) _ 1 -(1) -(1) (1)
w(q’lvo,j) (S) o s + A + H1 + v [Aw(Q:lvl’j) (8) T le(q,o,o,j)(s) - ryw(q_lvl,lvj_l) (S)]
for ¢ <ji<K,j<q<K,
- (1) _ 1 - (1) (1) (1)
Digo,)(8) = 5+,x+lm_%7{Aw@JJdﬂs)+ﬁuw@@&ﬁ($_%7w@fLLL¢4%Sﬂ
for 2<j<K,j<qg<K,
- (1) _ 1 (1) (1)
w(q,0,0,j) (8) B S + A —+ vy [Aw(qvl’ovj) (S) T 7w(q_1’1707j_1) (8)]
for 2<j<K,j<q<K,
- (1) _ 1 -(1) (1) -(1)
Blg11)(8) = 5+A+Mr+w{Mﬂﬁmﬂm@%+Mw@mm@y+mw@mm“ﬂ
for 1<j<K-1,j<q<K-1,
-(1) _ 1 -(1) - (1)
w(K,LLj)(S) T S+t {‘ulw(K,O,Lj)(s) +/127~U(K,1707j)(3)

for 1<j<K.

Now, after routine block identification, we may express the systemmfet 1 in (27) as given in (26). For
the STP the recurrent expressions are the same with correspondistgatidreevelys. For the policy FFS it
is enough to sef; = 1. To get the expressions for RSS policy we take the system for FSS palictha

equation for the statg, 0, 0, j rewrite as follows

- (4) _ 1 A ) - (4) Y- (4) - (4)
w(‘]uozovj) (S) o S —|— )\ —|— /y §(w(%1107j) (S) + w(q,o,l,j) (8)) + _(w(q—l,l,o,j—l) (S) + w(q—l,o,l,j—l) (S))
for 1<j<K,j<q<K.

O
The tagged customer must wait in orbit if upon arrival he finds the systewonire state of the subset

EYY = {(¢,1,1;0 < q < K — 1}, m = {3,4}.

14



Denote byrr(m) m = {1, 2, 3,4} the row-vectors of the dimensi@i (/K +1) which include the subvectors
of steady-state probabilities in sEﬁ(,”):

(m)

miy) = (n{e1(3)eb (4K) + 15 eg(4)eh (4K), ™ ea(4)eh (4(K — 1)) + myeg(4)el (4(K — 1)), ...,
) eo(4)eh (4K — g5 + 1), mi ) eo(3)eb(4)), m = {1,2},
wip) = (w{M eo(4)eh(4K), w5 eo(4)eh (4K — 1)), ..., me) eo(3)eh(4)), m = {3,4}.

According to the PASTA property the conditional probability of the stateupon arrival coinsides with
the unconditional one. Hence for the Laplace transform of the unconditwaiting time distribution with
respect to all possible initial statesof the process{ (¢) and the corresponding states before an arrival
we have

WO (s) = L1 = 2lme 4 wlmgm(5)). (28)
S
The formula (28) includes two contributions:
(m) o S — _(m)
FTmwes o [ZW + qu,u} D Irlaon T Taoml + D ey m=1{1.2}
q=0 q=0 q=0 q=q;—1

N

(m) _
Z T(q, 0 Tt ﬂ-(q 1 ot g00h m=1{3,4}
q=

K—-1
1-— e—l Zﬂ-(q,ll

is a steady-state probability that the tagged customer does not have tontiaé gervice; the transform

‘Iz_z K—-1

i Tt o)l 10040)(5) + 2 Tt

0 q=0
1

q+1 1,17q+1)(5)7 m = {17 2}

q
K—

ﬂ%,?)\fv(m)(s) = T
q=0

(m)
(g,1,1)

~(m) _
w(q+171,17q+1) (3)7 m = {37 4}

of the contribution of the waiting time with dencity functlmﬁ ™) (¢ t) givenW (™ > 0. Note that

The limit property of the Laplace-Stiltjes transform allows us to get the valuthe)functionwgm)(t) at
pointt = 0:

Y, Ifq;SQSK,dlzl,dQZOM]:]_
, f1<g¢g<K,di=0,dy=1,7=1
tim ()0, ()= S ey m=112)
S—00 q,d1,d2,j v, |f1§qu,d1:0,d2:0,]:1
0, otherwise
(m) )" if1<q¢g<KO0<d +dy <1, B
sli{go Sw(%dl»dZ,J)(s) - {0’ otherwise y M= {374}

Therefore we have

t—0

lim w(™ (t) = lim sw%n)v?f(m)(s) =0.

§—00
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The inversion of the Laplace transforfar(vg,”)vv(m)(s) of the functioniv"™ (t) = f[f wi™ (u)du is used to
get the distribution function of the waiting time

W () = PV <] = 1 — w\We+ W (@), £ > 0.

