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Abstract

A controlled retrial queueing system with two heterogeneous servers, first-come first-served discipline for the cus-
tomers on the orbit, possible direct access for the primary customers, Poisson arrivals and finite retrial group is con-
sidered. According to the optimal policy the faster server must be active whenever the customer enters the service
area while the slower one can be active only when the number ofcustomers in the orbit exceeds a prescribed threshold
level. The problem of deriving the equilibrium waiting timeand sojourn time distributions is formulated. We introduce
the recursive method for the calculation of the corresponding Laplace-Stiltjes transforms and the inversion methods
are used to get the distribution functions. Also the recursive method for the obtainingz-transforms is used to get
some discrete distributions for the number of directly served primary customers and the number of retrials made by
a customer until the service starts. The methods are appliedalso for other heuristic control policies, namely for the
Scheduling threshold policy (STP), Fastest Free Server (FFS) or Random Server Selection (RSS)

Keywords: Retrial queue, Controlled queueing system, Steady-state probabilities, Threshold control policy,
Waiting time distribution, Sojourn time distribution

1 Introduction

We consider controllable retrial queueing system with several exponential servers, functioning at different
rates. The arriving customers form a Poisson process and can have adirect access to the service area. In
our previous paper [8] we minimized the expected sojourn time over all customers and found that there is a
threshold policy which uses a slow server only if the orbit size exceeds a certain threshold level. With respect
to this policy we have applied the matrix-geometric method for the calculation of steady-states probabilities
and different mean performance characteristics.

In this paper we formulate the problem of determining the stationary waiting and sojourn time distri-
butions. For the uncontrolled classical queueing systems without retrials for the deriving of the waiting
time distribution it is enough to consider the system state at the arrival time of a tagged customer, e.g. as
is presented by Kleinrock [11]. In controlled case [20] it was shown that the waiting and sojourn time dis-
tributions correspond to the linear combination of Erlang distributions. The waiting time in uncontrolled
retrial queues is more difficult. Some methods are described in the monographby Falin and Tempelton [9].
For retrial systems (uncontrolled or controlled) with direct access of primary customers to the service area
the waiting time analysis becomes more complicated because the waiting time of a customer in this case
depends also on future arrivals. In systems with classical retrial policy,where the retrial rate depends on
the number of orbiting customers, it is necessary to take into account that some later arrived customer can

1The investigation is supported by the Austro-Hungarian Cooperation Grant No 66o:u1, 2006.
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be earlier served according to the random order policy for the orbiting customers. The recursive scheme for
the computation of the Laplace-Stiltjes transforms of the waiting time of a tagged customer is introduced by
Artalejo et al. [4]. This paper motivate us to perform the waiting time analysis for the controlled queue with
constant retrial policy, where the retrial rate is independent of the number of orbiting customers.

In systems with constant retrial rate with FCFS service discipline for the orbiting customers for a thresh-
old policy future arrivals can influence the waiting time of the tagged customer by influencing the servers
that can be active in the future. Therefore it is also necessary to consider the arrival process after the arrival
of the tagged customer up to the time where service of this customer starts. For the system under consider-
ation the calculation of the waiting time distribution is achieved by analysing the transient Markov process
with absorption at the time the tagged customer starts service. This requires anextension of the state rep-
resentation since we have to know at each time the position of the tagged customer in the list of orbiting
customers.

In this paper we express the Laplace transforms of the waiting and sojourn timedistributions. Repre-
senting the Laplace-Stiltjes transforms of the waiting or sojourn time densities of the tagged customer as
vector we get that for threshold system it satisfies the threshold depended block-threediagonal system. For
uncontrolled queue with classical retrial rate such a structure was shownin [4]. But in case of FIFO disci-
pline for the orbiting customers this system is recurrent with respect to the position of the tagged customer
in the orbit.

The organization of the paper is as follows. In sections 2 and 3, the steady-state distributions are derived
for a general threshold system and heuristic control policies. In sections 4 and 5, we develop recursive
equations for the calculation of the stationary waiting and sojourn time distributions for a system under
threshold and heuristic control policies as well as the corresponding moments of the arbitrary orders. In
sections 6 and 7, we obtain, respectively, discrete distribution functions for the number of directly served
customers and number of retrials made by a customer. In section 8 we give theresults of numerical inversion
of Laplace- and z-transforms and compare them for threshold and heuristic control policies.

In further sections we will use the notationse(n), ej(n) andIn for the column-vector of dimensionn
consisting of 1’s, column vector of dimensionn with 1 in thej-th (beginning from0-th) position and0
elsewhere, and an identity matrix of dimensionn×n. The notations without specifying the dimensions will
be used for the suitably dimensioned vectors and matrices.

2 Description of the mathematical model

Consider the queueing modelM/M/c in which primary customers arrive according to a Poisson stream
with rateλ, two heterogeneous exponential serversc = 2 with ratesµ1 > µ2, constant retrial rateγ > 0 and
the number of places in the retrial orbit2 ≤ K ≤ ∞. According to the control policy an arriving customer
can join the orbit or have direct access to the accessible idle servers. The arrival process, service times and
retrial times are assumed to be mutually independent.

Let Q(t) is the number of customers in the retrial orbit at timet, D1(t), D2(t) describe the states of the
servers at this time,

Dj(t) =

{

0, if the j-th server is idle at timet and

1, if the j-th server is busy.

The observed process

{X(t)}t≥0 = {Q(t), D1(t), D2(t)}t≥0 (1)

is a continuous-time Markov process with state space defined as

E = {x = (q, d1, d2); 0 ≤ q ≤ K, di = {0, 1}, i = 1, 2} ≡ N × {0, 1}2,

whereq anddi, i = 1, 2 denote, respectively, the number of customers on the orbit and states of the servers.
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Theorem 1 The optimal policy for the retrial queueing systemM/M/2 with heterogeneous servers and
constant retrial rate is of threshold and monotone type, i.e. the fastest idle server must be switched on
whenever a primary or retrial customer arrives and another one mustbe switched on if and only if the
fastest server is busy and the orbit length reaches the threshold levelq ≥ q∗2.

The analytical representation of the threshold level is quite complicated, butby means of the value iteration
algorithm it can be done numerically. If future arrivals are not taken into account (scheduling problem), i.e.
when the objective is to minimize the sojourn time for an individual customer, the explicit solution for the
threshold level exists

Theorem 2 If λ = 0 then there exists a threshold level

q∗2 =

⌊

γ

µ1 + γ

(

µ1

µ2
− 1

)⌋

+ 1, (2)

such that ifq ≥ q∗2 in statex = (q, 1, 0) then upon retrial arrival it is optimal to dispatch a customer to the
slower server, ifq ≤ q∗2 − 1 then the slower server must be idle.

3 Steady-state distribution of the system under optimal policy

In this section we derive the equilibrium state distribution under the optimal threshold policy (OTP). The
derivation works via a standard matrix-geometric approach [13], taking into account the special structure
of the boundary states where not all servers are active. To distinguishthe system under OTP from other
control policies which will be discussed later we will use the upper index′(1)′ for the concerned values. Let
q∗2 be the threshold level for activation of the second server. As it was mentioned above they can be found
numerically (e.g. using the value iteration algorithm [10]).

Consider a Markov process{X(t)}t≥0 defined by (22) with a state spaceE. This process is a QBD
process with block - three-diagonal infinitesimal matrix. Note that the blocks have different sizes depending
on the queue length.

3.1 Finite retrial group

First consider the system with finite retrial group, i.e.K < ∞. In this case the states are partitioned as
follows:

• block 0 includes the single state:(0, 0, 0);

• block 1 includes the states:(0, 0, 1), (0, 1, 0), (1, 0, 0);

• block 2 includes the states:(0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 0);

• blocksi, 3 ≤ i ≤ K include the states:
(i − 2, 1, 1), (i − 1, 0, 1), (i − 1, 1, 0), (i, 0, 0);

• blockK + 1 includes the states:
(K − 1, 1, 1), (K, 0, 1), (K, 1, 0);

• blockK + 2 includes the single state:(K, 1, 1);
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Denote byΛ(1) the infinitesimal matrix of dimension4(K + 1) for the system under OTP,

Λ(1) = (3)












































−λ A
(1)
1 0 0 0 0 . . . 0

D
(1)
0 −(C

(1)
1 − B

(1)
1 ) A

(1)
2 0 0 0 . . . 0

0 D
(1)
1 −(C

(1)
2 − B

(1)
2 ) A

(1)
3 0 0 . . . 0

0 0 D
(1)
2 −(C

(1)
2 − B

(1)
2 ) A

(1)
3 0 . . . 0

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 D
(1)
2 −(C

(1)
3 − B

(1)
3 ) A

(1)
4 . . . 0

...
...

...
...

...
...

. . .
...

0 . . . 0 0 D
(1)
3 −(C

(1)
3 − B

(1)
3 ) A

(1)
5 0

0 . . . 0 0 0 D
(1)
3 −(C

(1)
4 − B

(1)
4 ) A

(1)
6

0 . . . 0 0 0 0 D
(1)
4 −M













































,

where

λ + A
(1)
1 e = D

(1)
0 e − (C

(1)
1 − B

(1)
1 )e + A

(1)
2 e = D

(1)
1 e − (C

(1)
2 − B

(1)
2 )e + A

(1)
3 e =

D
(1)
2 e − (C

(1)
2 − B

(1)
2 )e + A

(1)
3 e = (D

(1)
2 − (C

(1)
3 − B

(1)
3 ) + A

(1)
4 )e = D

(1)
3 e − (C

(1)
3 − B

(1)
3 )e + A

(1)
5 e =

D
(1)
3 e − (C

(1)
4 − B

(1)
4 )e + A

(1)
6 e = D

(1)
4 e − M = 0,

M = µ1 + µ2. MatricesA
(1)
i andB

(1)
i represent primary and retrial arrivals, respectively, depending on

whether the queue length are above or below threshold level:

A
(1)
1 =

(

0 λ 0
)

, A
(1)
2 =





λ 0 0 0
0 0 λ 0
0 0 λ 0



 , A
(1)
3 =









λ 0 0 0
λ 0 0 0
0 0 λ 0
0 0 λ 0









, A
(1)
4 =









λ 0 0 0
λ 0 0 0
λ 0 0 0
0 0 λ 0









, A
(1)
5 =









λ 0 0
λ 0 0
λ 0 0
0 0 λ









,

A
(1)
6 =





λ

λ

λ





and

B
(1)
1 =





0 0 0
0 0 0
0 γ 0



 , B
(1)
2 =









0 0 0 0
γ 0 0 0
0 0 0 0
0 0 γ 0









, B
(1)
3 =









0 0 0 0
γ 0 0 0
γ 0 0 0
0 0 γ 0









, B
(1)
4 =





0 0 0
γ 0 0
γ 0 0



 .

MatricesC(1)
i represent cases when the system stays at certain states:

C
(1)
1 =





λ + µ2 0 0
0 λ + µ1 0
0 0 λ + γ



 , C
(1)
2 =









λ + M 0 0 0
0 λ + µ2 + γ 0 0
0 0 λ + µ1 0
0 0 0 λ + γ









,

C
(1)
3 =









λ + M 0 0 0
0 λ + µ2 + γ 0 0
0 0 λ + µ1 + γ 0
0 0 0 λ + γ









, C
(1)
4 =





λ + M 0 0
0 λ + µ2 + γ 0
0 0 λ + µ1 + γ



 .

MatricesD(1)
i represent departures with elements depending on active servers:

D
(1)
0 =





µ2

µ1

0



 , D
(1)
1 =









µ1 µ2 0
0 0 µ2

0 0 µ1

0 0 0









, D
(1)
2 =









0 µ1 µ2 0
0 0 0 µ2

0 0 0 µ1

0 0 0 0









, D
(1)
3 =





0 µ1 µ2 0
0 0 0 µ2

0 0 0 µ1



 , D
(1)
4 =

(

0 µ1 µ2
)

.

4



Denote byπ(1) = (π
(1)
0 , π

(1)
1 , . . . ) the row-vector of the steady-state probabilities,

π(1) = {π(1)
x = π

(1)
(q,d1,d2) : x ∈ E} = lim

t→∞
P{X(t) = x},

by {π(1)
k : k ≥ 0} — the subvectors that specify the states withk jobs in the system.

Obviously the row-vectorπ(1) of the steady-state probabilities of the system under optimal policy satis-
fies the equations

π(1)Λ = 0, π(1)e = 1. (4)

The probabilities for the system states can be represented in the form of recursive relation with some
matricesM (1)

k ,

π
(1)
k = π

(1)
k+1M

(1)
k , k = 0, 1, . . . , K + 1,

namely

π
(1)
0 = π

(1)
1 D

(1)
0

1

λ
= π

(1)
1 M

(1)
0 ;

π
(1)
1 = π

(1)
2 D

(1)
1 (C

(1)
1 − B

(1)
1 − D

(1)
0

1

λ
A

(1)
1 )−1 = π

(1)
2 M

(1)
1 ;

π
(1)
2 = π

(1)
3 D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
1 A

(1)
2 )−1 = π

(1)
3 M

(1)
2 ;

π
(1)
3 = π

(1)
4 D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
2 A

(1)
3 )−1 = π

(1)
4 M

(1)
3 ;

π
(1)
i = π

(1)
i+1D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
i−1A

(1)
3 )−1 = π

(1)
i+1M

(1)
i , 4 ≤ i ≤ q∗2;

π
(1)
i = π

(1)
i+1D

(1)
2 (C

(1)
3 − B

(1)
3 − M

(1)
i−1A

(1)
4 )−1 = π

(1)
i+1M

(1)
i , q∗2 + 1 ≤ i ≤ K − 1;

π
(1)
K = π

(1)
K+1D

(1)
3 (C

(1)
3 − B

(1)
3 − M

(1)
K−1A

(1)
4 )−1 = π

(1)
K+1M

(1)
N ;

π
(1)
K+1 = π

(1)
K+2D

(1)
4 (C

(1)
4 − B

(1)
4 − M

(1)
N A

(1)
5 )−1 = π

(1)
K+2M

(1)
K+1. (5)

To calculate the valuesπ(1)
k it is necessary:

Step 1.Evaluate the matricesM (1)
k , k = 0, . . . , K + 1 according to relation (5).

Step 2Evaluate the valueπ(1)
K+2 = π

(1)
(K,1,1) from the normalization condition

1 =
K+2
∑

k=0

π
(1)
k e = π

(1)
K+2 + π

(1)
K+2

K+1
∑

i=0

K+1
∏

j=K+1−i

M
(1)
j e = π

(1)
K+2



1 +
K+1
∑

i=0

K+1
∏

j=K+1−i

M
(1)
j e



 . (6)

Step 3.Substituteπ(1)
K+2 into

π
(1)
i = π

(1)
K+2

K+1
∏

j=K+1−i

M
(1)
j , i = 0, . . . , K + 1.

Note that this method works efficiently as long asK < ∞ is not too large. But for largeK the matrix
geometric solution corresponding toK = ∞ is a good approximation.

3.2 Infinite retrial group

In case of infinite retrial groupK = ∞ the infinitesimal matrixΛ(1) has infinite size and is obtained from
the matrix (3) by removing the last three rows.

We consider first the matrix-geometric part of the equations, above the threshold levelq∗2:

π
(1)
q∗2+jA

(1)
4 + π

(1)
q∗2+j+2D

(1)
2 = π

(1)
q∗2+j+1(C

(1)
3 − B

(1)
3 ), j ≥ 0.
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Conjecturing the matrix-geometric form

π
(1)
q∗2+j = π

(1)
q∗2

(R(1))j

we substitute this guess into the last equation, then we get the following equationfor matrixR(1)

(R(1))2D
(1)
2 − R(1)(C

(1)
3 − B

(1)
3 ) + A

(1)
4 = 0. (7)

This is a quadratic equation in the matrixR(1), which is typically solved numerically using the following
iteration procedure:

R(1)(0) = 0, (8)

R(1)(n + 1) = A
(1)
4 (C

(1)
3 − B

(1)
3 )−1 + (R(1))2(n)D

(1)
2 (C

(1)
3 − B

(1)
3 )−1,

where the iteration halts when entries inR(1)(n+1) andR(1)(n) differ in absolute value by less that a given
small constant.

The general theory [13] states that the necessary and sufficient condition for stability is

p(1)D
(1)
2 e > p(1)A

(1)
4 e,

wherep(1) = (p
(1)
0 , p

(1)
1 , p

(1)
2 , p

(1)
3 ) is a stationary probability vector given byp(1)(A

(1)
4 − (C

(1)
3 − B

(1)
3 ) +

D
(1)
2 ) = 0, p(1)e = 1.

Theorem 3 For the system under optimal policy, the stationary vectorp(1) of A(1)
4 − (C

(1)
3 −B

(1)
3 ) + D

(1)
2

is given by

p
(1)
0 =

(λ + γ)2(λ + µ2 + γ)

(λ + µ1 + γ)((λ + γ)(λ + 2µ1 + γ) + µ2M)
,

p
(1)
1 =

µ1

λ + µ2 + γ
p
(1)
0 ,

p
(1)
2 =

µ2(λ + M + γ)

(λ + γ)(λ + µ2 + γ)
p
(1)
0 ,

p
(1)
3 =

µ1µ2(2(λ + γ) + M)

(λ + γ)2(λ + µ2 + γ)
p
(1)
0 .

The system is stable if and only if the load factorρ(1) satisfies

ρ(1) =
λ(λ + γ)2(λ + µ2 + γ)

Mγ(λ + γ)2 + γµ1µ2(3(λ + γ) + µ1) + µ2
2γ(λ + µ1 + γ)

< 1. (9)

Proof: By elementary calculations.
¤

Equations for the boundary states below the threshold level are still to be solved, namely:

π
(1)
0 = π

(1)
1 D

(1)
0

1

λ
= π

(1)
1 M

(1)
0 ;

π
(1)
1 = π

(1)
2 D

(1)
1 (C

(1)
1 − B

(1)
1 − D

(1)
0

1

λ
A

(1)
1 )−1 = π

(1)
2 M

(1)
1 ;

π
(1)
2 = π

(1)
3 D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
1 A

(1)
2 )−1 = π

(1)
3 M

(1)
2 ;

π
(1)
3 = π

(1)
4 D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
2 A

(1)
3 )−1 = π

(1)
4 M

(1)
3 ;

π
(1)
i = π

(1)
i+1D

(1)
2 (C

(1)
2 − B

(1)
2 − M

(1)
i−1A

(1)
3 )−1 = π

(1)
i+1M

(1)
i , 4 ≤ i ≤ q∗2 − 1;

π
(1)
q∗2

= π
(1)
q∗2

(M
(1)
q∗2−1A

(1)
3 + R(1)D

(1)
2 )(C

(1)
2 − B

(1)
2 )−1. (10)
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The following algorithm is used to in the calculations:
Step 1.Solve (7) for matrixR(1), using iterations (8).
Step 2.Evaluate the MatricesM (1)

j for j = 0, . . . , q∗2 − 1.

Step 3.Evaluate the valueπ(1)
q∗2

by solving the normalisation condition

1 =
∞

∑

k=0

π
(1)
k e = π

(1)
q∗2

q∗2−1
∑

i=0

q∗2−1
∏

j=q∗2−1−i

M
(1)
j e + π

(1)
q∗2

∞
∑

j=0

(R(1))je (11)

= π
(1)
q∗2

[q∗2−1
∑

i=0

q∗2−1
∏

j=q∗2−1−i

M
(1)
j e + (I − R(1))−1e

]

.

with the equation
π

(1)
q∗2

(M
(1)
q∗2−1A

(1)
3 − (C

(1)
2 − B

(1)
2 ) + R(1)D

(1)
2 ) = 0.

Step 4.Substituteπ(1)
q∗2

in

π
(1)
i = π

(1)
q∗2

q∗2−1
∏

j=q∗2−1−i

M
(1)
j (12)

for the valuesi = 0, . . . , q∗2 − 1 and calculate

π
(1)
q∗2+j = π

(1)
q∗2

(R(1))j (13)

for j > 0.

4 Steady-state distributions of the system under heuristic policies

To measure the advantages of optimal threshold policy (OTP) three more servers’ selection disciplines will
be considered, namely

• Scheduling threshold policy (STP)

• Fastest free server selection (FFS)

• Random server selection (RSS)

The policies STP, FFS and RSS will be denoted by indicesm = {2, 3, 4}, respectively. The formulas
for the calculation of the steady-state distribution of the system under the STPare exactly the same as for
the optimal policy with only one exception that the threshold level may differ from the optimal one.

In the next subsections calculation procedures are treated for systems under the FFS and RSS policies.

4.1 Finite retrial group

In STP case the fastest server must be busy whenever the arrival occurs whereas the slower server can
be switched on only if upon arrival of a primary or retrial customer the orbit has length defined by (2).
The policy FSS means that the fastest free server must be occupied uponan arrival of a primary or retrial
customer. Under the policy RSS arrivals choose any free server with equal probability.

Since the system under FFS and RSS control policies is described by the same Markov process{X(t)}t≥0

with the state spaceE as under the optimal control policy, we have a similar states partitioning.
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Analogously as in previous sections we can write down the three-diagonalinfinitesimal block matrices
Λ(m), m = {2, 3, 4} of dimension4(K + 1). It is obvious that for STP matrix has the same form as for
the optimal policy. For policies FFS and RSS policies in caseK < ∞ the infinitesimal matrices are of the
form,

Λ(m) =

































−λ A
(m)
1 0 0 0 . . . 0

D
(m)
0 −(C

(m)
1 − B

(m)
1 ) A

(m)
2 0 0 . . . 0

0 D
(m)
1 −(C

(m)
3 − B

(m)
3 ) A

(m)
4 0 . . . 0

0 0 D
(m)
2 −(C

(m)
3 − B

(m)
3 ) A

(m)
4 . . . 0

. . .
. . .

. . .
. . .

. . . 0

0 . . . 0 D
(m)
3 −(C

(m)
3 − B

(m)
3 ) A

(m)
5 0

0 . . . 0 0 D
(m)
3 −(C

(m)
4 − B

(m)
4 ) A

(m)
6

0 . . . 0 0 0 D
(m)
4 M

































where A
(3)
1 = A

(1)
1 , A

(3)
2 =





λ 0 0 0
λ 0 0 0
0 0 λ 0



 , A
(3)
i = A

(1)
i , i = 4, 5, 6, B

(3)
1 = B

(1)
1 , B

(3)
3 = B

(1)
3 , B

(3)
4 = B

(4)
4 = B

(1)
4 ,

C
(3)
1 = C

(4)
1 = C

(1)
1 , C

(3)
i = C

(4)
i = C

(1)
i , i = 3, 4, D

(3)
i = D

(4)
i = D

(1)
i , 0 ≤ i ≤ 4,

A
(4)
1 =

(

λ
2

λ
2

0
)

, A
(4)
2 =





λ 0 0 0
λ 0 0 0

0 λ
2

λ
2

0



 , A
(4)
4 =









λ 0 0 0
λ 0 0 0
λ 0 0 0

0 λ
2

λ
2

0









, A
(4)
5 =









λ 0 0
λ 0 0
λ 0 0

0 λ
2

λ
2









,

A
(4)
6 = A

(1)
6 , B

(4)
1 =





0 0 0
0 0 0
γ

2
γ

2
0



 , B
(4)
3 =









0 0 0 0
γ 0 0 0
γ 0 0 0
0 γ

2
γ

2
0









The steady-state probability vectorπ(m), m = {2, 3, 4} satisfies the system

π(m)Λ(m) = 0, π(m)e = 1.

To solve the system for FFS and RSS policies we represent the equations inthe form

π
(m)
0 = π

(m)
1 D

(m)
0

1

λ
= π

(m)
1 M

(m)
0 ;

π
(m)
1 = π

(m)
2 D

(m)
1 (C

(m)
1 − B

(m)
1 − D

(m)
0

1

λ
A

(m)
1 )−1 = π

(m)
2 M

(m)
1 ;

π
(m)
2 = π

(m)
3 D

(m)
2 (C

(m)
3 − B

(m)
3 − M

(m)
1 A

(m)
2 )−1 = π

(m)
3 M

(m)
2 ;

π
(m)
i = π

(m)
i+1D

(m)
2 (C

(m)
3 − B

(m)
3 − M

(m)
i−1 A

(m)
4 )−1 = π

(m)
i+1M

(m)
i , 3 ≤ i ≤ K − 1;

π
(m)
K = π

(m)
K+1D

(m)
3 (C

(m)
3 − B

(m)
3 − M

(m)
K−1A

(m)
4 )−1 = π

(m)
K+1M

(m)
K ;

π
(m)
K+1 = π

(m)
K+2D

(m)
4 (C

(m)
4 − B

(m)
4 − M

(m)
K A

(m)
5 )−1 = π

(m)
K+2M

(m)
K+1, m = {3, 4}. (14)

To calculate the valuesπ(m)
k , m = {3, 4} it is necessary:

Step 1.Evaluate matricesM (m)
k , k = 0, . . . , K + 1 by relation (14).

