Citation list

Total number of independent citations: 87
Total number of citations: ca. 150
Number of independently cited papers: 12
h index: 6
i10 index: 4

I. Varga, F. Kun, K. F. Pál,
Structure formation in binary colloids,

I. Varga, F. Kun, K. F. Pál,
Structure formation in binary colloids,

Impact factor: 2.352
Independent citations: 15

1. P. D. Duncan, P. J. Camp,
Structure and dynamics in a monolayer of dipolar spheres,

2. H. Guo, W. Wen, R. Tao,
Dynamics and statistics study of rings formed by magnetic balls,

3. T. Stirner, J. Z. Sun,
Molecular dynamics simulation of the structural configuration of binary colloidal monolayers,

4. I. Szalai, S. Dietrich,
Global phase diagrams of binary dipolar fluid mixtures,
Molecular Physics 103, 2873 (2005).

5. P. Taboada-Serrano, C. J. Chin, S. Yiacoumi,
Modeling aggregation of colloidal particles,

6. V. I. Stepanov,
Dynamic behavior of dilute colloid of magnetic holes,

7. P. J. Lenart, A. Z. Panagiotopoulos,
Phase behavior of binary Stockmayer and polarizable Lennard-Jones fluid mixtures using adiabatic nuclear and electronic sampling,

Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes,

9. P. J. Lenart,
Monte Carlo Simulations of Complex Fluid Mixtures with Multibody Electrostatic
10. C. Zhang, G. Jin, Y. Q. Ma,  
Field modulated structural transformation of planar binary dipolar hard spheres,  

11. M. Suzuki, S. Yukawa, N. Ito,  
Structures and Thermodynamics of Particle Systems with long- and middle-range interactions,  

12. C. Y. Zhang, X. L. Jian, W. M. Ding,  
Two-dimensional structure of dipolar heterogeneous dumbbells,  
Europhysics Letters 100, 38004 (2012).

13. J. Ramos, J. Forcada, and R. Hidalgo-Alvarez,  
Cationic Polymer Nanoparticles and Nanogels: From Synthesis to Biotechnological Applications,  

Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field,  

15. P. Harini, D. Marjolein,  
On the formation of stripe, sigma, and honeycomb phases in a core-corona system,  

I. Varga, H. Yamada, F. Kun, H.-G. Matuttis, N. Ito,  
Structure formation in a binary monolayer of dipolar particles,  
Impact factor: 2.418  
Independent citations: 12

16. Y. Wei, W. Tong, C. Wise, X. Wei, K. Amburst, M. Zimmt,  
Dipolar control of monolayer morphology: Spontaneous SAM patterning,  

17. Sándor Fazekas,  
Distinct element simulations of granular materials,  

18. C. Zhang, G. Jin, Y. Q. Ma,  
Field modulated structural transformation of planar binary dipolar hard spheres,  

19. K. Franzrahe, P. Keim, G. Maret, P. Nielaba, S. Sengupta,  
Nonlocal elastic compliance for soft solids: Theory, simulations, and experiments,  

20. H. W. Xi, X. B. Wang, Y. R. Chen, P. J. Ryan,  
Ordering of magnetic nanoparticles in bilayer structures,  
21. S. H. Lee, C. M. Liddel,
*Anisotropic magnetic colloids: Strategy to form complex structures using nonpherical building blocks*,

22. D. Lopez, F. Pétrélis,
*Surface Instability Driven by Dipole-Dipole Interactions in a Granular Layer*,

23. E. Ben-Naim, P. L. Krapivsky,
*Kinetics of ring formation*,

24. K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley, B. B. Yellen,
*Binary colloidal structures assembled through Ising interactions*,

25. O. Carvente, G. G. Peraza-Mues, J. M. Salazar, J. R. Ruiz-Suarez,
*Self-assembling of non-Brownian magnetized spheres*,
*Granular Matter* 14, 303-308 (2012).

*Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field*,

27. L. Xu, Y. Hu, K. Miao, S. Peng, B. Zha, X. Miao, W. Deng,
*Structural transition control between dipole-dipole and hydrogen bonds induced chirality and achirality*,
*CrystEngComm*, 18, 3019-3032 (2016).

N. Yoshioka, I. Varga, F. Kun, S. Yukawa, N. Ito,
*Attraction-limited cluster-cluster aggregation of Ising dipolar particles*,

**Impact factor: 2.418**

**Independent citations:** 7

*Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes*,

29. J. M. Lopez-Lopez,
*Electrostatic heteroaggregation processes arising in two-component colloidal dispersions*,

30. H. Noguchi, G. Gompper,
*Dynamics of vesicle self-assembly and dissolution*,

31. C. Zhang, G. Jin, Y. Q. Ma,
*Field modulated structural transformation of planar binary dipolar hard spheres*,
Electrostatic heteroaggregation regimes in colloidal suspensions, 
Advances in Colloid and Interface Science 147, 186-204 (2009).