Now we obtain the:-th moments ofV{"™ which we denote byV{™ (n) = E[(W™)"], m = {1,2,3,4}.
According to the indroduced partitioning of the conditional Laplace transfove denote by (™) (n) the
vector of the correspondingth moments:

Wi (n) = (Wg?;hdm)(nn di =1{0,1}, g+ dy +do =i)',1 <i < K +2,1<;<min{i, K},
Wi () = (W7 (), Wi (), Wil () 1< < K,

W () = (W™ (), W™ (n), ..., Wi (n)".
By differentiation the expressions (26) over the parametee get

m 4" m dn—l m
A%,Vi(s)@wg )(s) — ndsn_lwg )(s) =0,

m d" m a1 m m) d" m .
A () 2wy ™ (s) = nomgw™(s) = T Tmwi(s), 2 < j < K.

SinceV_V;.m) (n) = (—1)" 4 w§m)(s) . we get

<I>§m)W§m) (n) = —nwgm) (n—1),n>1,
(M (™) () — 37 () GORA
®,VW; T (n) = —nW; " (n—1) =T, "W

(
J
x7(m) . . .
W, (0) =e(d(K —j+1)),1<j<K.

™), 2<j <K

Therefore for the unconditional moments of the waiting time we have

E[(W™)"] = alMW ) (n), n > 0, m = {1,2,3,4}.

6 Stationary distribution of the sojourn time

To carry out the calculation of a sojourn time distribution we apply the samedvamocess (22) with only
exception that the absorption takes place at the time when the tagged custonpdetes the service that
will correspond to the case whek(t) = —1. At the point of time of a new arrival™ to some of the state

from the setEé{,") the customer has to wait for the service and
J(#T) = Q7).
The arrival to the state from the sEt\EI(A’,”) implies
JtT) =0

that means that the customer must be served immediately on the first or seceadazcording to the
control policy. Let the process is absorbed when the compohgntbecome equal te-1. It occurs when
the tagged customer leaves the system.

Define
T(™) — r.v. of the sojourn time in the system,
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Tém)— r.v. of the residual sojourn time of the tagged customer given that the sgtaerse,
{m) (1) the conditional density function of the residual sojourn time,
i (s) = Ele 1" ] Re[s] > 0 corresponding Laplace-Stiltjes transform.
As above we partition the conditional Laplace-Stiltjes transforms of the sojime densities in the
following way:

07(5) = 00581 1< < K, (29)
B (s) = (1™ 0.,008). 8™ 100(8)), L < < K +1,

B(8) = (00,58 B0y () TG00 () 1 <G < K — 1,

07 (8) = (105 (), 01 (5 Hh 10 (9) 0 (8), 1 S S i -2 < K =2,
B0 8) = Ly 1 () E 1y ) B o (90), 1 <G < K = 1,

Eg?ﬁl K(s) = (EE?O,LK)( )’tE?LO K)(S))

7(m) 7(m)
tK+2]( s) = t(K,l,l,])( s),1<j< K,

" (s) = (0 (). 855 (5), -, B Lz 05),
(s) = (17 (), 80 (), -, Ty (), 1 <G < K,
t<m><s> (85" (), 8™ (), 8" (5), . £ (5):
Theorem 7 The vectors of the Laplace-Stiltjes transforf:ﬁ\@)(s), 0 < j < K of the conditional sojourn

time dencities under the control poliey = {1,2, 3,4} are related by the following recurrent block three-
diagonal system

ATH ()8 (5) = T e, (30)

whereA(T%)(s) = (™ — sIo(r41) andT'"™ are the block diagonal matrices of the dimensitfi + 1).
These matrices havk + 1 block-rows and block-columns. The matriae%;)(s) = A%,f,”;(s) for j > 1.

f§m> are diagonal block matrices of the dimensi + 1) x 4K . These matrices hav€ + 1 block-rows

and K + 2 block-columns. The matriceE((]m) have the bIock{ s _‘;1 )and the matricei“(()m) have
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the blocksD{™. The matriced"{™ are of the form:

ai™ o o 0 0 0 .. 0
o &™ o o 0 0
0 o 6™ o o o0 0
QS _27 m = {172}
A (m)
T =
! 0 0 0 am o 0 .
. ) N—a
0 0 0 o o &™ o
0 0 0 o 0 0 0
cim o 0o 0 0
o &™ o o 0
. 0 o & o
Fgm) = 3 , M= {37 4}
0 0 0 ™ o
0 0 0 0 0
0 ~ 0 ~
whereg{™ = (0 ~)m={1,23,¢"=(2 2),&™ =0 0 | m={12}c?¥ v oo |, 6=
0 ~ 0 ~
0 0 0 0 0 0
0 v 0 0
oo =l 0 T = e = 0 Y L m=pas =] 2 7 | o 0
3 3 i :Y/ ol v 0O
o 0 7 0 7 2
m = {1,2,3,4}.