Step 2Evaluate the valueπ(m)
K+2 from the normalization condition

1 =

K+2
∑

k=0

π
(m)
k e = π

(m)
K+2 + π

(m)
K+2

K+1
∑

i=0

K+1
∏

j=K+1−i

M
(m)
j e = π

(m)
K+2



1 +

K+1
∑

i=0

K+1
∏

j=K+1−i

M
(m)
j e



 . (15)

Step 3.Substituteπ(m)
K+2 into

π
(m)
i = π

(m)
K+2

K+1
∏

j=K+1−i

M
(m)
j .

for i = 0, . . . , K + 1.
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4.2 Infinite retrial group

In case of infinite retrial group,K = ∞, the infinitesimal matricesΛ(m), m = {2, 3, 4} are obtained from
the above matrices by removing the last three rows. In this case we conjecture the matrix-geometric form

π
(m)
2+j = π

(m)
2 (R(m))j , j ≥ 0

where the matrixR(m) is to be found by solving the following quadratic equation

(R(m))2D
(m)
2 − R(m)(C

(m)
3 − B

(m)
3 ) + A

(m)
4 = 0. (16)

As before the necessary and sufficient condition for stability isp(m)D
(m)
2 e > p(m)A

(m)
4 e, wherep(m) is a

stationary probability vector given byp(m)(A
(m)
4 − (C

(m)
3 − B

(m)
3 ) + D

(m)
2 ) = 0, p(m)e = 1.

Theorem 4 For the system under STP and FFS control policies, the stationary probability vector p(m) of
A

(m)
4 − (C

(m)
3 − B

(m)
3 ) + D

(m)
2 , m = {2, 3} is given by formulas 3. The system is stable if and only if the

load factorρ(m), defined by (9) satisfies

ρ(m) < 1, m = {2, 3}.

Theorem 5 For the system under RSS control policy, the stationary probability vectorp(4) of A(4)
4 −(C

(4)
3 −

B
(4)
3 ) + D

(4)
2 is given by

p
(4)
0 =

(λ + γ)2

(λ + γ)(λ + M + γ) + 2µ1µ2
,

p
(4)
1 =

µ1

λ + γ
p
(4)
0 ,

p
(4)
2 =

µ2

λ + γ
p
(4)
0 ,

p
(4)
3 =

2µ1µ2

(λ + γ)2
p
(4)
0 .

The system is stable if and only if the load factorρ(4) satisfies

ρ(4) =
λ(λ + γ)2

Mγ(λ + γ) + 2γµ1µ2
< 1. (17)

Proof: By elementary calculations.
¤

Probabilitiesπ(m)
0 andπ

(m)
1 satisfy relations

π
(m)
0 = π

(m)
1 D

(m)
0

1

λ
= π

(m)
1 M

(m)
0 , (18)

π
(m)
1 = π

(m)
2 D

(m)
1 (C

(m)
1 − B

(m)
1 − D

(m)
0

1

λ
A

(m)
1 )−1 = π

(m)
2 M

(m)
1 .

In casem = {3, 4} the following algorithm is used for the calculations:
Step 1.Solve equations (16) for matrixR(m), using iterations starting fromR(m)(0) = 0.

Step 2.Evaluate matricesM (m)
0 andM

(m)
1 .

Step 3.Evaluate valueπ(m)
2 by solving the normalisation condition

1 =
∞

∑

k=0

π
(m)
k e = π

(m)
2 M

(m)
1 M

(m)
0 e + π

(m)
2 M

(m)
1 e + π

(m)
2

∞
∑

j=0

(R(m))je (19)

= π
(m)
2

[

M
(m)
1 M

(m)
0 e + M

(m)
1 e + (I − R(m))−1e

]

.
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with the equation

π
(m)
2 (M

(m)
1 A

(m)
2 − (C

(m)
3 − B

(m)
3 ) + R(m)D

(m)
2 ) = 0.

Step 4.Substituteπ(m)
2 into

π
(m)
0 = π

(m)
2 M

(m)
1 M

(m)
0 , π

(m)
1 = π

(m)
2 M

(m)
1 (20)

and calculate

π
(m)
2+j = π

(m)
2 (R(m))j , j > 0. (21)

5 Stationary distribution of the waiting time

In this section we find the distribution of the waiting time. For the controllable queuewith heterogeneous
servers the waiting time of some customer can depend on the future arrival because in this case the number
of active servers can be changed. Therefore, the waiting time of the tagged customer in the system under
OTP strongly depends not only on its position in the queue, but also on the queue length during its waiting
time. In the alternative models we have also consider not only the system state at the arrival time of the
tagged customer, but also the possibility that the customer who comes later will beserverd by free server.

Thus, to calculate the waiting time distribution we will consider the process just after the arrival of
the tagged customer with absorption at the time when he starts the service. Let us introduce the transient
Markov process

X(t) = (Q(t), D1(t), D2(t), J(t)) (22)

with the same genenerators as the models of the previous section. The state spaces

E = {x = (q, d1, d2, j); 0 ≤ q ≤ K, di = {0, 1}, i = 1, 2, 0 ≤ j ≤ q},

where the last componentJ(t) denotes the position of the fixed job in the list of waiting jobs at timet. This
component can take the values{0, 1, 2, ...}, and decreases for the system under threshold policy

• at time of a retrial arrival when the first server is idle,

• at time of a retrial arrival when at least one of the servers is idle and the queue length is greater than
q∗2,

and for other systems - at time of a retrial arrival when at least one server is idle.
The process is absorbed when the componentJ(t) become equal to zero. Note thatQ(t) ≥ J(t) at

any timet when the targed customer has to wait in the orbit. We denote the state of the processX(t) by
x = (q, d1, d2, j). At the point of time of a new arrivalt+ (the initial time for the transient Markov process)
it is obvious that

J(t+) = Q(t+)

if tagged customer has to wait in the orbit andJ(t+) = 0 if upon arrival the customer can be served
immediately.

Define
W (m)− r.v. of the waiting time in the system under policym,
W

(m)
x − r.v. of the residual waiting time of the tagged customer given that the system state isx,

w
(m)
x (t)− the dencity function of the residual waiting time,

w̃
(m)
x (s) = E[e−sW

(m)
x ] =

∫ ∞
0 e−stw

(m)
x (t)dt, Re[s] ≥ 0 corresponding Laplace-Stieltjes transform.
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Because of the markovity of the processX(t), the residual waiting time in statex consists of the time
the system spend in statex until the next transition with densityλxe−λxt plus the residual time in a new
statey after possible transition from the statex, which take place with probabilityλxy

λx
. Thus from the low

of total probability for the densitywx(t) we get

w(m)
x (t) =

∑

y 6=x

λxy

λx

[

λxe−λxt ∗ w(m)
y (t)

]

, x ∈ E (23)

where * denotes convolution.
Applying the Laplace-Stieltjes transforms to the relation (23) we get

w̃(m)
x (s) =

∑

y 6=x

λxy

s + λx
w̃(m)

y (s), x ∈ E. (24)

We partition the above Laplace-Stieltjes transforms according to the partition ofthe system states: define
the column-vectorsw(m)

i,j (s) in which i denotes the number of customers in the system andj the position of
the tagged customer:

w̃
(m)
j,j (s) = w̃

(m)
(j,0,0,j)(s), 1 ≤ j ≤ K (25)

w̃
(m)
j+1,j(s) = (w̃

(m)
(j,0,1,j)(s), w̃

(m)
(j,1,0,j)(s), w̃

(m)
(j+1,0,0,j)(s))

t, 1 ≤ j ≤ K − 1,

w̃
(m)
i,j (s) = (w̃

(m)
(i−2,1,1,j)(s), w̃

(m)
(i−1,0,1,j)(s), w̃

(m)
(i−1,1,0,j)(s), w̃

(m)
(i,0,0,j)(s))

t, 1 ≤ j ≤ i − 2 ≤ K − 2,

w̃
(m)
K+1,j(s) = (w̃

(m)
(K−1,1,1,j)(s), w̃

(m)
(K,0,1,j)(s), w̃

(m)
(K,1,0,j)(s))

t, 1 ≤ j ≤ K − 1,

w̃
(m)
K+1,K(s) = (w̃

(m)
(K,0,1,K)(s), w̃

(m)
(K,1,0,K)(s))

t,

w̃
(m)
K+2,j(s) = w̃

(m)
(K,1,1,j)(s), 1 ≤ j ≤ K,

w̃
(m)
j (s) = (w̃

(m)
j,j (s), w̃

(m)
j+1,j(s), . . . , w̃

(m)
K+2,j(s))

t, 1 ≤ j ≤ K,

w̃
(m)(s) = (w̃

(m)
1 (s), w̃

(m)
2 (s), . . . , w̃

(m)
K (s))t.

The following theorem gives recurrent relation for the vectorsw̃
(m)
j (s), 1 ≤ j ≤ K of the Laplace-

Stieltjes transforms̃w(m)
x , x ∈ E of the conditional waiting time dencitiesw(m)

x (t).

Theorem 6 The vectors of the Laplace-Stieltjes transformsw̃
(m)
j (s), 1 ≤ j ≤ K of the conditional waiting

time dencities under the control policym = {1, 2, 3, 4} are related by the following recurrent block three-
diagonal system

Λ
(m)
W,1(s)w̃

(m)
1 (s) = −Γ

(m)
1 e, (26)

Λ
(m)
W,j(s)w̃

(m)
j (s) = −Γ

(m)
j w̃

(m)
j−1(s), 2 ≤ j ≤ K.

The matricesΛ(m)
W,j(s) = (Φ

(m)
j − sI4(K−j+1)) andΓ

(m)
j , j ≥ 1 are of the dimension4(K − j + 1). All
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matrices haveK + 3− j block-columns andK + 3− j block-rows. The matricesΦ(m)
j for are of the form:

Φ
(m)
j =













































−(λ + γ) A
(m)
1 0 0 0 0 . . . 0

D
(m)
0 −Ĉ

(m)
2 A

(m)
2 0 0 0 . . . 0

0 D
(m)
1 −C

(m)
2 A

(m)
3 0 0 . . . 0

0 0 D
(m)
2 −C

(m)
2 A

(m)
3 0 . . . 0

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 D
(m)
2 −C

(m)
3 A

(m)
4 . . . 0

...
...

...
...

...
...

. . .
...

0 . . . 0 0 D
(m)
3 −C

(m)
3 A

(m)
5 0

0 . . . 0 0 0 D
(m)
3 −C

(m)
4 A

(m)
6

0 . . . 0 0 0 0 D
(m)
4 −M



















































q∗2 − j − 2, 1 ≤ j ≤ q∗2 − 2, m = {1, 2}







K − q∗2 − 1

Φ
(m)
j =

































−(λ + γ) A
(m)
1 0 0 0 . . . 0

D
(m)
0 −Ĉ

(m)
2 Â

(m)
2 0 0 . . . 0

0 D
(m)
1 −C

(m)
3 A

(m)
4 0 . . . 0

0 0 D
(m)
2 −C

(m)
3 A

(m)
4 . . . 0

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 D
(m)
3 −C

(m)
3 A

(m)
5 0

0 . . . 0 0 D
(m)
3 −C

(m)
4 A

(m)
6

0 . . . 0 0 0 D
(m)
4 −M







































K − j − 2, j = q∗2 − 1, m = {1, 2}

Φ
(m)
j =

































−(λ + γ) A
(m)
1 0 0 0 . . . 0

D
(m)
0 −Ĉ

(m)
3 Â

(m)
2 0 0 . . . 0

0 D
(m)
1 −C

(m)
3 A

(m)
4 0 . . . 0

0 0 D
(m)
2 −C

(m)
3 A

(m)
4 . . . 0

. . .
. . .

. . .
. . .

. . . . . . 0

0 . . . 0 D
(m)
3 −C

(m)
3 A

(m)
5 0

0 . . . 0 0 D
(m)
3 −C

(m)
4 A

(m)
6

0 . . . 0 0 0 D
(m)
4 −M







































K − j − 2,

q∗2 ≤ j ≤ K − 2,m = {1, 2}

1 ≤ j ≤ K − 2, m = {3, 4}

Φ
(m)
K−1 =











−(λ + γ) A
(m)
1 0 0

D
(m)
0 −Ĉ

(m)
3 Â

(m)
5 0

0 D̂
(m)
1 −C

(m)
4 A

(m)
6

0 0 D
(m)
4 −M











, Φ
(m)
K

=







−(λ + γ) Â
(m)
1 0

D̂
(m)
0 −Ĉ

(m)
4 Â

(m)
6

0 D̂
(m)
4 −M






,

where

Â
(m)
1 =

(

0 λ
)

, Â
(m)
5 =





λ 0 0
λ 0 0
0 0 λ



, m = {1, 2, 3}, Â
(4)
1 =

(

λ
2

λ
2

)

, Â
(m)
2 =





λ 0 0 0
λ 0 0 0
0 0 λ 0



, m = {1, 2},

Â
(m)
2 = A

(m)
2 , m = {3, 4}, Â(4)

5 =





λ 0 0
λ 0 0

0 λ
2

λ
2



, Â(m)
6 =

(

λ λ
)

,m = {1, 2, 3, 4}

Ĉ
(m)
2 =





λ + µ2 + γ 0 0
0 λ + µ1 0
0 0 λ + γ



,m = {1, 2}, Ĉ
(m)
3 =





λ + µ2 + γ 0 0
0 λ + µ1 + γ 0
0 0 λ + γ



,

Ĉ
(m)
4 =

(

λ + µ2 + γ 0
0 λ + µ1 + γ

)

, D̂
(m)
0 =

(

µ2

µ1

)

, D̂
(m)
1 =





µ1 µ2 0
0 0 µ2

0 0 µ1



, D̂
(m)
4 =

(

µ1 µ2
)

,m = {1, 2, 3, 4}
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The matricesΓ(m)
j are of the form

Γ
(m)
j =



































B
(m)
0 0 0 0 0 0 . . . 0

0 B̂
(m)
2 0 0 0 0 . . . 0

0 0 B
(m)
2 0 0 0 . . . 0

. . .
. . .

. . .
. . .

0 0 0 . . . B
(m)
3 0 . . . 0

...
...

...
...

...
. . .

...

0 0 0 . . . 0 0 B
(m)
4 0

0 0 0 . . . 0 0 0 0









































q∗2 − j − 1, 1 ≤ j ≤ q∗2 − 2, m = {1, 2}







K − q∗2

Γ
(m)
j =























B
(m)
0 0 0 0 . . . 0

0 B̂
(m)
2 0 0 . . . 0

0 0 B
(m)
3 0 . . . 0

. . .
. . .

. . .
. . .

0 0 0 . . . B
(m)
4 0

0 0 0 . . . 0 0





























K − j − 1, j = q∗2 − 1, m = {1, 2}

Γ
(m)
j =























B
(m)
0 0 0 0 . . . 0

0 B̂
(m)
3 0 0 . . . 0

0 0 B
(m)
3 0 . . . 0

. . .
. . .

. . .
. . .

0 0 0 . . . B
(m)
4 0

0 0 0 . . . 0 0





























K − j − 1,
q∗2 ≤ j ≤ K − 2, m = {1, 2}

1 ≤ j ≤ K − 2, m = {3, 4}

Γ
(m)
K−1 =











B
(m)
0 0 0 0

0 B̂
(m)
3 0 0

0 0 B
(m)
4 0

0 0 0 0











, Γ
(m)
K

=







B
(m)
0 0 0

0 B̂
(m)
4 0

0 0 0






, Γ

(4)
K+1 =

(

B
(4)
0 0
0 0

)

,

where

B
(m)
0 =

(

0 γ 0
)

, B̂
(m)
3 =





γ 0 0 0
γ 0 0 0
0 0 γ 0



 , m = {1, 2, 3}, B
(4)
0 =

( γ

2
γ

2
0

)

, B̂
(m)
2 =





γ 0 0 0
0 0 0 0
0 0 γ 0



 , m =

{1, 2}, B̂
(4)
3 =





γ 0 0 0
γ 0 0 0
0 γ

2
γ

2
0



, B̂
(m)
4 =

(

γ 0 0
γ 0 0

)

, m = {1, 2, 3, 4}.

Proof: Consider the model under optimal policym = 1. Note that ifJ(t) = 0 then the fixed job should be
immediately served, so the waiting time is 0, i.e.

w̃(m)
x (s) = 1, x = (q, d1, d2, 0) ∈ E.

For other states and positions of the tagged customer according to the equation (24) the problem reduces
to the above case by backward induction. This is always possible since thepositionJ(t+) is a decreasing
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integer.

w̃
(1)
(q,1,0,1)(s) =

1

s + λ + µ1 + γ

[

λw̃
(1)
(q,1,1,1)(s) + µ1w̃

(1)
(q,0,0,1)(s) + γ

]

(27)

for q∗2 ≤ q ≤ K,

w̃
(1)
(q,0,1,1)(s) =

1

s + λ + µ2 + γ

[

λw̃
(1)
(q,1,1,1)(s) + µ2w̃

(1)
(q,0,0,1)(s) + γ

]

for 1 ≤ q ≤ K,

w̃
(1)
(q,0,0,1)(s) =

1

s + λ + γ

[

λw̃
(1)
(q,1,0,1)(s) + γ

]

for 1 ≤ q ≤ K,

w̃
(1)
(q,1,0,j)(s) =

1

s + λ + µ1

[

λw̃
(1)
(q+1,1,0,j)(s) + µ1w̃

(1)
(q,0,0,j)(s)

]

for 1 ≤ j ≤ q, 1 ≤ q ≤ q∗2 − 2,

w̃
(1)
(q,1,0,j)(s) =

1

s + λ + µ1

[

λw̃
(1)
(q,1,1,j)(s) + µ1w̃

(1)
(q,0,0,j)(s)

]

for 1 ≤ j ≤ q, q = q∗2 − 1,

w̃
(1)
(q,1,0,j)(s) =

1

s + λ + µ1 + γ

[

λw̃
(1)
(q,1,1,j)(s) + µ1w̃

(1)
(q,0,0,j)(s) + γw̃

(1)
(q−1,1,1,j−1)(s)

]

for q∗2 ≤ j ≤ K, j ≤ q ≤ K,

w̃
(1)
(q,0,1,j)(s) =

1

s + λ + µ2 + γ

[

λw̃
(1)
(q,1,1,j)(s) + µ2w̃

(1)
(q,0,0,j)(s) + γw̃

(1)
(q−1,1,1,j−1)(s)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

w̃
(1)
(q,0,0,j)(s) =

1

s + λ + γ

[

λw̃
(1)
(q,1,0,j)(s) + γw̃

(1)
(q−1,1,0,j−1)(s)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

w̃
(1)
(q,1,1,j)(s) =

1

s + λ + µ1 + µ2

[

λw̃
(1)
(q+1,1,1,j)(s) + µ1w̃

(1)
(q,0,1,j)(s) + µ2w̃

(1)
(q,1,0,j)(s)

]

for 1 ≤ j ≤ K − 1, j ≤ q ≤ K − 1,

w̃
(1)
(K,1,1,j)(s) =

1

s + µ1 + µ2

[

µ1w̃
(1)
(K,0,1,j)(s) + µ2w̃

(1)
(K,1,0,j)(s)

]

for 1 ≤ j ≤ K.

Now, after routine block identification, we may express the system form = 1 in (27) as given in (26). For
the STP the recurrent expressions are the same with corresponding threshold levelq∗2. For the policy FFS it
is enough to setq∗2 = 1. To get the expressions for RSS policy we take the system for FSS policy and the
equation for the stateq, 0, 0, j rewrite as follows

w̃
(4)
(q,0,0,j)(s) =

1

s + λ + γ

[

λ

2
(w̃

(4)
(q,1,0,j)(s) + w̃

(4)
(q,0,1,j)(s)) +

γ

2
(w̃

(4)
(q−1,1,0,j−1)(s) + w̃

(4)
(q−1,0,1,j−1)(s))

]

for 1 ≤ j ≤ K, j ≤ q ≤ K.

¤

The tagged customer must wait in orbit if upon arrival he finds the system insome state of the subset

E
(m)
W = {(q, 1, 0); 0 ≤ q ≤ q∗2 − 1} ∪ {(q, 1, 1); 0 ≤ q ≤ K − 1}, m = {1, 2}

E
(m)
W = {(q, 1, 1); 0 ≤ q ≤ K − 1}, m = {3, 4}.
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Denote byπ(m)
W , m = {1, 2, 3, 4} the row-vectors of the dimension2K(K+1) which include the subvectors

of steady-state probabilities in setE
(m)
W :

π
(m)
W = (π

(m)
1 e1(3)et

2(4K) + π
(m)
2 e0(4)et

4(4K), π
(m)
1 e2(4)et

2(4(K − 1)) + π
(m)
2 e0(4)et

4(4(K − 1)), . . . ,

π
(m)
q∗2+1e0(4)et

4(4(K − q∗2 + 1)), . . . , π
(m)
K+1e0(3)et

3(4)), m = {1, 2},

π
(m)
W = (π

(m)
2 e0(4)et

4(4K), π
(m)
3 e0(4)et

4(4(K − 1)), . . . , π
(m)
K+1e0(3)et

3(4)), m = {3, 4}.

According to the PASTA property the conditional probability of the statex− upon arrival coinsides with
the unconditional one. Hence for the Laplace transform of the unconditional waiting time distribution with
respect to all possible initial statesx of the processX(t) and the corresponding statesx− before an arrival
we have

W̃ (m)(s) =
1

s
(1 − π

(m)
W e + π

(m)
W w̃

(m)(s)). (28)

The formula (28) includes two contributions:

1 − π
(m)
W e = 1 −

[q∗2−2
∑

q=0

π
(m)
(q,1,0) +

K−1
∑

q=0

π
(m)
(q,1,1)

]

=

K
∑

q=0

[π
(m)
(q,0,1) + π

(m)
(q,0,0)] +

K
∑

q=q∗2−1

π
(m)
(q,1,0), m = {1, 2}

1 − π
(m)
W e = 1 −

K−1
∑

q=0

π
(m)
(q,1,1) =

K
∑

q=0

[π
(m)
(q,0,1) + π

(m)
(q,1,0) + π

(m)
(q,0,0)], m = {3, 4}

is a steady-state probability that the tagged customer does not have to wait for the service; the transform

π
(m)
W w̃

(m)(s) =

q∗2−2
∑

q=0

π
(m)
(q,1,0)w̃

(m)
(q+1,1,0,q+1)(s) +

K−1
∑

q=0

π
(m)
(q,1,1)w̃

(m)
(q+1,1,1,q+1)(s), m = {1, 2}

π
(m)
W w̃

(m)(s) =
K−1
∑

q=0

π
(m)
(q,1,1)w̃

(m)
(q+1,1,1,q+1)(s), m = {3, 4}

of the contribution of the waiting time with dencity functionw(m)
c (t) givenW (m) > 0. Note that

∫ ∞

0
w(m)

c (u)du = π
(m)
W e.

The limit property of the Laplace-Stiltjes transform allows us to get the value ofthe functionw
(m)
c (t) at

point t = 0:

lim
s→∞

sw̃
(m)
(q,d1,d2,j)(s) =























γ, if q∗2 ≤ q ≤ K, d1 = 1, d2 = 0, j = 1

γ, if 1 ≤ q ≤ K, d1 = 0, d2 = 1, j = 1

γ, if 1 ≤ q ≤ K, d1 = 0, d2 = 0, j = 1

0, otherwise

, m = {1, 2}

lim
s→∞

sw̃
(m)
(q,d1,d2,j)(s) =

{

γ, if 1 ≤ q ≤ K, 0 ≤ d1 + d2 ≤ 1,

0, otherwise
, m = {3, 4}.

Therefore we have
lim
t→0

w(m)
c (t) = lim

s→∞
sπ

(m)
W w̃

(m)(s) = 0.
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The inversion of the Laplace transform1
s
π

(m)
W w̃

(m)(s) of the functionW (m)
c (t) =

∫ t

0 w
(m)
c (u)du is used to

get the distribution function of the waiting time

W (m)(t) = P[W (m) ≤ t] = 1 − π
(m)
W e + W (m)

c (t), t ≥ 0.

Now we obtain then-th moments ofW (m)
x which we denote bȳW (m)

x (n) = E[(W
(m)
x )n], m = {1, 2, 3, 4}.

According to the indroduced partitioning of the conditional Laplace transforms we denote bȳW(m)(n) the
vector of the correspondingn-th moments:

W̄
(m)
i,j (n) = (W̄

(m)
(q,d1,d2,j)(n)| di = {0, 1}, q + d1 + d2 = i)t, 1 ≤ i ≤ K + 2, 1 ≤ j ≤ min{i, K},

W̄
(m)
j (n) = (W̄

(m)
j,j (n), W̄

(m)
j+1,j(n), . . . , W̄

(m)
K+2,j(n))t, 1 ≤ j ≤ K,

W̄
(m)(n) = (W̄

(m)
1 (n),W̄

(m)
2 (n), . . . ,W̄

(m)
K (n))t.

By differentiation the expressions (26) over the parameters we get

Λ
(m)
W,1(s)

dn

dsn
w

(m)
1 (s) − n

dn−1

dsn−1
w

(m)
1 (s) = 0,

Λ
(m)
W,j(s)

dn

dsn
w

(m)
j (s) − n

dn−1

dsn−1
w

(m)
j (s) = −Γ

(m)
j

dn

dsn
w

(m)
j−1(s), 2 ≤ j ≤ K.

SinceW̄(m)
j (n) = (−1)n dn

dsn w
(m)
j (s)

∣

∣

∣

∣

s=0

we get

Φ
(m)
1 W̄

(m)
1 (n) = −nW̄

(m)
1 (n − 1), n ≥ 1,

Φ
(m)
j W̄

(m)
j (n) = −nW̄

(m)
j (n − 1) − Γ

(m)
j W̄

(m)
j−1(n), 2 ≤ j ≤ K, n ≥ 1,

W̄
(m)
j (0) = e(4(K − j + 1)), 1 ≤ j ≤ K.

Therefore for the unconditional moments of the waiting time we have

E[(W (m))n] = π
(m)
W W̄

(m)(n), n ≥ 0, m = {1, 2, 3, 4}.

6 Stationary distribution of the sojourn time

To carry out the calculation of a sojourn time distribution we apply the same Markov process (22) with only
exception that the absorption takes place at the time when the tagged customer completes the service that
will correspond to the case whenJ(t) = −1. At the point of time of a new arrivalt+ to some of the state

from the setE(m)
W the customer has to wait for the service and

J(t+) = Q(t+).

The arrival to the state from the setE\E
(m)
W implies

J(t+) = 0

that means that the customer must be served immediately on the first or second server according to the
control policy. Let the process is absorbed when the componentJ(t) become equal to−1. It occurs when
the tagged customer leaves the system.

Define
T (m)− r.v. of the sojourn time in the system,
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T
(m)
x − r.v. of the residual sojourn time of the tagged customer given that the systemstate isx,

t
(m)
x (τ) the conditional density function of the residual sojourn time,

t̃
(m)
x (s) = E[e−sT

(m)
x ], Re[s] ≥ 0 corresponding Laplace-Stiltjes transform.

As above we partition the conditional Laplace-Stiltjes transforms of the sojourn time densities in the
following way:

t̃
(m)
j,j (s) = t̃

(m)
(j,0,0,j)(s), 1 ≤ j ≤ K, (29)

t̃
(m)
j,0 (s) = (t̃

(m)
j−1,0,1,0(s), t̃

(m)
j−1,1,0,0(s)), 1 ≤ j ≤ K + 1,

t̃
(m)
j+1,j(s) = (t̃

(m)
(j,0,1,j)(s), t̃

(m)
(j,1,0,j)(s), t̃

(m)
(j+1,0,0,j)(s)), 1 ≤ j ≤ K − 1,

t̃
(m)
i,j (s) = (t̃

(m)
(i−2,1,1,j)(s), t̃

(m)
(i−1,0,1,j)(s), t̃

(m)
(i−1,1,0,j)(s), t̃

(m)
(i,0,0,j)(s)), 1 ≤ j ≤ i − 2 ≤ K − 2,

t̃
(m)
K+1,j(s) = (t̃

(m)
(K−1,1,1,j)(s), t̃

(m)
(K,0,1,j)(s), t̃

(m)
(K,1,0,j)(s)), 1 ≤ j ≤ K − 1,

t̃
(m)
K+1,K(s) = (t̃

(m)
(K,0,1,K)(s), t̃

(m)
(K,1,0,K)(s)),

t̃
(m)
K+2,j(s) = t̃

(m)
(K,1,1,j)(s), 1 ≤ j ≤ K,

t̃
(m)
0 (s) = (t̃

(m)
1,0 (s), t̃

(m)
2,0 (s), . . . , t̃

(m)
K+2,0(s)),

t̃
(m)
j (s) = (t̃

(m)
j,j (s), t̃

(m)
j+1,j(s), . . . , t̃

(m)
K+2,j(s)), 1 ≤ j ≤ K,

t̃
(m)(s) = (t̃

(m)
0 (s), t̃

(m)
1 (s), t̃

(m)
2 (s), . . . , t̃

(m)
K (s)).

Theorem 7 The vectors of the Laplace-Stiltjes transformst̃
(m)
j (s), 0 ≤ j ≤ K of the conditional sojourn

time dencities under the control policym = {1, 2, 3, 4} are related by the following recurrent block three-
diagonal system

Λ
(m)
T,0 (s)t̃

(m)
0 (s) = −Γ

(m)
0 e, (30)

Λ
(m)
T,1 (s)t̃

(m)
1 (s) = −Γ̂

(m)
1 t̃

(m)
0 (s),

Λ
(m)
T,j (s)t̃

(m)
j (s) = −Γ

(m)
j t̃

(m)
j−1(s), 2 ≤ j ≤ K.

whereΛ
(m)
T,0 (s) = Φ

(m)
0 − sI2(K+1) andΓ

(m)
0 are the block diagonal matrices of the dimension2(K + 1).

These matrices haveK + 1 block-rows and block-columns. The matricesΛ
(m)
T,j (s) = Λ

(m)
W,j(s) for j ≥ 1.

Γ̂
(m)
1 are diagonal block matrices of the dimension2(K + 1)× 4K. These matrices haveK + 1 block-rows

andK + 2 block-columns. The matricesΦ(m)
0 have the blocks

(

−µ2 0
0 −µ1

)

and the matricesΓ(m)
0 have
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the blocksD̂(m)
0 . The matriceŝΓ(m)

1 are of the form:

Γ̂
(m)
1 =



































G
(m)
0 0 0 0 0 0 . . . 0

0 G
(m)
1 0 0 0 0 . . . 0

0 0 G
(m)
2 0 0 0 . . . 0

. . .
. . .

. . .
. . .

0 0 0 . . . G
(m)
3 0 . . . 0

...
...

...
...

...
. . .

...

0 0 0 . . . 0 0 G
(m)
4 0

0 0 0 . . . 0 0 0 0









































q∗2 − 2, m = {1, 2}







N − q∗2

Γ̂
(m)
1 =























G
(m)
0 0 0 0 . . . 0

0 G
(m)
1 0 0 . . . 0

0 0 G
(m)
3 0 . . . 0

...
...

...
. . .

0 0 0 . . . G
(m)
4 0

0 0 0 . . . 0 0























, m = {3, 4}

where G
(m)
0 =

(

0 γ
)

, m = {1, 2, 3}, G
(4)
0 =

( γ

2
γ

2

)

, G
(m)
1 =





0 γ

0 0
0 γ



, m = {1, 2}, G
(3)
1 =





0 γ

γ 0
0 γ



, G
(4)
1 =





0 γ

γ 0
γ

2
γ

2



, G
(m)
2 =









0 0
0 γ

0 0
0 γ









, m = {1, 2}, G
(m)
3 =









0 0
0 γ

γ 0
0 γ









, m = {1, 2, 3}, G
(4)
3 =









0 0
0 γ

γ 0
γ

2
γ

2









, G
(m)
4 =





0 0
0 γ

γ 0



,

m = {1, 2, 3, 4}.

Proof: Consider again the system under OTPm = {1}. If J(t) = −1 then the served tagged customer
leaves the system and the sojourn time is 0, i.e.

t̃(1)x (s) = 1, x = (q, d1, d2,−1) ∈ E.

For the states where the tagged customer is in service area the service time does not depend on the future
arrivals or service time on the other server if it is busy. Thus we have

t̃
(1)
(q,1,0,0)(s) =

µ1

s + µ1
, 0 ≤ q ≤ K

t̃
(1)
(q,0,1,0)(s) =

µ2

s + µ2
, 0 ≤ q ≤ K.

For the states where the tagged customer stayes just before the serversJ(t) = 1 then we have the following
recursive expressions:

t̃
(1)
(q,1,0,1)(s) =

1

s + λ + µ1 + γ

[

λt̃
(1)
(q,1,1,1)(s) + µ1t̃

(1)
(q,0,0,1)(s) + γt̃

(1)
(q−1,0,1,0)(s)

]

for q∗2 ≤ q ≤ K,

t̃
(1)
(q,0,1,1)(s) =

1

s + λ + µ2 + γ

[

λt̃
(1)
(q,1,1,1)(s) + µ2t̃

(1)
(q,0,0,1)(s) + γt̃

(1)
(q−1,1,0,0)(s)

]

for 1 ≤ q ≤ K,

t̃
(1)
(q,0,0,1)(s) =

1

s + λ + γ

[

λt̃
(1)
(q,1,0,1)(s) + γt̃

(1)
(q−1,1,0,0)(s)

]

for 1 ≤ q ≤ K, (31)

In all other states the transformst̃
(1)
x (s) satisfy the equations (31). By expressiong these equations in matrix

form we obtain the expressions (30) for optimal policy. Analogously we obtain the expressions for the
systems under other control policies.
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¤

The tagged customer joins the system if upon arrival he finds the system in one of the state in the set

E
(m)
T = {(q, d1, d2); d1 + d2 = {0, 1}, 0 ≤ q ≤ K} ∪ {(q, d1, d2); d1 + d2 = 2, 0 ≤ q ≤ K − 1},

m = {1, 2, 3, 4}.

Denote byπ(m)
T the row-vectors of the dimension2(N + 1)2 which include the steady-state probabilities of

the states in the setE(m)
T :

π
(m)
T =

([ K
∑

i=q∗2

π
(m)
i e2(4) + π

(m)
K+1e2(3)

]

et
0(2(K + 1)) m = {1, 2}

+

[

π
(m)
0 + π

(m)
1 (e0(3) + e2(3)) +

K
∑

i=2

π
(m)
i (e1(4) + e3(4)) + π

(m)
K+1e1(3)

]

et
1(2(K + 1)), π

(m)
W

)

,

π
(3)
T =

([

π
(3)
1 e1(3) +

K
∑

i=2

π
(3)
i e2(4) + π

(3)
K+1e2(3)

]

et
0(2(K + 1))

+

[

π
(3)
0 + π

(3)
1 (e0(3) + e2(3)) +

K
∑

i=2

π
(3)
i (e1(4) + e3(4)) + π

(3)
K+1e1(3)

]

et
1(2(K + 1)), π

(3)
W

)

,

π
(4)
T =

([

π
(4)
1 e1(3) +

K
∑

i=2

π
(4)
i e2(4) + π

(4)
K+1e2(3)

]

et
0(2(K + 1))

+

[

π
(4)
0 + π

(4)
1 e0(3) +

K
∑

i=2

π
(4)
i e1(4) + π

(4)
K+1e1(3)

]

et
1(2(N + 1))

+
1

2

[

π
(4)
1 e2(3) +

K
∑

i=2

π
(4)
i e3(4)

]

(et
0(2(K + 1)) + et

1(2(K + 1))), π
(4)
W

)

.

Then for the unconditional Laplace transform of the sojourn time distribution with respect to all possible
initial statesx of the ProcessX(m)(t) and corresponding states before an arrivalx− we get

T̃ (m)(s) =
1

s
π

(m)
T t̃

(m)(s), (32)

and componentwise

π
(m)
T t̃

(m)(s) =
K

∑

q=0

[π
(m)
(q,0,1) + π

(m)
(q,0,0)]

µ1

s + µ1
+

K
∑

q=q∗2−1

π
(m)
(q,1,0)

µ2

s + µ2

+

q∗2−2
∑

q=0

π
(m)
(q,1,0)t̃

(m)
(q+1,1,0,q+1)(s) +

K−1
∑

q=0

π
(m)
(q,1,1)t̃

(m)
(q+1,1,1,q+1)(s), m = {1, 2}

π
(3)
T t̃

(3)(s) =
K

∑

q=0

[π
(3)
(q,0,1) + π

(3)
(q,0,0)]

µ1

s + µ1
+

K
∑

q=0

π
(3)
(q,1,0)

µ2

s + µ2
+

K−1
∑

q=0

π
(3)
(q,1,1)t̃

(3)
(q+1,1,1,q+1)(s),

π
(4)
T t̃

(4)(s) =
K

∑

q=0

π
(4)
(q,0,1)

µ1

s + µ1
+

K
∑

q=0

π
(4)
(q,1,0)

µ2

s + µ2
+

1

2

K
∑

q=0

π
(4)
(q,0,0)

(

µ1

s + µ1
+

µ2

s + µ2

)

+
K−1
∑

q=0

π
(4)
(q,1,1)t̃

(4)
(q+1,1,1,q+1)(s)
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Let t(m)(τ), m = {1, 2, 3, 4} denotes the unconditional density associated with the Laplace-Stiltjes
transformt̃(m)(s). Its value at pointτ = 0 satisfies

lim
s→∞

st̃
(m)
(q,d1,d2,j)(s) =











µ1, if 0 ≤ q ≤ K, d1 = 0, d2 = 1, j = 0

µ2, if 0 ≤ q ≤ K, d1 = 1, d2 = 0, j = 0

0, otherwise

.

Therefore,

lim
τ→0

t(m)(τ) = lim
s→∞

sπ
(m)
T t̃

(m)(s) = µ2

[ K
∑

i=q∗2

π
(m)
i e2(4) + π

(m)
K+1e2(3)

]

+ µ1

[

π
(m)
0 + π

(m)
1 (e0(3) + e2(3)) +

K
∑

i=2

π
(m)
i (e1(4) + e3(4)) + π

(m)
K+1e1(3)

]

, m = {1, 2}

lim
τ→0

t(3)(τ) = lim
s→∞

sπ
(3)
T t̃

(3)(s) = µ2

[

π
(3)
1 e1(3) +

K
∑

i=2

π
(3)
i e2(4) + π

(3)
K+1e2(3)

]

+ µ1

[

π
(3)
0 + π

(3)
1 (e0(3) + e2(3)) +

K
∑

i=2

π
(3)
i (e1(4) + e3(4)) + π

(3)
K+1e1(3)

]

,

lim
τ→0

t(4)(τ) = lim
s→∞

sπ
(4)
T t̃

(4)(s) = µ2

[

π
(4)
1 e1(3) +

K
∑

i=2

π
(4)
i e2(4) + π

(4)
K+1e2(3)

]

+ µ1

[

π
(4)
0 + π

(4)
1 e0(3) +

K
∑

i=2

π
(4)
i e1(4) + π

(4)
K+1e1(3)

]

+
M

2

[

π
(4)
1 e2(3) +

K
∑

i=2

π
(4)
i e3(4)

]

.

Now it suffices to invert the Laplace transform̃T (m)(s) to get the distribution function of the sojourn time

T (m)(τ) = P[T (m) ≤ τ ] =

∫ τ

0
t(m)(u)du, τ ≥ 0.

We now find then-th moment ofT (m)
x , m = {1, 2, 3, 4} which is denoted bȳT (m)

x (n) = E[(T
(m)
x )n] for

n ≥ 0. Let T̄
(m)(n) denote the vector containing the moments partitioned as a corresponding Laplace

transforms:

T̄
(m)
j,0 (n) = (T̄

(m)
(j−1,0,1,0)(n), T̄

(m)
(j−1,1,0,0)(n)), 1 ≤ j ≤ N + 1,

T̄
(m)
i,j (n) = (T̄

(m)
(q,d1,d2,j)(n)| di = {0, 1}, q + d1 + d2 = i)t, 1 ≤ i ≤ K + 2, 1 ≤ j ≤ min{i, K},

T̄
(m)
0 (n) = (T̄

(m)
1,0 (n), T̄

(m)
2,0 (n), . . . , T̄

(m)
K+2,0(n)),

T̄
(m)
j (n) = (T̄

(m)
j,j (n), T̄

(m)
j+1,j(n), . . . , T̄

(m)
K+2,j(n))t, 1 ≤ j ≤ K,

T̄
(m)(n) = (T̄

(m)
0 (n), T̄

(m)
1 (n), . . . , T̄

(m)
K (n))t.

By differentiation the Laplace transforms (30) over the parameters sinceT̄(m)(n) = (−1)n dn

dsn t
(m)(s)

∣

∣

∣

∣

s=0
we get

T̄
(m)
0 (n) =

(

n!

µ2
,
n!

µ1
, . . . ,

n!

µ2
,
n!

µ1

)t

, n ≥ 1,

Φ
(m)
j T̄

(m)
j (n) = −nT̄

(m)
j (n − 1) − T̄

(m)
j−1(n), 1 ≤ j ≤ K, n ≥ 1

T̄
(m)
j (0) = e(4(K − j + 1)), 1 ≤ j ≤ K.
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For the unconditional moments of the sojourn time we have

E[(T (m))n] = π
(m)
T T̄

(m)(n), n ≥ 0.

7 The number of customers served by direct access

In this section we calculate the distribution for the discrete random valueΘ(m) of the number of customers
that have been served by direct access to some idle server until the targed customer on the orbit reaches the
service area. Denote by
Θ(m)− r.v. of the number of primary customers served by direct access to the idle server,
Θ

(m)
x − r.v. of the number of primary customers that will be served until the tagged customer reaches the

service area, given that the system is in statex,
θ
(m)
x (k) = P[Θ

(m)
x = k]− the conditional dencity function of the r.v.Θ(m)

x ,

θ̃
(m)
x (z) = E[zΘ

(m)
x ] =

∑∞
k=0 θ

(m)
x (k)zk, |z| ≤ 1 correspondingz−transform.

By the low of total probability for the Markov processX(t) the conditional dencity functionθx(k) has
the form

θ(m)
x (k) =

axy′

ax
θ
(m)
y′ (k − 1) +

∑

y 6=x,y′

axy

ax
θ(m)
y (k) (33)

where the first term represents the arrival of a primary customer that can be immediately served and the
second one corresponds to all other possible transitions that do not change the event under consideration.

Applying z− transforms to the relation (33) we get

θ̃(m)
x (z) =

zaxy′

ax
θ̃
(m)
y′ (z) +

∑

y 6=x,y′

axy

ax
θ̃(m)
y (z).

We partition the abovez− transforms according to the partition of the system states: define the column-
vectorsθ̃(m)

i,j (z) in which i denotes the number of customers in the system andj the position of the tagged
customer:

θ̃
(m)
j,j (z) = θ̃

(m)
(j,0,0,j)(z), 1 ≤ j ≤ K (34)

θ̃
(m)
j+1,j(z) = (θ̃

(m)
(j,0,1,j)(z), θ̃

(m)
(j,1,0,j)(z), θ̃

(m)
(j+1,0,0,j)(z))t, 1 ≤ j ≤ K − 1,

θ̃
(m)
i,j (z) = (θ̃

(m)
(i−2,1,1,j)(z), θ̃

(m)
(i−1,0,1,j)(z), θ̃

(m)
(i−1,1,0,j)(z), θ̃

(m)
(i,0,0,j)(z))t, 1 ≤ j ≤ i − 2 ≤ K − 2,

θ̃
(m)
K+1,j(z) = (w̃

(m)
(K−1,1,1,j)(z), θ̃

(m)
(K,0,1,j)(z), θ̃

(m)
(K,1,0,j)(z))t, 1 ≤ j ≤ K − 1,

θ̃
(m)
K+1,K(z) = (θ̃

(m)
(K,0,1,K)(z), θ̃

(m)
(K,1,0,K)(z))t,

θ̃
(m)
K+2,j(z) = θ̃

(m)
(K,1,1,j)(z), 1 ≤ j ≤ K,

θ̃
(m)
j (z) = (θ̃

(m)
j,j (z), θ̃

(m)
j+1,j(z), . . . , θ̃

(m)
K+2,j(z))t, 1 ≤ j ≤ K,

θ̃
(m)

(z) = (θ̃
(m)
1 (z), θ̃

(m)
2 (z), . . . , θ̃

(m)
K (z))t.

Theorem 8 The vectors ofz-transformsθ̃
(m)
j (z), 1 ≤ j ≤ K of the conditional dencities under policy

m = {1, 2, 3, 4} are related by the following recurrent block three-diagonal system

Λ
(m)
Θ,1 (z)θ̃

(m)
1 (z) = −Γ

(m)
1 e, (35)

Λ
(m)
Θ,j (z)θ̃

(m)
j (z) = −Γ

(m)
j θ̃

(m)
j−1(z), 2 ≤ j ≤ K.
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The matricesΛ(m)
Θ,j (z) = (Φ

(m)
j + (1 − z)Q

(m)
j ) andΓ

(m)
j , j ≥ 1 are of the dimension4(K − j + 1). All

matrices haveK + 3 − j block-columns andK + 3 − j block-rows. The matricesQ(m)
j are of the form:

Q
(m)
j = −







































0 H
(m)
1 0 0 0 0 . . . 0

0 0 H
(m)
2 0 0 0 . . . 0

0 0 0 H
(m)
3 0 0 . . . 0

. . .
. . .

. . .
. . .

0 . . . 0 0 H
(m)
4 0 . . . 0

...
...

...
...

...
...

. . .
...

0 . . . 0 0 0 0 H
(m)
5 0

0 . . . 0 0 0 0 0 H
(m)
6

0 . . . 0 0 0 0 0 0













































q∗2 − j − 2, 1 ≤ j ≤ q∗2 − 2, m = {1, 2}







K − q∗2 − 1

Q
(m)
j = −



























0 H
(m)
1 0 0 . . . 0

0 0 Ĥ
(m)
2 0 . . . 0

0 0 0 H
(m)
4 . . . 0

. . .
. . .

. . .
. . .

0 . . . 0 0 H
(m)
5 0

0 . . . 0 0 0 H
(m)
6

0 . . . 0 0 0 0

































K − j − 1,
q∗2 − 1 ≤ j ≤ K − 2, m = {1, 2}

1 ≤ j ≤ K − 2, m = {3, 4}

Q
(m)
K−1 = −











0 H
(m)
1 0 0

0 0 Ĥ
(m)
5 0

0 0 0 H
(m)
6

0 0 0 0











, Q
(m)
K

= −







0 Ĥ
(m)
1 0

0 0 Ĥ
(m)
6

0 0 0






,

where

H
(m)
1 = A

(m)
1 , H

(m)
2 =





λ 0 0 0
0 0 0 0
0 0 λ 0



, H
(m)
3 =









0 0 0 0
λ 0 0 0
0 0 0 0
0 0 λ 0









, H
(m)
4 =









0 0 0 0
λ 0 0 0
λ 0 0 0
0 0 λ 0









, H
(m)
5 =









0 0 0
λ 0 0
λ 0 0
0 0 λ









,

H
(m)
6 =





0
λ

λ



, m = {1, 2}, H
(3)
1 = H

(1)
1 ,H(3)

2 = A
(3)
2 ,H(3)

i = H
(1)
i , i = 4, 5, 6, H

(4)
1 = A

(4)
1 ,H(4)

2 = A
(4)
2 , H

(4)
4 =









0 0 0 0
λ 0 0 0
λ 0 0 0

0 λ
2

λ
2

0









, H
(4)
5 =









0 0 0
λ 0 0
λ 0 0

0 λ
2

λ
2









, Ĥ
(m)
i = Â

(m)
i , i = 1, 2, 5, 6,m = {1, 2, 3}.

Proof:

θ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1

[

λ θ̃
(1)
(q+1,1,0,j)(z) + µ1θ̃

(1)
(q,0,0,j)(z)

]

for 1 ≤ j ≤ q, 1 ≤ q ≤ q∗2 − 2, (36)

θ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1

[

zλ θ̃
(1)
(q,1,1,j)(z) + µ1θ̃

(1)
(q,0,0,j)(z)

]

for 1 ≤ j ≤ q, q = q∗2 − 1

θ̃
(1)
(q,1,0,1)(z) =

1

λ + µ1 + γ

[

zλ θ̃
(1)
(q,1,1,1)(z) + µ1θ̃

(1)
(q,0,0,1)(z) + γ

]

for q∗2 ≤ q ≤ N,

θ̃
(1)
(q,0,1,1)(z) =

1

λ + µ2 + γ

[

zλ θ̃
(1)
(q,1,1,1)(z) + µ2θ̃

(1)
(q,0,0,1)(z) + γ

]

for 1 ≤ q ≤ K,
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θ̃
(1)
(q,0,0,1)(z) =

1

λ + γ

[

zλ θ̃
(1)
(q,1,0,1)(z) + γ

]

for 1 ≤ q ≤ K,

θ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1 + γ

[

zλ θ̃
(1)
(q,1,1,j)(z) + µ1θ̃

(1)
(q,0,0,j)(z) + γθ̃

(1)
(q−1,1,1,j−1)(z)

]

for q∗2 ≤ j ≤ K, j ≤ q ≤ K,

θ̃
(1)
(q,0,1,j)(z) =

1

λ + µ2 + γ

[

zλ θ̃
(1)
(q,1,1,j)(z) + µ2θ̃

(1)
(q,0,0,j)(z) + γθ̃

(1)
(q−1,1,1,j−1)(z)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

θ̃
(1)
(q,0,0,j)(z) =

1

λ + γ

[

zλ θ̃
(1)
(q,1,0,j)(z) + γθ̃

(1)
(q−1,1,0,j−1)(z)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

θ̃
(1)
(q,1,1,j)(z) =

1

λ + µ1 + µ2

[

λ θ̃
(1)
(q+1,1,1,j)(z) + µ1θ̃

(1)
(q,0,1,j)(z) + µ2θ̃

(1)
(q,1,0,j)(z)

]

for 1 ≤ j ≤ K − 1, j ≤ q ≤ K − 1,

θ̃
(1)
(K,1,1,j)(z) =

1

µ1 + µ2

[

µ1θ̃
(1)
(K,0,1,j)(z) + µ2θ̃

(1)
(K,1,0,j)(z)

]

for 1 ≤ j ≤ K.

¤

For the unconditionalz-transform of the number of directly served customers we get

θ̃(m)(z) = 1 − π
(m)
W e + π

(m)
W θ̃

(m)
(z), (37)

where1 − π
(m)
W e as before means the probability that the customer upon an arrival goes immediately to

the service area. The inversion of the contributionπ
(m)
W θ̃

(m)
(z) leads to the density functionθ(m)

c (k), that

together withΘ(m)
c (n) =

∑n
k=0 θ

(m)
c (k) implies the relation for the distribution function

Θ(m)(n) = 1 − π
(m)
W e + Θ(m)

c (n), n ≥ 0.

The probability that no primary customers will be directly served while anotherare waiting on the orbit can
be expressed as follows

Θ(m)(0) = 1 − π
(m)
W e + π

(m)
W θ̃

(m)
(0).

Then-th factorial moment of the random valueΘ
(m)
x denote bȳΘ(m)

x (n) = E[Θ
(m)
x (Θ

(m)
x −1) . . . (Θ

(m)
x −

n + 1)], n ≥ 1. We partition the conditional factorial moments in the same way as before:

Θ̄
(m)
i,j (n) = (Θ̄

(m)
(q,d1,d2,j)(n)| q + d1 + d2 = i)t, 1 ≤ i ≤ K + 2, 1 ≤ j ≤ min{i, K},

Θ̄
(m)
j (n) = (Θ̄

(m)
j,j (n), Θ̄

(m)
j+1,j(n), . . . , Θ̄

(m)
K+2,j(n))t, 1 ≤ j ≤ K,

Θ̄
(m)

(n) = (Θ̄
(m)
1 (n), Θ̄

(m)
2 (n), . . . , Θ̄

(m)
K (n))t.

By differentiating the relation (35) we get

Λ
(m)
Θ,1 (z)

dn

dzn
θ̃

(m)
1 (z) − nQ

(m)
1

dn−1

dzn−1
θ̃

(m)
1 (z) = 0,

Λ
(m)
Θ,j (z)

dn

dzn
θ̃

(m)
j (z) − nQ

(m)
j

dn−1

dzn−1
θ̃

(m)
j (z) = −Γ

(m)
j

dn

dzn
θ̃

(m)
j−1(z), 2 ≤ j ≤ K.
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SinceΘ̄(m)
j (n) = dn

dzn θ̃
(m)
j (z)

∣

∣

∣

∣

z=1

we get

Φ
(m)
1 Θ̄

(m)
1 (n) = nQ

(m)
1 Θ̄

(m)
1 (n − 1), n ≥ 1,

Φ
(m)
j Θ̄

(m)
j (n) = nQ

(m)
j Θ̄

(m)
j (n − 1) − Γ

(m)
j Θ̄

(m)
j−1(n), 2 ≤ j ≤ K, n ≥ 1,

Θ̄
(m)
j (0) = e(4(K − j + 1)), 1 ≤ j ≤ K.

The moments for the unconditional random values have the form

E[Θ(m)(Θ(m) − 1) . . . (Θ(m) − n + 1)] = π
(m)
W Θ̄

(m)
(n), n ≥ 0.

8 The number of retrials made by a customer

Denote by
Ψ(m)− r.v. of the number of retrials made by a tagged customer until the service starts,
Ψ

(m)
x − r.v. of the number of retrials made by a tagged customer given that the systemis in statex,

ψ
(m)
x (k) = P[Ψ

(m)
x = k]− the conditional dencity function of the r.v.Ψ(m)

x ,

ψ̃
(m)
x (z) = E[zΨ

(m)
x ] =

∑∞
k=0 ψ

(m)
x (k)zk, |z| ≤ 1 correspondingz−transform.

By the low of total probability for the Markov processX(t) the conditional dencity functionψx(k) has
the form

ψ(m)
x (k) =

axy′

ax
ξ
(m)
y′ (k − 1) +

∑

y 6=x,y′

axy

ax
ψ(m)

y (k) (38)

where the first term represents the retrila of a tagged customer.
Applying z− transforms to the relation (38) we get

ψ̃(m)
x (z) =

zaxy′

ax
ψ̃

(m)
y′ (z) +

∑

y 6=x,y′

axy

ax
ψ̃(m)

y (z).

ψ̃
(m)
j,j (z) = ψ̃

(m)
(j,0,0,j)(z), 1 ≤ j ≤ K (39)

ψ̃
(m)
j+1,j(z) = (ψ̃

(m)
(j,0,1,j)(z), ψ̃

(m)
(j,1,0,j)(z), ψ̃

(m)
(j+1,0,0,j)(z))t, 1 ≤ j ≤ K − 1,

ψ̃
(m)
i,j (z) = (ψ̃

(m)
(i−2,1,1,j)(z), ψ̃

(m)
(i−1,0,1,j)(z), ψ̃

(m)
(i−1,1,0,j)(z), ψ̃

(m)
(i,0,0,j)(z))t, 1 ≤ j ≤ i − 2 ≤ K − 2,

ψ̃
(m)
K+1,j(z) = (ψ̃

(m)
(K−1,1,1,j)(z), ψ̃

(m)
(K,0,1,j)(z), ψ̃

(m)
(K,1,0,j)(z))t, 1 ≤ j ≤ K − 1,

ψ̃
(m)
K+1,K(z) = (ψ̃

(m)
(K,0,1,K)(z), ψ̃

(m)
(K,1,0,K)(z))t,

ψ̃
(m)
K+2,j(z) = ψ̃

(m)
(K,1,1,j)(z), 1 ≤ j ≤ K,

ψ̃
(m)
j (z) = (ψ̃

(m)
j,j (z), ψ̃

(m)
j+1,j(z), . . . , ψ̃

(m)
K+2,j(z))t, 1 ≤ j ≤ K,

ψ̃
(m)

(z) = (ψ̃
(m)
1 (z), ψ̃

(m)
2 (z), . . . , ψ̃

(m)
K (z))t.

Theorem 9 The vectors ofz-transformsψ̃
(m)
j (z), 1 ≤ j ≤ K of the conditional dencities under the control

policym = {1, 2, 3, 4} are related by the following recurrent block three-diagonal system

Λ
(m)
Ψ,1 (z)ψ̃

(m)
1 (z) = −Γ

(m)
1 (z)e, (40)

Λ
(m)
Ψ,j ψ̃

(m)
j (z) = −Γ

(m)
j ψ̃

(m)
j−1(z), 2 ≤ j ≤ K.
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The matricesΛ(m)
Ψ,1 (z) = (Φ

(m)
1 + (1 − z)V (m)), Λ

(m)
Ψ,j = Φ

(m)
j , j ≥ 2 andΓ

(m)
1 (z) = zΓ

(m)
1 ,Γ(m)

j , j ≥ 2

are of the dimension4(N − j + 1). All matrices haveN + 3− j block-columns andN + 3− j block-rows.
The matrixV (m) is of the form

V (m) = −γ































0 0 0 0 0 0 . . . 0
0 (e0 + e2)(e0 + e2)t 0 0 0 0 . . . 0
0 0 (e0 + e2)(e0 + e2)t 0 0 0 . . . 0

. . .
. . .

. . .
. . .

0 . . . 0 0 e0et
0 0 . . . 0

...
...

...
...

...
...

. . .
...

0 . . . 0 0 0 0 e0et
0 0

0 . . . 0 0 0 0 0 1





































q∗2 − 2, m = {1, 2}







N − q∗2

V (m) = −γ



















0 0 0 0 . . . 0
0 e0et

0 0 0 . . . 0
0 0 e0et

0 0 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 e0et

0 0
0 . . . 0 0 0 1



















, m = {3, 4}

Proof:

ψ̃
(1)
(q,1,0,1)(z) =

1

λ + µ1 + γ

[

λ ψ̃
(1)
(q+1,1,0,1)(z) + µ1ψ̃

(1)
(q,0,0,1)(z) + zγψ̃

(1)
(q,1,0,1)(z)

]

for 1 ≤ q ≤ q∗2 − 2, (41)

ψ̃
(1)
(q,1,0,1)(z) =

1

λ + µ1 + γ

[

λ ψ̃
(1)
(q,1,1,1)(z) + µ1ψ̃

(1)
(q,0,0,1)(z) + zγψ̃

(1)
(q,1,0,1)(z)

]

for q = q∗2 − 1

ψ̃
(1)
(q,1,0,1)(z) =

1

λ + µ1 + γ

[

λ ψ̃
(1)
(q,1,1,1)(z) + µ1ψ̃

(1)
(q,0,0,1)(z) + zγ

]

for q∗2 ≤ q ≤ K,

ψ̃
(1)
(q,0,1,1)(z) =

1

λ + µ2 + γ

[

λ ψ̃
(1)
(q,1,1,1)(z) + µ2ψ̃

(1)
(q,0,0,1)(z) + zγ

]

for 1 ≤ q ≤ K,

ψ̃
(1)
(q,0,0,1)(z) =

1

λ + γ

[

λ ψ̃
(1)
(q,1,0,1)(z) + zγ

]

for 1 ≤ q ≤ K,

ψ̃
(1)
(q,1,1,1)(z) =

1

λ + µ1 + µ2 + γ

[

λ ψ̃
(1)
(q+1,1,1,1)(z) + µ1ψ̃

(1)
(q,0,1,1)(z) + µ2ψ̃

(1)
(q,1,0,1)(z) + zγψ

(1)
(q,1,1,1)(z)

]

for 1 ≤ q ≤ K − 1,

ψ̃
(1)
(K,1,1,1)(z) =

1

µ1 + µ2 + γ

[

µ1ψ̃
(1)
(K,0,1,1)(z) + µ2ψ̃

(1)
(K,1,0,1)(z) + zγψ

(1)
(K,1,1,1)(z)

]

ψ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1

[

λ ψ̃
(1)
(q+1,1,0,j)(z) + µ1ψ̃

(1)
(q,0,0,j)(z)

]

for 2 ≤ j ≤ q, j ≤ q ≤ q∗2 − 2,

ψ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1

[

λ ψ̃
(1)
(q,1,1,j)(z) + µ1ψ̃

(1)
(q,0,0,j)(z)

]

for 2 ≤ j ≤ q, q = q∗2 − 1

ψ̃
(1)
(q,1,0,j)(z) =

1

λ + µ1 + γ

[

λ ψ̃
(1)
(q,1,1,j)(z) + µ1ψ̃

(1)
(q,0,0,j)(z) + γψ̃

(1)
(q−1,1,1,j−1)(z)

]

for q∗2 ≤ j ≤ K, j ≤ q ≤ K,

25



ψ̃
(1)
(q,0,1,j)(z) =

1

λ + µ2 + γ

[

λ ψ̃
(1)
(q,1,1,j)(z) + µ2ψ̃

(1)
(q,0,0,j)(z) + γψ̃

(1)
(q−1,1,1,j−1)(z)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

ψ̃
(1)
(q,0,0,j)(z) =

1

λ + γ

[

λ ψ̃
(1)
(q,1,0,j)(z) + γψ̃

(1)
(q−1,1,0,j−1)(z)

]

for 2 ≤ j ≤ K, j ≤ q ≤ K,

ψ̃
(1)
(q,1,1,j)(z) =

1

λ + µ1 + µ2

[

λ ψ̃
(1)
(q+1,1,1,j)(z) + µ1ψ̃

(1)
(q,0,1,j)(z) + µ2ψ̃

(1)
(q,1,0,j)(z)

]

for 2 ≤ j ≤ K − 1, j ≤ q ≤ K − 1,

ψ̃
(1)
(K,1,1,j)(z) =

1

µ1 + µ2

[

µ1ψ̃
(1)
(K,0,1,j)(z) + µ2ψ̃

(1)
(K,1,0,j)(z)

]

for 2 ≤ j ≤ K.

¤

For the unconditionalz− transform we get

ψ̃(m)(z) = 1 − π
(m)
W e + π

(m)
W ψ̃

(m)
(z), (42)

where1 − π
(m)
W e denotes the probability that the customer upon an arrival goes immediately to theservice

area. By inversion of the contributionπ(m)
W ψ̃

(m)
(z) we get the density functionψ(m)

c (k) and and by the

relationΨ
(m)
c (n) =

∑n
k=0 ψ

(m)
c (k) we derive the distribution function

Ψ(m)(n) = 1 − π
(m)
W e + Ψ(m)

c (n), n ≥ 0.

The probability that the customer makes no retrials coincides with the probability that it will be directly
served, i.e.

Ψ(m)(0) = 1 − π
(m)
W e.

Then-th factorial moment of the random valueΨ
(m)
x denote bȳΨ(m)

x (n) = E[Ψ
(m)
x (Ψ

(m)
x −1) . . . (Ψ

(m)
x −

n + 1)], n ≥ 1. We partition the conditional factorial moments in the same way as before:

Ψ̄
(m)
i,j (n) = (Ψ̄

(m)
(q,d1,d2,j)(n)| q + d1 + d2 = i)t, 1 ≤ i ≤ K + 2, 1 ≤ j ≤ min{i, K},

Ψ̄
(m)
j (n) = (Ψ̄

(m)
j,j (n), Ψ̄

(m)
j+1,j(n), . . . , Ψ̄

(m)
K+2,j(n))t, 1 ≤ j ≤ K,

Ψ̄
(m)

(n) = (Ψ̄
(m)
1 (n), Ψ̄

(m)
2 (n), . . . , Ψ̄

(m)
K (n))t.

By differentiating the relation (35) we get

Λ
(m)
Ψ,1 (z)

dn

dzn
ψ̃

(m)
1 (z) − nV (m) dn−1

dzn−1
ψ̃

(m)
1 (z) = 0,

Λ
(m)
Ψ,j

dn

dzn
ψ̃

(m)
j (z) = −Γ

(m)
j

dn

dzn
ψ̃

(m)
j−1(z), 2 ≤ j ≤ K.

SinceΨ̄(m)
j (n) = dn

dzn ψ
(m)
j (z)

∣

∣

∣

∣

z=1

we get

Φ
(m)
1 Ψ̄

(m)
1 (n) = nV (m)

Ψ̄
(m)
1 (n − 1), n ≥ 1,

Φ
(m)
j Ψ̄

(m)
j (n) = −Γ

(m)
j Ψ̄

(m)
j−1(n), 2 ≤ j ≤ K, n ≥ 1,

Ψ̄
(m)
j (0) = e(4(K − j + 1)), 1 ≤ j ≤ K.

The moments for the unconditional random values have the form

E[Ψ(m)(Ψ(m) − 1) . . . (Ψ(m) − n + 1)] = π
(m)
W Ψ̄

(m)
(n), n ≥ 0.
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9 Numerical results and comparison analysis

Consider the systemM/M/2 with primary arrival rateλ, retrial rateγ and service ratesµ1 andµ2. By
inversion of the derived Laplace transforms (28) and (32) it is possibleto evaluate the waiting and sojourn
time distributions. There are two practical algorithms for the inversion of Laplace transform: The conven-
tional algorithm and the Fourier-series algorithm. Mathematical packages such asMathematica, Mathlab,
Mathcad, etc. include the standard functions that apply the conventional one. It isbased on the partial
function expansion method and works efficiently only in case of small orderrational functions. So we can
obtain on the basis of this method an accurate representation of the functionsW (m)(t) andT (m)(t) only
for small t but in symbolic form. The algorithms based on Furier-series represent thenumerical inversion
methods, e.g. Euler and Post-Widder [2], that can be used for larget as well.

The mentioned mathematical software allow also to invertz-transforms (37) and (42) to get the distri-
bution functionsΘ(n) andΨ(n). However there are problems by inversion of the functions of higher order.
Therefore we implement the numerical inversion ofz-transforms using the Lattice-Poisson algorithm [1].

By means ofMathemaicapackage we have created the procedures:

• for the calculation of steady-state probabilities under optimal and heuristic service disciplines, formu-
las (10–13) and (18)–(21),

• for the numerical inversion of the Laplace transformsW̃ (s) andT̃ (s) using the Euler and Post-Widder
algorithms,

• for the numerical inversion of thez-transformsΘ̃(z) andΨ̃(z) using the Lattice-Poisson algorithm.

In Figures 1–4 we have indicated the waiting time (the figures labelled by letter "a") and the sojourn
time (the figures labelled by letter "b") for different values of the primary customer arrival rateλ and retrial
customer rateγ. In our examples we fix the service ratesµ1 = 2.2, µ2 = 0.3. The following observation
can be noticed from these figures:
1. The curves of the waiting time distributionsW (m)(t) for the system under threshold control policies
(OTP, STP) lie below the other curves (FFS, RSS) that specifies that the waiting time of a customer in the
orbit is larger for the threshold systems. This does not contradict the optimality of the threshold policy since
it minimizes the sojourn time. On the figures with sojourn time distributionsT (m)(t) one can notice that for
some small values of argumentt the curves for the OTP can lie below other graphs but starting from some
point of timet they are above the others. Nevertheless the mean sojourn time for the optimal policy turns
out to be the least. The curves of the waiting time distribution for the system under FFS control policy lie
above the other curves that illustrates that this policy minimizes the waiting time of a customer in the orbit.
At the same time the largest sojourn time belongs to the system under RSS policy. It can be explained by
the fact that this policy with equal probability assigns a customer to the faster or slower server that in turn
makes a significant contribution to the sojourn time increasing.
2. In Figures 1 and 2 the primary customer arrival rateλ is varied and the corresponding load factors are
ρ(m) = 0.196, m = {1, 2, 3}, ρ(4) = 0.204 andρ(m) = 0.410, m = {1, 2, 3}, ρ(4) = 0.424. In Figure 3 and
4 the retrial customer rateγ is varied and the load factors are, respectively,ρ(m) = 0.199, m = {1, 2, 3},
ρ(4) = 0.200 andρ(m) = 0.375, m = {1, 2, 3}, ρ(4) = 0.377. As λ or γ increases then the load factorρ(m)

also increases that leads to the distributions with heavier tails. While in Figure 1 and 3 the curves for the
threshold systems (OTP, STP) look very similar, in Figure 2 and 4 the sufficient difference can be noticed.
Thus we can assume that if the load factor is sufficiently small, i.e. the system has a so-called "light traffic",
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then the scheduling threshold policy may be a good approximation for the optimalone.

(a) (b)

1 2 3 4 5
t

0.6

0.7

0.8

0.9

1

W
H
m
L
H
t
L

RSS
FFS
STP
OTP

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1

T
H
m
L
H
t
L

RSS
FFS
STP
OTP

Figure 1: Distribution functions (a)W (m)(t) (b) T (m)(t) for λ=0.5,µ1=2.2,µ2=0.3,γ=2.5
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Figure 2: Distribution functions (a)W (m)(t) (b) T (m)(t) for λ=0.9,µ1=2.2,µ2=0.3,γ=2.5
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Figure 3: Distribution functions (a)W (m)(t) (b) T (m)(t) for λ=0.5,µ1=2.2,µ2=0.3,γ=8.5
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Figure 4: Distribution functions (a)W (m)(t) (b) T (m)(t) for λ=0.9,µ1=2.2,µ2=0.3,γ=8.5

The following Figures 5 (λ = 0.5 andλ = 0.9 in figures labelled, respectively, by letter "a" and "b") and
6 (γ = 2.5 andγ = 8.5 in figures labelled, respectively, by letter "a" and "b") represent the discrete distribu-
tion functionsΘ(n) as a stepped curves for the number of primary arrivals that will be directlyserved before
an orbiting customer reaches the service area. The presented diagrams reveals the following observations
1. At point t = 0 the presented functions equal to the probability that there are no customersthat will be
served directly. As it was mentioned above, this probability equals to the probability W (m)(0) plus some
probability that the orbiting customer will be served earlier then a primary arrival reaches some server.
2. As it to be expected in the system under FFS policy the orbiting customer passes fewer primary cus-
tomers. It coincides with the observation that the waiting time distribution of an orbiting customer under
this policy lie above other graphs. The policies (OTP, STP) turn out to be theworst with respect to the value
of interest that can be also explained by the sufficiently larger waiting time of acustomer under threshold
policies in comparison with others.
3. For small load factorρ(m) (the concrete values are given in previous example) the number of directly
served primary arrivals is quite small, the concrete examples show that almost surely not more then 2, i.e.
Θ(m)(3) > 0.99 (Figure 5(a)) and not more then 1,Θ(m)(2) > 0.99 (Figure 6(a)) primary arrivals will be
served directly while the orbiting customer is waiting for the service. As the loadfactor increases, more
customers are served directly, that can be confirmed by the figures observation, namely,Θ(m)(7) > 0.99
(Figure 5(b)) andΘ(m)(3) > 0.99 (Figure 6(b)).

29



(a) (b)

1 2 3 4 5
n

0.92

0.94

0.96

0.98

1

Q
H
m
L
H
n
L

RSS
FFS
STP
OTP

1 2 3 4 5 6 7
n

0.7

0.75

0.8

0.85

0.9

0.95

1

Q
H
m
L
H
n
L

RSS
FFS
STP
OTP

Figure 5: The distribution functionΘ(n) (a)λ = 0.5 (b) λ = 0.9 for µ1=2.2,µ2=0.3,γ = 2.5
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Figure 6: The distribution functionΘ(n) (a)λ = 0.5 (b) λ = 0.9 for µ1=2.2,µ2=0.3,γ = 8.5

The next Figures 7 (λ = 0.5 andλ = 0.9 in figures labelled, respectively, by letter "a" and "b") and 8
(γ = 2.5 andγ = 8.5 in figures labelled, respectively, by letter "a" and "b") illustrate the discrete distribution
functionsΨ(n) for the number of retrials made by an orbiting customer until it reaches the service area. The
following conclusions cam be done by observing the graphs.
1. At point t = 0 the jump of the functions corresponds to the case when no retrials will be madeby a
customer and equals to the probability that the customer will be served directly,i.e. Ψ(m)(0) = W (m)(0).
2. Asλ andγ increase the distributions reveal the heavier tails. Under the FFS and RSS control policies the
customer makes less retrials as under threshold policies (OTP, STP) because first two disciplines imply the
shorter waiting time.
3. The number of retrials strongly depends on the retrial rate. In case whenγ is small, Figure 7(a,b), then
the number of retrials with large probability will be not very large, e.g. in this exampleΨ(m)(6) > 0.99
andΨ(m)(7) > 0.99. Otherwise, whenγ is large, Figure 8(a,b), then the number of retrial significantly
increases, e.g.Ψ(m)(10) > 0.96 andΨ(m)(10) > 0.94.
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Figure 7: The distribution functionΨ(n) (a)λ = 0.5 (b) λ = 0.9, µ1=2.2,µ2=0.3,γ = 2.5
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Figure 8: The distribution functionΨ(n) (a)λ = 0.5 (b) λ = 0.9, µ1=2.2,µ2=0.3,γ = 8.5

10 Conclusion

The presented in the paper results show that for controlled retrial queues it is also possible to perform
quite detailed performance analysis. The presented methods can be extended by increasing the number of
serversc > 2 and by considering more bursty arrival and service processes. We develop the algorithms
for the calculation of the Laplace transforms of the waiting and sojourn time distributions. To get the
distribution functions we use the appropriate methods for the inversion of Laplace- and z-transforms based
on the Fourier-series methods. It is demonstrated that while the OTP shows the best sojourn time, the FFS
policy reveals the best waiting time for the orbiting customer. In heavy traffic case, when the load factor is
large, then the differences between the policies can be neglected. In lighttraffic case the results for the OPT
and STP coincide, thus for the optimal threshold levels as approximations onecan take the corresponding
levels of the scheduling problem.
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