33. Shin-ichi Ito, 
Dynamical and statistical properties desiccation crack pattern, 

34. F. Kogler, O. D. Velev, C. K. Hall, S. H. L. Klapp, 
Generic model for tunable colloidal aggregation in multidirectional fields, 

I. Varga, F. Kun, 
Pattern formation in binary colloids, 
Impact factor: 1.167 
Independent citations: 2

35. M. Suzuki, S. Yukawa, N. Ito, 
Structures and Thermodynamics of Particle Systems with long- and middle-range interactions, 

36. P. Harini, D. Marjolein, 
On the formation of stripe, sigma, and honeycomb phases in a core-corona system, 

I. Varga, N. Yoshioka, F. Kun, S. Gang, N. Ito, 
Structure and kinetics of heteroaggregation in binary dipolar monolayer, 
Impact factor: 2.418 
Independent citations: 2

37. K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley, B. B. Yellen, 
Binary colloidal structures assembled through Ising interactions, 

38. C. Liu, Z. Sun, L. Zheng, S. Huang, B. Blanpain, M. Guo, 
Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field, 

I. Varga, F. Kun, 
Computer methods for modeling the microstructure of aerogels, 
19th International Conference on Computer Methods in Mechanics 
Impact factor: - 
Independent citations: 1
39. Q. T. Doan, G. Lefèvre, O. Hurisse, F. X. Coudert,
   *Adsorption in complex porous networks with geometrical and chemical heterogeneity*,
   Molecular Simulation, **40**, (1-3), 16-24 (2014).

40. J. Richardi, J.-J. Weis,
   *Influence of short range potential on field induced chain aggregation in low density dipolar particles*,
   Journal of Chemical Physics, **138**, 244704 (2013).

41. Y Meir, E Jerby,
   *Insertion and confinement of hydrophobic metallic powder in water: The bubble-marble effect*,

42. E. Jerby, Y. Meir, A. Salzberg, E. Aharoni, A. Levy, J. P. Torralba, B. Cavallini,
   *Incremental Metal-Powder Solidification by Localized Microwave-Heating and its Potential for Additive Manufacturing*,

43. C. Liu, Z. Sun, L. Zheng, S. Huang, B. Blanpain, M. Guo,
   *Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field*,

44. C. P. Reynolds, K. E. Klop, F. A. Lavergne, S. M. Morrow, D. G. A. L. Aarts, R. P. A. Dullens,
   *Deterministic aggregation kinetics of superparamagnetic colloidal particles*,

45. I. Stankovic, M. Dasic, R. Messina,
   *Structure and cohesive energy of dipolar helices*,

46. R. Messina, I. Stankovic,
   *Assembly of magnetic spheres in strong homogeneous magnetic field*,
   Physica A, **466**, pp. 10-20 (2017).

47. K. Shahrivar, E. Carreón-González, J. R. Morillas and J. de Vicente,
   *Aggregation Kinetics of Carbonyl Iron based Magnetic Suspensions in 2D*,

---

F. Kun, I. Varga, S. Lennartz-Sassinek, I.G., Main,
*Approach to failure in porous granular materials under compression*,

**Impact factor: 2.313**

**Independent citations: 14**
48. T. Tormann, B. Enescu, J. Woessner, S. Wiemer,
   Randomness of megathrust earthquakes implied by rapid stress recovery after the
   Japan earthquake,
49. H. V. Ribeiro, L. S. Costa, L. G. A. Alves, P. A. Santoro, S. Picoli, E. K. Lenzi, R. S.
   Mendes,
   Analogies between the cracking noise of ethanol-damped charcoal and earthquakes,
50. T Hatano, C Narteau, P Shebalin,
   Common dependence on stress for the statistics of granular avalanches and
   earthquakes,
   Scientific Reports 5, 12280 (2015).
51. Y. Xu, X. Feng, H. Zhu, F. Chu,
   Fractal model for rockfill shear strength based on particle fragmentation,
52. J. Wang, S. Chang, Y. Xu,
   Best-Estimate Return Period of the Sanchiao Earthquake in Taipei: Bayesian
   Approach,
53. J. P. Wang,
   Reviews of seismicity around Taiwan: Weibull distribution,
   Natural Hazards 80, pp. 1651-1668, (2016).
54. Y Xu, D Song, F Chu,
   Approach to the Weibull modulus based on fractal fragmentation of particles,
55. L. Gulia, T. Tormann, S. Wiemer, M. Herrmann, S. Seif
   Short-term probabilistic earthquake risk assessment considering time-dependent b-
   values
   Geophysical Research Letters, 43, 1944 (2016)
56. V. Navas-Portella, A. Corral, E. Vives,
   Avalanches and force drops in displacement-driven compression of porous glasses,
57. Y. Sandali, R. Chand, Q. Shi,
   “Buoyancy” in granular medium: How deep can an object sink in sand?,
58. X. Jiang, D. Jiang, J. Chen, E. Salje,
   Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of
   mining accidents,
59. E Berthier, V Démery, L Ponson,
   Damage spreading in quasi-brittle disordered solids: I. Localization and failure,
60. M. Kawamura, K. H. Chen,
   Influences on the location of repeating earthquakes determined from a- and b- value
   imaging,
61. Hadrien Laubie, Farhang Rajdai, Roland Pellenq, Franz-Josef Ulm,  
*Stress Transmission and Failure in Disordered Porous Media*,  