Proof: Consider again the system under OfP= {1}. If J(¢t) = —1 then the served tagged customer
leaves the system and the sojourn time is 0, i.e.

t0(s) = 1, 2 = (¢,d1,ds,—1) € E,

x

For the states where the tagged customer is in service area the service tsnmetdepend on the future
arrivals or service time on the other server if it is busy. Thus we have

i) M
t(le,O,O)(S) = m,o <¢< K
i) M
t(q,O,l,O)(S) 5 n ,UQ’O <¢<K.

For the states where the tagged customer stayes just before the sétyersl then we have the following
recursive expressions:

70 _ 1 71 71 71
tgaon(s) = StAt 1+ [)‘t(q,l,m)(s) + g 0.0,1)(8) + ’Yt(q—l,o,l,o)(s)}

for ¢ <¢<K,
A1) _ 1 7(1) A1) 7(1)
tgo1(8) = S+ A+ g+ |:)\t(q,1,1,1)(8> + 12t g.0.01)(8) + Vt(qfl,l,O,O)(s)}
for 1<¢g<K,
71 _ 1 7(1) 7(1)
tgoo1)(8) = StAT [)‘t(q,l,o,n(s) 7 11,00)(8)
for 1<¢g<K, (32)

In all other states the transforrﬁ%)(s) satisfy the equations (31). By expressiong these equations in matrix
form we obtain the expressions (30) for optimal policy. Analogously wiiokthe expressions for the
systems under other control policies.
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O
The tagged customer joins the system if upon arrival he finds the systeme iof the state in the set

ES™ = {(q,d1,d2);di +do = {0,1},0 < ¢ < K} U {(q,dr,do);dy +dy = 2,0 < g < K — 1},
m = {1,2,3,4}.

Denote byrrgpm) the row-vectors of the dimensi@iN + 1)? which include the steady-state probabilities of
the states in the s\

K
wf? =(| 32wl eald) + wZiea(s)| e + 1) m={1.2}
~ )
+ [ (m) 4 70 (00(3) + €a(3)) + ng"“(el(zi) + e3(4)) + wﬁg’f@lel(s)] 1(2(K +1)), (m)>,
1=2
K
) = ( [Tri?’)el(s) + > 7 Pea(4) + wE?llez(?»)] eo(2(K +1))
=2
[ () +7r£ )( 3) +ea(3 +Z7T +€3(4))+7§31161(3)] 63(2(K+1))’W§’?})’
K
= ([a0er®) + 3w Veatty + il ol et + 1)
=2
K
[l e+ 3 mPer(s) + nfl a1 d 2 + 1)
1=2

Then for the unconditional Laplace transform of the sojourn time distributibim respect to all possible
initial statesz of the Proces (™ (¢) and corresponding states before an arrivawe get

T () = (), (32)
and componentwise
(m) i (m) m) g — ) K
m)z(m) _ m 1 m 2
Tt (3)—2[(01)+ (¢,0 )]S+M1+ Z (q,1,0)3+u2
q=0 q=q5—
T m) - (m)
+ Z 7T(q,l,o)t(q+1,1,0,q+1) )+ Z (q,1,1 t(q+1,1,1,q+1 (s), m={1,2}
q=0 q=0
3) o ®) (3) p N,
3)1(3 3 3 1 3) (3
Tr tl )(5) - Z[W(q,O,l) + ﬂ(q,OO S+ 1 Z (q,l,o s + 112 - T(g,1,1) q+171,1,q+1)( 5),
q=0 q=0 q=0
(4) K (4) H < (4)
It (5) = T ! + 7 5 ( >
T (s) ; (@015 1 1y ; (¢:1,0) g + Lo Z (‘170 O\ s+ 1 s + 42
— GO CY)
+ 2 T tgtintgrn(s)
q=0
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Let t0™)(7), m = {1,2,3,4} denotes the unconditional density associated with the Laplace-Stiltjes
transformz(™)(s). Its value at point = 0 satisfies

i, fO0<qg<K,di=0,dp=1,7=0
7(m) — - j
sli{goSt((thde)( )_ 2, IfOSQSK,dl :17d2:0’«] =0.
0, otherwise

Therefore,
K
tg () = Jin R0 6) = | 3 Vea(d) + a3
1=q5
K
_— [wg’”) + 1™ (e0(3) + e2(3)) + D m™ (ex(4) + e3(4)) + wg"jlel(s)] ,m = {1,2}
=2

K
lim t®)(7) = lim S‘n'g?)f(?’)(s) = Lo |:7T£3)€1(3) + sz@ 2(4) + ngleg(i’))]

T—0 §—00
1=2
K
+u{%$+w@@mm+@@»+§jﬁ@@w®+@m»+ﬁiﬁmm}
1=2
K
tiy 197) = T smfE0(8) = | {1 3) + 3V + 748123
1=2
(4 (4) M 4
+ 1 |:7F(())+7T1 €o +Z7r ey +7TK+161(3):| —&—7[75 )62(3)4-;7(5 )63(4)].

Now it suffices to invert the Laplace transfoffi™ (s) to get the distribution function of the sojourn time
TM(r) =P[T™ < 7] = / 0 (w)du, T > 0.
0

We now find then-th moment ofZ\™, m = {1,2,3,4} which is denoted by\"™ (n) = E[(T{™)"] for
n > 0. Let T (n) denote the vector containing the moments partitioned as a correspondingd._apla
transforms:

W)(TTNLMMJg%wm(D1§j§N+L
"™ (n) = ( q,dl,dw (n)|di ={0,1}, g+ di +dp = 4)",1 <i < K 42,1 < j <min{i, K},
" (n) = (T{ (n), T (n), . T, o (n),
™ (n) = (%]()‘T(mw~jﬁgﬂmﬂ1§ng,
ﬂmm» (T (), T (), ..., T ()"

By differentiation the Laplace transforms (30) over the paramesarceT ("™ (n) = (—1)" -4 t(™)(s)
we get

- I pl AN
T(()m)(n):<n n "'7£7£>7n>17
M2 K2 f1
<

T (0) = e(4(K —j +1)), 1 < j
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For the unconditional moments of the sojourn time we have

E[(T™)"] = w{™T0) (n), n > 0.

7 The number of customers served by direct access

In this section we calculate the distribution for the discrete random &ltie of the number of customers
that have been served by direct access to some idle server until the tcaiggemer on the orbit reaches the
service area. Denote by
O™ _ r.v. of the number of primary customers served by direct access to theeitters
o™ _ rv. of the number of primary customers that will be served until the taggstbmer reaches the
service area, given that the system is in sigte
0™ (k) = P[O©™ = k]— the conditional dencity function of the r.@\"™,
0™ (2) = E[z(agvm)} = 5%, 6 (k)z*, |2| < 1 corresponding—transform.

By the low of total probability for the Markov proces§(t) the conditional dencity functioé, (k) has
the form

Ay’ (M Qxy (m
o (k) = == 0 k-1 + > g0 () (33)
* yAry

where the first term represents the arrival of a primary customer tihabeammediately served and the
second one corresponds to all other possible transitions that do mgjecttee event under consideration.
Applying z— transforms to the relation (33) we get

A(m ZQgy" >(m Axy 5(m
00 (z) = =00 () + Y SO (z),
* yAzy

We partition the above— transforms according to the partition of the system states: define the column-

vectorséﬁ)(z) in which 7 denotes the number of customers in the systemjahe position of the tagged
customer:

O () = 000 () 125 < K (39
07%152) = O (060,02 0100 (N L €T K -1,

0 (2) = (001 1 (2,00 01y (2,00 10y ()0 () 1< <i—2< K =2,
01 5(2) = @51 1052 0005 (2 00 0 (D) 1< < K =1,

é@u{(z) = (952,)0,1,@(2)7ég?;,)l,o,x)(z))tv

émzﬂ‘(z) - éEz,)Ll,j)(z)’ 1<j <K,

~(m) Alm A(m A(m .
6" () = (817 (2),0 (2),....00, () 1 <G < K,

6" (2) = (01" (),85" (=), ..., 0" (2))".

Theorem 8 The vectors ot-transformsé§m)(z), 1 < j < K of the conditional dencities under policy

m = {1,2, 3,4} are related by the following recurrent block three-diagonal system

AG) ()8 (z) = —T{™e, (35)
ALY ()8 (2) = 118 (), 2 < j < K.
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The matricesf\(@”;‘j)(z) = (<I>§-m) +(1 - z)Qém)) andP§m), 4 > 1 are of the dimensiod(K — j + 1). All

matrices haves + 3 — j block-columns and< + 3 — j block-rows. The matrice@g.m) are of the form:

o H™ 0 0 0o 0 .. 0
o o H™ o 0o 0 .. 0
0 0 o H™ o o .. 0
- : : - : g5 —j—2,1<j<q—2,m={1,2}
m
Q"M=~ 0o .. 0 o H™ o .. 0
: : : K—q5—1
0 0 0 o o H™ o0
0 .. 0 0 o o o HM™
0 .. 0 0 0 0 0 0
o H™ 0 0 0
o o H™ o 0
0 0 o H™ .. 0
* . _ _
Q;m):— .. . . }Kjl, qa 1<j<K 2,771—{1,2}
0 0 o m™ o0 1<j<K-2,m={34}
0 0 0 o =™
0 0 0 0 0
(m)
0 H 0 0 A
(m) 0 10 alm 0 (m) 0 " 0
m m A
K-1= 7 > m |9k =—| o0 0 Hém> ’
0 0 0 H o o 0
0 0 0 0
where
N 00 0 0 00 0 0 00 0
(m) _ 4(m) p(m) _ m)y | A 0 0 O m) | A 0 0 O m) | A 0 0
Ay = A0 Hy _<8828)'H3_ 000 o' = X oo o HTT A0 0
00 A 0 00 A 0 0 0 A

0
Hé’m) _ ( N )’m - {12}, H£3) _ H{l).Hés) — A§3>'Hi(3) - Hi(l)’i = 4,5,6, HYL) — A§4),H§4> = A§4>, Hf) —

A
0O 0 0 O 0O 0 O
i 8 g 8 , =YY = i 8 8 CEM = AT i —1,2,5,6,m = {1,2,3}.
0 3 3 0 0 3 3
Proof:
5(1) _ 1 5(1) 5(1)
Uaron® = s Mv00() +mlgho ()]
for 1<;j<q 1<¢<q -2, (36)
5(1) 1 (1) 5(1)
b0 = T4 (A 0{gh 1003 + 1003000,(2)]
for 1<j<qqg=¢-1
5(1) _ 1 5(1) 5(1)
Uaron® = YraTs NG () + w0y 6 (2) + 9]
for ¢ <q<N,
5(1) _ 5(1) 5(1)
Op011)(2) = p—— [z)\ 0111y (2) + 120 0.1y(2) + ’y}

for 1<¢<K,
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5(1) _ 1 5(1)
Q(q,07071)(z) = {z)\ 9(q 10 1)( z) + ’Y}

for 1<¢g<K,

5(1) _ 1 5(1) 5(1) 5(1)

br0n®) = 35 [ZA Ola1)(2) T 10(g00,(2) + 79(q—1,1,1,j—1)(z)}
for ¢;<j<K,j<q<K,

5(1) _ 5(1) 5(1) 5(1)
wor)®) = 3T LT (A0 (&) + 12850 (2) + 900511502

for 2<j<K,j<q¢<K,

5(1) _ 5(1) 5(1)

Olaoon®) = 37 ~ [Z)‘ Ogn00) (&) + 70 110,5-1)(2)
for 2<j<K,j<q<K,

5(1) _ 1 5(1) 5(1) 5(1)

0112 = Mt i+ [A 01,1,y (2) + 11804 5y (2) + pabl, 1,0,3)(2)]
for 1<j<K-1j<¢<K-1,

5(1) _ 1 5(1) 5(1)

Oki1(2) = it [”10(K,0,1,])( 2) + 1205 10,4(2)

for 1<j<K.

]
For the unconditionat-transform of the number of directly served customers we get

g(m) (2)=1- ww)e + W(m)é(m)(z), (37)

wherel — W(V’;L)e as before means the probability that the customer upon an arrival goes iatahetb

the service area The inversion of the contribuﬁ&ﬁ)é( (z) leads to the density functloﬁﬁm ), that
togetherwﬂh@ ( )= 100 m)( k) implies the relation for the distribution function

0m(n)=1— Tr%;l)e +0(n), n>0.

The probability that no primary customers will be directly served while ana@tewaiting on the orbit can
be expressed as follows

M (0) =1 - x{Me + =M™ (0).

Then-th factorial moment of the random val@g™ denote byo!™ (n) = E[@{™ (0™ -1)... (0™ -
n + 1)], n > 1. We partition the conditional factorial moments in the same way as before:

") = (O sy Mmla+di+dy=i)',1<i <K +2,1<j<min{i, K},
ol Y(n) = (0 (n),007) (n),..., 0%, ()", 1< j < K,
0™ (n) = (O (1), 0 (n),..., 0" (n)".

By differentiating the relation (35) we get

m d" ~(m) m dn—t ~(m)
A (2) 01" (2) = nQi™ =61 (2) = 0,
A @) 70" () = Q" 50 ) = 1 20 e), 2 < <
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Since(:)g.m)( ) =L Oﬁm)( )| we get

0™ (n) = Q™0 (n—1) ~ IO\ (n), 2 < j < K, n>1,
50m) . .
0" (0) = e(4(K —j+1), 1<j< K.

The moments for the unconditional random values have the form

EOM™ (@O0 —1)...(0 —n 1 1)) =xMe™ (n), n>o0.

8 The number of retrials made by a customer

Denote by
¥(m) _ r.v. of the number of retrials made by a tagged customer until the service starts

\If(m) r.v. of the number of retrials made by a tagged customer given that the sigstestater,
wém)(k) = ]P’[\Ifggm) = k]— the conditional dencity function of the rplm™
P (2) = E[z‘l’gcm] = 3% 8™ (k)z*, |2] < 1 corresponding—transform.
By the low of total probability for the Markov proces§(t) the conditional dencity functiott,. (k) has
the form

W) = L (k1) + Y Sl (k) (38)

yEzy

where the first term represents the retrila of a tagged customer.
Applying z— transforms to the relation (38) we get

“(m i ZQyqy! ~(m) Qpqy ~ m
M (z) = a—xy%/ (z) + Z a—xy% )(2).

P (@) =D (), 1< <K (39)
7(m) _ /.5(m) 7(m) 7(m

ijrl,j(Z) - (1/}(] 0,1,j)(z)’w(j,170 )( ) ¢( i+1 007])(

W (2) = (B 1) (), 0L 10,1,])< 1/71 10 [, 0 (@) 1< <i—2< K —2,

2),
D) () = @0 11 (2), 0 KW( (N 1< <K —1,
(2

—
IA
<.
IA

=
QL

2), 9
)’

¢K+1K( )_(w((}?)ouo( ) KlOK

¢K+2,j(z) = ﬁéK)l 1), 1< <K,
{bgm)(z) = (’l/J ( ) w(-&-l]( )7“"772)%’227j(z))t’ 1<j<K,

™) = @B @), 5 (), B ()

Theorem 9 The vectors of-transform&Npg-m)(z), 1 < j < K of the conditional dencities under the control
policym = {1, 2,3, 4} are related by the following recurrent block three-diagonal system

A )9 () = =™ (2)e, (40)
A () = T (), 2 < j < K.
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The matrlces’\(m)( ) = (@™

+ (1

m) j>2

j>2andl{"(z) = 21\, T

— Vi), AEI,"E.) _ q>§.m),

are of the dlmensmm(N —j+1). All matrices haveV + 3 — j block-columns andV + 3 — j block-rows.
The matrixV’ (™) is of the form

vim) = _y
vim — _y
Proof:
Yanon®)
%&&M@
Yaran)

7,1
¢(q,17171)('z)

7(1)
w(K,l,l,l)(z)

7(1)
Digr,04)(?)

(1)
Vg0 (?)

7(1)
(0.1,05) (%)

0 0 0 0 0O 0 ... 0

0 (eo + 62)(60 + eg)t 0 0 0 0 0

0 0 (eo +e2)(eg +e2)t 0 0 0 0

) . g5 —2,m={1,2}
0 0 0 6066 0 0

. . N —gq3

0 0 0 0 0 egey O

0 0 0 o o0 0 1

0 0 0 0 0
0 6066 0 0 0
0 0 egeh O 0
. : . : m = {3,4}
0 0 0 606.6 0
0 0 0 0 1
1 M\ 7(1) (1) 7 (1)
I R AVgh100)(2) 1Y 001)(2) + 271/’(q,1,o,1)(z)]
for 1<¢<g-2 (41)
1 [y 7)) (1)
- Nt g+ _/\ w(q,m,l ( ) + :U’lw (q, 0 0 1)( ) + sz(q,l,o,l)(z)]
forg=q; -1
1 [\
= N+t _/\w(q,l,l,l)( )+M1¢q001)( )+27:|
for ¢ <¢<K,
1 [y (D) (1)
= Mt ot _>‘ 1/}(,1,1,1,1)(2) + NZw(q70,071)(Z) + Z’V]
for 1<¢<K,
= o 0 + ]
At (9,1,0,1) v
for 1<¢<K,
_ 1 (1) (1) (1)
= e D@ F P () B o @)+ 2 (@)
for 1<¢g<K-1,
1 (1) (1)
- M1 + M2 + Yy [Iu w KO 1, 1 ( ) + 'u2w(K717071) <2) + zfyw(Kvl’Ll) (Z)]
1 (1) (1)
= X+ [)\ ¢(q+171,073)( ) + le (9,0,0,5) (Z):|
for 2<j<q j<q¢<q¢ -2
1 () (D)
= N+ [ [)‘ w(qJ,l,])( ) + MN/J (9,0,0,5) (2)}
for 2<j<q qg=¢5—1

1

A+ p+y
for ¢ <j

~(1) (1) 7(1)
[Azb@JﬁLﬁ(z)#_Mlﬂk%QOJ%Z)A_deq—LlJJ—lﬁz)
<K, j<q<K,
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(1) _ 1 (1) (1) (1)

Vigo1(2) = A+MT+7P¢mmm%@*“ﬂ@nwﬂ@+7wwammﬂ@ﬂ
for 2<j<K,j<q<K,

(1) 1 (1) (1)

Vigoon?) = Xty [A V(g0 )+ 1% 11,05-1)(2)

for 2<j<K,j<q<K,

7(1) _ 1 7(1) 7(1) 7(1)
Hrin®) = T PPnany &)+ mth )+ rel ) (2)
for 2<j<K-1j;<¢g<K-1,
7(1) _ 1 7(1)
¢(K,171,])( ) - I + Lo [le K,0,1,5) ( ) + MW(K,LOJ) (z)

for 2<j<K.

]
For the unconditionat— transform we get

M (2) = 1= wie + wip ™ (2), (42)

wherel — 71'%7/1)

e denotes the probability that the customer upon an arrival goes immediatelyderthiee
area. By inversion of the contributimng}l)&(m)(z) we get the density functiomcm)(k:) and and by the

relation ™ ( )= 1o ¢c ( ) we derive the distribution function
M (p) =1— r%l)e + 0™ (n), n>0.

The probability that the customer makes no retrials coincides with the probabdityt till be directly
served, i.e.

v (0) = 1 - wlie.
Then-th factorial moment of the random vali&™ denote by ™ (n) = E[@{™ (w{™ ~1) ... (w{™ -

xT

n + 1)], n > 1. We partition the conditional factorial moments in the same way as before:

Z!J
() = (B <>W§TL<> O, ) 1<j <K,
T () = <w§m><n>, (), ... B ()

B () = (B0 )| g+di+dy =)', 1 <i <K +2,1 < j < minfi, K},
)

By differentiating the relation (35) we get

Since\ilgm) (n) = C;i—"n¢§m)(z) we get

z=1
@gm)\ilgm)(n) = V(Mg gm)(n —1),n>1,
e\ (n) = T " (n), 2 < j < K, n > 1,

= (m) o . .
v 0)=e(d(K—j+1)),1<j<K.
The moments for the unconditional random values have the form

E[@) (@0 — 1), (80 —p 4 1)) = 2™ (n), n >0,
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9 Numerical results and comparison analysis

Consider the system/ /M /2 with primary arrival rate), retrial ratey and service rateg; anduy. By
inversion of the derived Laplace transforms (28) and (32) it is postibdealuate the waiting and sojourn
time distributions. There are two practical algorithms for the inversion of lcapiensform: The conven-
tional algorithm and the Fourier-series algorithm. Mathematical packagbsasiviathematica Mathlahb,
Mathcad etc. include the standard functions that apply the conventional one.bésisd on the partial
function expansion method and works efficiently only in case of small gedemal functions. So we can
obtain on the basis of this method an accurate representation of the furidtiéhgt) and 7™ (t) only
for smallt but in symbolic form. The algorithms based on Furier-series representtherical inversion
methods, e.g. Euler and Post-Widder [2], that can be used fordagevell.

The mentioned mathematical software allow also to inveransforms (37) and (42) to get the distri-
bution functiong®d(n) and¥(n). However there are problems by inversion of the functions of higherord
Therefore we implement the numerical inversiorrdfansforms using the Lattice-Poisson algorithm [1].

By means oMathemaicgpackage we have created the procedures:

¢ for the calculation of steady-state probabilities under optimal and heuristicedisciplines, formu-
las (10-13) and (18)—(21),

o for the numerical inversion of the Laplace transforifigs) and7’(s) using the Euler and Post-Widder
algorithms,

o for the numerical inversion of thetransformsd(z) and¥(z) using the Lattice-Poisson algorithm.

In Figures 1-4 we have indicated the waiting time (the figures labelled by letearid the sojourn
time (the figures labelled by letter "b") for different values of the primarstaoner arrival raté\ and retrial
customer ratey. In our examples we fix the service rates = 2.2, uo = 0.3. The following observation
can be noticed from these figures:

1. The curves of the waiting time distributiofi (") (¢) for the system under threshold control policies
(OTP, STP) lie below the other curves (FFS, RSS) that specifies thatditiagwime of a customer in the
orbit is larger for the threshold systems. This does not contradict the dipyimiethe threshold policy since

it minimizes the sojourn time. On the figures with sojourn time distributibfs (t) one can notice that for
some small values of argumenthe curves for the OTP can lie below other graphs but starting from some
point of timet they are above the others. Nevertheless the mean sojourn time for the opiliogltprns

out to be the least. The curves of the waiting time distribution for the systenr &fBcontrol policy lie
above the other curves that illustrates that this policy minimizes the waiting time stancer in the orbit.

At the same time the largest sojourn time belongs to the system under RSS potiag. de explained by
the fact that this policy with equal probability assigns a customer to the fasséower server that in turn
makes a significant contribution to the sojourn time increasing.

2. In Figures 1 and 2 the primary customer arrival ratie varied and the corresponding load factors are
"™ =0.196, m = {1,2,3}, p® = 0.204 andp(™ = 0.410, m = {1, 2,3}, p¥ = 0.424. In Figure 3 and

4 the retrial customer rate is varied and the load factors are, respectivel§) = 0.199, m = {1,2,3},

p = 0.200 andp™ = 0.375, m = {1,2,3}, p¥ = 0.377. As X or v increases then the load facid”
also increases that leads to the distributions with heavier tails. While in Figurd 3 the curves for the
threshold systems (OTP, STP) look very similar, in Figure 2 and 4 the sulffidiference can be noticed.
Thus we can assume that if the load factor is sufficiently small, i.e. the systemduwacalled "light traffic"”,
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then the scheduling threshold policy may be a good approximation for the otimaal

@ (b)
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1 2 3 21 5 1 2 3 l‘l 5
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Figure 1: Distribution functions (@™ (t) (b) T (t) for A=0.5,11,=2.2,115=0.3,7=2.5
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Figure 2: Distribution functions (a@y/ (™ (t) (b) T (t) for A=0.9,11,=2.2,15=0.3,7=2.5
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Figure 3: Distribution functions (@™ (t) (b) T (t) for A=0.5,1,=2.2,119=0.3,7=8.5
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The following Figures 5X = 0.5 andA = 0.9 in figures labelled, respectively, by letter "a" and "b") and
6 (v = 2.5 andy = 8.5 in figures labelled, respectively, by letter "a" and "b") represent iserete distribu-
tion functionsO(n) as a stepped curves for the number of primary arrivals that will be direetlyed before
an orbiting customer reaches the service area. The presented diagvaails the following observations
1. At pointt = 0 the presented functions equal to the probability that there are no custtiraergill be
served directly. As it was mentioned above, this probability equals to thebpilip W (™) (0) plus some
probability that the orbiting customer will be served earlier then a primaryahméaches some server.
2. As it to be expected in the system under FFS policy the orbiting customsegésver primary cus-
tomers. It coincides with the observation that the waiting time distribution of aitiraglcustomer under
this policy lie above other graphs. The policies (OTP, STP) turn out to bedhst with respect to the value
of interest that can be also explained by the sufficiently larger waiting timecastmer under threshold
policies in comparison with others.
3. For small load factop(™ (the concrete values are given in previous example) the number of directly
served primary arrivals is quite small, the concrete examples show that almelst 3ot more then 2, i.e.
0™ (3) > 0.99 (Figure 5(a)) and not more then @™ (2) > 0.99 (Figure 6(a)) primary arrivals will be
served directly while the orbiting customer is waiting for the service. As the factdr increases, more
customers are served directly, that can be confirmed by the figures/atise, namely© ™ (7) > 0.99
(Figure 5(b)) and(™ (3) > 0.99 (Figure 6(b)).
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Figure 5: The distribution functio®(n) (@) A = 0.5 (b) A = 0.9 for ©1=2.2,119=0.3,y = 2.5
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Figure 6: The distribution functio®(n) (@) A = 0.5 (b) A = 0.9 for u1=2.2,119=0.3,7 = 8.5

The next Figures 7= 0.5 and\ = 0.9 in figures labelled, respectively, by letter "a" and "b") and 8
(v = 2.5andy = 8.5 infigures labelled, respectively, by letter "a" and "b") illustrate the diedtistribution
functions¥ (n) for the number of retrials made by an orbiting customer until it reaches thiesarea. The
following conclusions cam be done by observing the graphs.
1. At pointt = 0 the jump of the functions corresponds to the case when no retrials will be byade
customer and equals to the probability that the customer will be served diiggtiy(™ (0) = W (™) (0).
2. As )\ and~ increase the distributions reveal the heavier tails. Under the FFS anddR886l policies the
customer makes less retrials as under threshold policies (OTP, STP¥bdrattwo disciplines imply the
shorter waiting time.
3. The number of retrials strongly depends on the retrial rate. In casawis small, Figure 7(a,b), then
the number of retrials with large probability will be not very large, e.g. in thsneple ("™ (6) > 0.99
and ¥ (™) (7) > 0.99. Otherwise, wheny is large, Figure 8(a,b), then the number of retrial significantly
increases, e.gl("™ (10) > 0.96 and¥ (™) (10) > 0.94.
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Figure 7: The distribution functiof (n) (@) A = 0.5 (b) A = 0.9, ©1=2.2,119=0.3,7 = 2.5
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Figure 8: The distribution functiof(n) (@) A = 0.5 (b) A = 0.9, u1=2.2,119=0.3,7 = 8.5

10 Conclusion

The presented in the paper results show that for controlled retrial gueigalso possible to perform
quite detailed performance analysis. The presented methods can beeeXbgnidicreasing the number of
serversc > 2 and by considering more bursty arrival and service processes. eWsop the algorithms
for the calculation of the Laplace transforms of the waiting and sojourn timehdistns. To get the
distribution functions we use the appropriate methods for the inversionpdate and z-transforms based
on the Fourier-series methods. It is demonstrated that while the OTP sheWweghsojourn time, the FFS
policy reveals the best waiting time for the orbiting customer. In heavy tradfe,cwhen the load factor is
large, then the differences between the policies can be neglected. Itrdifficstcase the results for the OPT
and STP coincide, thus for the optimal threshold levels as approximationsaortake the corresponding
levels of the scheduling problem.
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