F. Kun, I. Varga, S. Lennartz-Sassinek, I.G., Main,  
*Rupture cascades in a discrete element model of a porous sedimentary rock*,  
**Impact factor: 7.943**  
**Independent citations: 22**

*Avalanches in compressed porous SiO$_2$-based materials*,  

63. X. Clotet-Fons,  
*Imbibition in a model open fracture-Capillary rise, kinetic roughening and intermittent avalanche dynamics*,  

64. F. Raischel, A. Moreira, P. G. Lind,  
*From human mobility to renewable energies: Big data analysis to approach worldwide multiscale phenomena*,  

65. T. Voigtmann,  
*Nonlinear glassy rheology*,  
Current Opinion in Colloid & Interface Science, **19** (6), 549-560 (2014).  

66. T. Heinze, B. Galvan, S. A. Miller,  
*A new method to estimate location and slip of simulated rock failure events*,  

67. H. V. Ribeiro, L. S. Costa, L. G. A. Alves, P. A. Santoro, S. Picoli, E. K. Lenzi, R. S. Mendes,  
*Analogies between the cracking noise of ethanol-damped charcoal and earthquakes*,  

68. T. Mäkinen, A. Miksic, M. Ovaska, M. J. Alava,  
*Avalanches in wood compression*,  

69. T Hatano, C Narteau, P Shebalin,  
*Common dependence on stress for the statistics of granular avalanches and earthquakes*,  

70. J. Y. Huang, Y. Li, Q. C. Liu, X. M. Zhou, L. W. Liu, C. L. Liu, M. H. Zhu, S. N. Luo,  
*Origin of compression-induced failure in brittle solids under shock loading*,  

71. J. Braithwaite, B. D’Costa,  
*Cascades Across An “Extremely Violent Society”: Sri Lanka*,  

72. J. Baró,  
*Avalanches in Out of Equilibrium Systems: Statistical Analysis of Experiments and Simulations*,
73. T. Jamali, G. R. Jafari, S. V. Farahani,  
*Patterns for the waiting time in the context of discrete-time stochastic processes*,  

74. J. Davidsen, M. Baiesi,  
*Self-similar aftershock rates*,  

75. V. Navas-Portella, A. Corral, E. Vives,  
*Avalanches and force drops in displacement-driven compression of porous glasses*,  

76. L. Ponson,  
*Statistical aspects in crack growth phenomena: How the fluctuations reveal the failure mechanisms*,  

77. V. Soprunyuk, S. Puchberger, W. Schranz, A. Tröster, E. Vives, E. K. H. Salje,  
*Towards a Quantitative Analysis of Crackling Noise by Strain Drop Measurements*,  

78. X. Jiang, D. Jiang, J. Chen, E. Salje,  
*Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents*,  

79. Ulrich Bismayer,  
*Early warning signs for mining accidents: Detecting crackling noise*,  

80. M. Guzev, A. Dmitriev, A. Dyskin, E. Pasternak,  
*Dynamic stability of rolling particles between elastic plates*,  

81. Jordi Baró, Jörn Davidsen,  
*Are Triggering Rates of Labquakes Universal? Inferring Triggering Rates From Incomplete Information*.  

82. Jörn Davidsen, Grzegorz Kwiatek, Elli-Maria Charalampidou, Thomas Goebel, Sergei Stanchits, Marc Rück, Georg Dresen,  
*Triggering Processes in Rock Fracture*,  

83. Xiang Jiang, Hanlong Liu, Ian G. Main, and Ekhard K. H. Salje,  
*Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors*,  
84. Yu. D. Schmidt, O. N. Lobodina,
Some approaches to modeling the spatial diffusion of innovations,

85. G. Pál, I. Varga, F. Kun,
Emergence of energy dependence in the fragmentation of heterogeneous materials,

86. N. N. Myagkov,
Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield,
Journal of Experimental and Theoretical Physics, 124 (1) pp. 57-69 (2017)

87. Y. Deng, P. Miao and H. Yang,
Cooperation of Improved Hk Networks Based on Prisoner Dilemma Game,
IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC),