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This book is dedicated to my wife without whom this
work could have been finished much earlier.

• If anything can go wrong, it will.

• If you change queues, the one you have left will start to move faster than the one
you are in now.

• Your queue always goes the slowest.

• Whatever queue you join, no matter how short it looks, it will always take the
longest for you to get served.

( Murphy’ Laws on reliability and queueing )
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Preface

Modern information technologies require innovations that are based on modeling, ana-
lyzing, designing and finally implementing new systems. The whole developing process
assumes a well-organized team work of experts including engineers, computer scientists,
mathematicians, physicist just to mention some of them. Modern info-communication
networks are one of the most complex systems where the reliability and efficiency of the
components play a very important role. For the better understanding of the dynamic
behavior of the involved processes one have to deal with constructions of mathematical
models which describe the stochastic service of randomly arriving requests. Queueing
Theory is one of the most commonly used mathematical tool for the performance evalu-
ation of such systems.

The aim of the book is to present the basic methods, approaches in a Markovian
level for the analysis of not too complicated systems. The main purpose is to understand
how models could be constructed and how to analyze them. It is assumed the reader has
been exposed to a first course in probability theory, however in the text I give a refresher
and state the most important principles I need later on. My intention is to show what is
behind the formulas and how we can derive formulas. It is also essential to know which
kind of questions are reasonable and then how to answer them.

My experience and advice are that if it is possible solve the same problem in different
ways and compare the results. Sometimes very nice closed-form, analytic solutions are
obtained but the main problem is that we cannot compute them for higher values of the
involved variables. In this case the algorithmic or asymptotic approaches could be very
useful. My intention is to find the balance between the mathematical and practitioner
needs. I feel that a satisfactory middle ground has been established for understanding
and applying these tools to practical systems. I hope that after understanding this book
the reader will be able to create his owns formulas if needed.

It should be underlined that most of the models are based on the assumption that the
involved random variables are exponentially distributed and independent of each other.
We must confess that this assumption is artificial since in practice the exponential distri-
bution is not so frequent. However, the mathematical models based on the memoryless
property of the exponential distribution greatly simplifies the solution methods resulting
in computable formulas. By using these relatively simple formulas one can easily foresee
the effect of a given parameter on the performance measure and hence the trends can be
forecast. Clearly, instead of the exponential distribution one can use other distributions
but in that case the mathematical models will be much more complicated. The analytic
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results can help us in validating the results obtained by stochastic simulation. This ap-
proach is quite general when analytic expressions cannot be expected. In this case not
only the model construction but also the statistical analysis of the output is important.

The primary purpose of the book is to show how to create simple models for practical
problems that is why the general theory of stochastic processes is omitted. It uses only
the most important concepts and sometimes states theorem without proofs, but each time
the related references are cited.

I must confess that the style of the following books greatly influenced me, even if
they are in different level and more comprehensive than this material: Allen [1], Jain [3],
Kleinrock [5], Kobayashi and Mark [6], Stewart [11], Tijms [13], Trivedi [14].

This book is intended not only for students of computer science, engineering, operation
research, mathematics but also those who study at business, management and planning
departments, too. It covers more than one semester and has been tested by graduate
students at Debrecen University over the years. It gives a very detailed analysis of the
involved systems by giving density function, distribution function, generating function,
Laplace-transform, respectively. Furthermore, Java-applets are provided to calculate the
main performance measure immediately by using the pdf version of the book in a WWW
environment.

I have attempted to provide examples for the better understanding and a collection
of exercises with detailed solution helps the reader in deepening her/his knowledge. I
am convinced that the book covers the basic topics in stochastic modeling of practical
problems and it supports students in all over the world.

I am indebted to Professor József Bíró for his review, comments and suggestions which
greatly improved the quality of the book. I am very grateful to Márk Kósa, Albert Barnák,
Balázs Máté for their help in editing. .

All comments and suggestions are welcome at:

sztrik.janos@inf.unideb.hu
http://irh.inf.unideb.hu/user/jsztrik

Debrecen, 2016.

János Sztrik
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Part I

Modeling and Analysis of Information
Technology Systems
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Chapter 1

Basic Concepts from Probability
Theory

Stochastic modeling of any type of system needs basic knowledge of probability theory. It
is my experience that a brief summary about the most important concepts and theorems
is very useful because the readers might have different level approaches to the theory of
probability. The refresher concentrate only on those theorems and distributions which are
closely related to this material. It should be noted that there are many good textbooks
about theory of probability in all over the word. Moreover, a number of digital versions
can be downloaded from the internet, too. I would recommend any of the following books,
Allen [1], Gnedenko et.al. [2],Jain [3], Kleinrock [5], Kobayashi and Mark [6], Ovcharov
and Wentzel [7], Ravichandran [8], Rényi [9], Ross [10], Stewart [11], Tijms [13], Trivedi
[14].

1.1 Brief Summary

Theorem 1 (Basic Forms of the Law of Total Probability) Let B1, B2, . . . be a set
of mutually exclusive exhaustive events with positive probabilities and let A be any event.
Then

(1.1) P (A) =
∞∑
i=1

P (A|Bi)P (Bi).

F (x) =
∞∑
i=1

F (x|Bi)P (Bi)

f(x) =
∞∑
i=1

f(x|Bi)P (Bi)

fX(x) =

∞∫
−∞

fX|Y (x|y)fY (y)dy
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FX(x) =

∞∫
−∞

FX|Y (x|y)fY (y)dy

P (A) =

∞∫
−∞

P (A|Y = y)fY (y)dy,

where
F (x) is a distribution function, f(x) is a density function,

f(x, y) is a joint density function,

fX|Y (x|y) =
f(x, y)

fY (y)
is a conditional density function,

FX|Y (x|y) =

x∫
−∞

fX|Y (t|y)dt is a conditional distribution function.

Theorem 2 (Bayes’ Theorem or Bayes’ Rule) Let B1, B2, . . . be a set of mutually
exclusive exhaustive events with positive probabilities and let A be any event of positive
probability. Then

P (Bi|A) =
P (A|Bi)P (Bi)∑∞
j=1 P (A|Bj)P (Bj)

.

Definition 1 Let pk = P (X = xk), k=1,2,. . ., the distribution of a discrete random
variable X . The mean ( first moment, expectation, average ) of X is defined as

∑
k pkxk

if this series is absolute convergent. That is the mean of X is

EX =
∞∑
k=1

pkxk.

Definition 2 Let f(x) be the density function of a continuous random variable X. If∫ +∞
−∞ |x|f(x) dx is finite then the mean is defined by

EX =

∫ +∞

−∞
xf(x) dx.

Without proof the main properties of the expectation are as follows
If EX,EY <∞, then

1. E(X + Y ) exists and E(X + Y ) = EX + EY ,

2. E(cX) exists and E(cX) = cEX,

3. E(XY ) exists and E(XY ) = EXEY , provided X and Y are independent,
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4. E(aX + b) exists and E(aX + b) = aEX + b,

5. (E(XY ))2 exists and (E(XY ))2 ≤ EX2EY 2, if the second moments are exist,

6. If X ≥ 0, then EX =
∫∞

0
(1− F (x))dx, EX =

∑∞
k=1 P (ξ ≥ k).

Theorem 3 (Theorem of Total Moments) The most commonly used forms are

E(Xn) =
∞∑
i=1

E(Xn|Bi)P (Bi),

where E(Xn|Bi) denotes the nth conditional moment. The continuous version is

E(Xn) =

∞∫
−∞

E(Xn|Y = y)fY (y)dy.

In case of n = 1 we have the theorem of total expectation.

Definition 3 (Variance) Let X be a random variable with a finite mean EX = m. Then

V ar(X) = E(X −m)2

is called the variance of X provided it is finite.

The following properties hold

1. If V ar(X) <∞ then V ar(X) = EX2 − E2X.

2. V ar(aX + b) = a2V ar(X) for any a,b ∈ R.

3. V ar(X) ≥ 0; V ar(X) = 0 if and only if P (X = EX) = 1.

Definition 4 (Squared coefficient of variation) The coefficient C2
X = V ar(X)

(EX)2
is de-

fined as the squared coefficient of variation of random variable X.

1.2 Some Important Discrete Probability Distributions

Binomial Distribution

A random variable X is said to have a binomial distribution with parameters n, p if
its distribution is

pk =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n

Notation: X ∈ B(n, p).
It can be shown that

EX = np, V ar(X) = np(1− p), C2
X =

1− p
np

.

If n=1, then X is Bernoulli distributed.
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Poisson Distribution

A random variable X is said to have a Poisson distribution with parameter λ if

pk =
λk

k!
e−λ, λ > 0, k = 0, 1, . . .

Notation: X ∈ Po(λ).
It is well-known that

EX = λ, V ar(X) = λ, C2
X =

1

λ
.

It can be proved that

lim
n→∞,p→0,np→λ

(
n

k

)
pk(1− p)n−k =

λk

k!
e−λ, k = 0, 1, . . .

that is the binomial distribution can be approximated by the Poisson distribution. The
closer p to zero, the better the approximation. An acceptable rule of thumb to use this
procedure is n ≥ 20 and p ≤ 0.05.

Geometric Distribution

A random variable X is said to have geometric distribution with parameter p if

pk = p(1− p)k−1, k = 1, 2, . . .

Notation: X ∈ Geo(p).
It is easily verified that

EX =
1

p
, V ar(X) =

1− p
p2

, C2
X = 1− p.

A random variable X∗ = X − 1 is called modified geometric . In this case

P (X∗ = k) = p(1− p)k k = 0, 1, . . .

EX∗ =
1− p
p

, V ar(X∗) =
1− p
p2

, C2
X
∗ =

1

1− p
.

Convolution

Definition 5 Let X and Y be independent random variables with distributions
P (X = i) = pi, P (Y = j) = qj, i, j = 0, , 1, 2....

Then the distribution of Z = X + Y is

P (Z = k) =
k∑
j=0

pjqk−j, k = 0, 1, 2, . . .

is called the convolution of X, Y , that is we calculated the distribution of X + Y .
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Example 1 Show that if X ∈ B(n, p), Y ∈ B(m, p) and are independent random vari-
ables then X + Y ∈ B(n+m, p) .

Solution:

P (X + Y = l) =
l∑

k=0

(
n

k

)
pk(1− p)n−k ·

(
m

l − k

)
pl−k(1− p)m−l+k

= pl(1− p)n+m−l
l∑

k=0

(
n

k

)(
m

l − k

)
= pl(1− p)n+m−l

(
n+m

l

)
=

(
n+m

l

)
pl(1− p)n+m−l.

Example 2 Verify if X ∈Po(λ), Y ∈Po(β) and are independent random variables then
X + Y ∈ Po(λ+ β).

Solution:

P (X + Y = l) =
l∑

k=0

λk

k!
e−λ

βl−k

(l − k)!
e−β

= e−λ−β
l∑

k=0

λk

k!

βl−k

(l − k)!
=
e−(λ+β)

l!

l∑
k=0

(
l

k

)
λkβl−k

=
(λ+ β)l

l!
e−(λ+β).

Example 3 Customers arrive at the busy supermarket according to a Poisson distribu-
tion with parameter λ. Each of them independently of the others becomes a buyer with
probability p. Find the distribution of the number of buyers.

Solution:

Let X ∈ Po(λ) denote the number of customers and Y the number of buyers. By the
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virtue of the theorem of total probability we have

P (Y = n) =
∞∑
k=n

P (Y = n|X = k) · P (X = k)

=
∞∑
k=n

(
k

n

)
pn(1− p)k−n · λ

k

k!
e−λ

= pne−λ
∞∑
k=n

k!

n!(k − n)!
(1− p)k−nλ

k

k!

= pne−λ
∞∑
k=n

1

n!(k − n)!
(1− p)k−nλnλk−n

= pne−λ
1

n!
λn

∞∑
l=0

1

l!
((1− p)λ)l

=
(λp)n

n!
e−λ

∞∑
l=0

((1− p)λ)l

l!
=

(λp)n

n!
e−λe(1−p)λ

=
(λp)n

n!
e−λp

That is Y ∈ Po(λp).

1.3 Some Important Continuous Probability Distribu-
tions

Uniform Distribution

A random variable X is said to have a uniform distribution on the interval [a,b] if its
density function is

f(x) =

{
1
b−a , if a ≤ x ≤ b,

0, otherwise.

It is easy to see that its distribution function is

F (x) =


0, if x ≤ a,
x−a
b−a , if a < x ≤ b,

1, if b < x.

Notation: X ∈ U(a, b).

It is not difficult to show EX =
a+ b

2
, V ar(X) =

(b− a)2

12
, C2

X =
(b− a)2

3(a+ b)2
.

It is easy to verify that if X∗ ∈ U(0, 1), than X = a+ (b− a)X∗ ∈ U(a, b).
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To generate a random number with a given distribution one can successfully use the fol-
lowing procedure.
If F−1

X (x) exists then Y = FX(X) ∈ U(0, 1) and thus X = F−1(Y ).

It can be proved as follows
FY (x) = P (Y < x) = P (FX(X) < x) = FX(F−1

X (x)) = x,

that is Y ∈ U(0, 1), therefore X = F−1
X (Y ).

Exponential Distribution

A random variable X is said to have an exponential distribution with parameter λ if
its density function is given by

f(x) =

{
0, if x < 0,

λe−λx, if x ≥ 0.

So its distribution function is

F (x) =

{
0, if x < 0,

1− e−λx, if x ≥ 0.

where λ > 0. Notation: X ∈ Exp(λ).

It can be proved that

EX =
1

λ
, V ar(X) =

1

λ2
, C2

X = 1.

Erlang Distribution

A random variable Yn is said to have an Erlang distribution with parameters (n, λ) if
its density function is defined by

f(x) =

{
0, if x < 0,

λ (λx)n−1

(n−1)!
e−λx, if x ≥ 0.

It can be shown that the distribution function is

F (x) =

{
0, if x < 0,

1−
∑n−1

k=0
(λx)k

k!
e−λx, if x ≥ 0,

where n is natural number, λ > 0. Notation: X ∈ Erl(n, λ), or X ∈ En(λ).

It is easy to see that in the case of n = 1 it reduces to the exponential distribution.
It can be verified that

E(Yn) =
n

λ
, V ar(Yn) =

n

λ2
, C2

Yn =
1

n
.
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Gamma Distribution

A random variable X is said to have a gamma distribution with parameters (α, λ) if
its density function is given by

f(x) =


0 ,if x < 0

λ(λx)α−1e−λx

Γ(α)
,if x ≥ 0.

where λ > 0, α > 0,

Γ(α) =

∞∫
0

tα−1e−tdt

is the so-called complete gamma function.

Its distribution function can not be obtained in an explicit form except α = n. This case
it reduces to the Erlang distribution.

Notation: X ∈ Γ(α, λ).

It can be shown that

E(X) =
α

λ
, V ar(X) =

α

λ2
, C2

X =
1

α
.

α is called the shape parameter, λ is called the scale parameter.

Weibull Distribution

A random variable X is said to have a Weibull distribution with parameters (λ, α) if
its density function is given by

f(x) =


0 ,if x < 0

λαxα−1e−λx
α ,if x ≥ 0.

It is easy to see that

F (x) =


0 ,if x < 0

1− e−λxα ,if x ≥ 0

where λ > 0 is called the scale parameter, α > 0 is called the shape parameter.
Specially, in the case of α = 1 it reduces to the exponential distribution.
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Notation: X ∈ W (λ, α). It can be shown that

E(X) =

(
1

λ

) 1
α

· Γ
(

1 +
1

α

)
V ar(X) =

(
1

λ

) 2
α
[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)]
C2
X =

2αΓ
(

2
α

)
Γ2
(

1
α

) − 1.

Pareto Distribution

A random variable X is said to have a Pareto distribution with parameters (k, α) if
its density function is given by

f(x) =


0 , x < k

αkαx−α−1 , x ≥ k

Thus the distribution function is

F (x) =


0 , x < k

1−
(
k
x

)α , x ≥ k

where α, k > 0.

Notation: X ∈ Par(k, α), where k is called the location parameter, α is called the
shape parameter.

It can be proved that

E(X) =


kα
α−1

, α > 1

∞ , α ≤ 1

E(X2) =


k2α
α−2

, α > 2

∞ , α ≤ 2.

Thus

V ar(X) =
k2α

α− 2
−
(

kα

α− 1

)2

, C2
X =

(α− 1)2

α(α− 2)
− 1, α > 2.

Normal Distribution (Gaussian Distribution)

A random variable X is said to have a normal distribution with parameters (m,σ) if
it density function is given by

19



f(x) =
1√
2πσ

e−
(x−m)2

2σ2 ,

For the distribution function we have

F (x) =

x∫
−∞

f(t)dt,

wherem ∈ R, σ > 0. Notation: X ∈ N(m,σ). For F (x) there is no closed form expression.
Specially, if m = 0, σ = 1, then X ∈ N(0, 1), which is the standard normal distri-
bution. In this case the traditional notation for the density and distribution function
is

ϕ(x) =
1√
2π
e−

x2

2 , φ(x) =

x∫
−∞

ϕ(t)dt.

It can be proved that if X ∈ N(m,σ), then

P (X < x) = φ

(
x−m
σ

)
,

furthermore φ(−x) + φ(x) = 1. It is well-known that

E(X) = m, V ar(X) = σ2, C2
X =

σ2

m2
.

Lognormal Distribution
Let Y ∈ N(m,σ), then the random variable X = eY is said to have lognormal distri-
bution with parameters (m,σ), notation: X ∈ LN(m,σ).

It is not difficult to verify that

P (X < x) = P (eY < x) = P (Y < lnx)

thus

FX(x) = φ

(
lnx−m

σ

)
, x > 0

fX(x) = φ′
(

lnx−m
σ

)
=

1

σx
ϕ

(
lnx−m

σ

)
, x > 0.

It can be shown that

E(X) = em+σ2

2 , V ar(X) = e2m+σ2

(eσ
2 − 1), C2

X = eσ
2 − 1.

Theorem 4 (Markov Inequality) Let X be a nonnegative random variable with finite
mean, that is EX <∞. Then for any δ > 0

P (X ≥ δ) ≤ EX
δ
.

20



Theorem 5 (Chebychev Inequality) Let X be a random variable for which V ar(X) <
∞, EX = m. Then for any ε > 0

P (|X −m| ≥ ε) ≤ V ar(X)

ε2
.

Theorem 6 (Central Limit Theorem) Let X1, X2, . . . be independent and identically
distributed random variables for which V ar(Xi) = σ2 <∞, E(Xi) = m. Then

lim
n→∞

= P

(
X1 + . . .+Xn − nm√

nσ
< x

)
= φ(x).

In particular, if Xi = χi, then X1 + . . .+Xn ∈ B(n, p) and thus

P (X1 + . . .+Xn < x) =
∑
k<x

(
n

k

)
pk(1− p)n−k ≈ φ

(
x− np
√
npq

)
.

The local form is (
n

k

)
pk(1− p)n−k ≈ 1√

2πnp(1− p)
· e−

(k−np)2
2np(1−p) .

Practical experiments have shown that if n ≥ 10 and 9
n+9
≤ p ≤ n

n+9
, then the normal

distribution provides a good approximation to the binomial one.
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Chapter 2

Fundamentals of Stochastic Modeling

This chapter is devoted to the most important distributions derived from the exponen-
tial distribution. The lifetime of series and parallel systems are investigated which play
crucial role in reliability theory. It is shown how to generate random numbers having
given distribution. Finally, random sums are treated which occurred in many practical
situations.
The material is based on mainly the following books: Allen [1], Gnedenko, Belyayev,
Szolovjev [2], Kleinrock [5], Ovcharov [7], Ravichandran [8], Ross [10], Stewart [11], Ti-
jms [13], Trivedi [14].

2.1 Distributions Related to the Exponential Distribu-
tion

Theorem 7 (Memoryless or Markov property) If X ∈ Exp(λ) then it satisfies the
following, so-called memoryless, or Markov property

P (X < x+ y|X ≥ y) = P (X < x), x > 0, y > 0,

P (X > x+ y|X ≥ y) = P (X > x), x > 0, y > 0.

Proof:

P (X < x+ y|X ≥ y) =
P (y ≤ X < x+ y)

P (X ≥ y)

=
F (x+ y)− F (y)

1− F (y)
=

1− e−λ(x+y) − (1− e−λy)
1− (1− e−λy)

=
e−λy(1− e−λx)

e−λy
= 1− e−λx = F (x) = P (X < x)

The proof of the second formula can be carried out in the same way.

Theorem 8 1−e−λh = λh+o(h), where o(h)(small ordo h) is defined by limh→0
o(h)
h

= 0.
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Proof:
As it can be seen the statement is equivalent to

lim
h→0

1− e−λh − λh
h

= 0,

which can be proved by applying the L’Hospital’s rule. That is

lim
h→0

1− e−λh − λh
h

= lim
h→0

λe−λh − λ
1

= 0.

Theorem 9 If F (x) is the distribution function of a random variable X ≥ 0 for which
F (0) = 0, and

F (x+ h)− F (x)

1− F (x)
= λh+ o(h), if x > 0,

then F (x) = 1− e−λx,if x ≥ 0.

Proof:
It can be seen from the conditions that

lim
h→0

F (x+h)−F (x)
h

1− F (x)
= lim

h→0

λh+ o(h)

h
= λ

therefore
− F ′(x)

1− F (x)
= −λ thus

∫
−F ′(x)

1− F (x)
dx =

∫
−λ dx

ln |1− F (x)| = −λx+ ln c

1− F (x) = ce−λx, that is F (x) = 1− ce−λx.
According to the initial condition F (0) = 0 thus we have c = 1, consequently

F (x) = 1− eλx.

In many practical problems it is important to determine the distribution of the minimum
of independent random variables.

Theorem 10 (Distribution of the lifetime of a series system) If Xi ∈ Exp(λi) and
are independent random variables (i=1,2,. . .,n) then

Y = min(X1, . . . , Xn)

is also exponentially distributed with parameter
∑n

i=1 λi.

Proof:
By using the properties of the probability and the independent events we have

P (Y < x) = 1− P (Y ≥ x) = 1− P (X1 ≥ x, . . . , Xn ≥ x)

= 1−
n∏
i=1

P (Xi ≥ x) = 1−
n∏
i=1

(1− (1− e−λix)) = 1− e−(
∑n
i=1 λi)x
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Example 4 Let X, Y be independent exponentially distributed random variables with pa-
rameters λ, µ, respectively. Find the probability that X = min(X, Y ).

Solution:
X = min(X, Y ) if and only if X < Y . By the theorem of total probability we have

P (X < Y ) =

∫ ∞
0

P (X < x)fY (x) dx,

P (X < Y ) =

∫ ∞
0

(1− e−λx)fY (x) dx =

∫ ∞
0

(1− e−λx)µe−µx dx

=

∫ ∞
0

µe−µx dx− µ

λ+ µ

∫ ∞
0

(λ+ µ)e−(λ+µ)x dx = 1− µ

λ+ µ
=

λ

λ+ µ

Example 5 (Distribution of the lifetime of a parallel system) Let X1, . . . , Xn be
independent random variables and Y = max(X1, . . . , Xn). Find the distribution of Y .

Solution:

P (Y < x) = P (X1 < x, . . . , Xn < x) =
n∏
i=1

P (Xi < x) =
n∏
i=1

FXi(x)

If Xi ∈ Exp(λi), then FY (x) =
∏n

i=1(1− e−λix).

In addition, if λi = λ, i = 1, . . . , n, then FY (x) = (1− e−λx)n

Example 6 Find the mean lifetime of a parallel system with two independent and expo-
nentially distributed components.

Solution:
Let us solve the problem first according to the definition of the mean. This case

fmax(X1,X2)(x) =
[(

1− e−λ1x
) (

1− e−λ2x
)]′

=
(
1− e−λ1x − e−λ2x + e−(λ1+λ2)x

)′
= λ1e

−λ1x + λ2e
−λ2x − (λ1 + λ2)e−(λ1+λ2)x.

Thus

E(max(X1, X2)) =

∞∫
0

xfmax(X1,X2)(x)dx

=
1

λ1

+
1

λ2

− 1

λ1 + λ2

.
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This can be expressed as

E(max(X1, X2)) =
λ2

1 + λ2
2 + λ1λ2

λ1λ2(λ1 + λ2)

=
1

λ1 + λ2

+
λ1

λ1 + λ2

· 1

λ2

+
λ2

λ1 + λ2

· 1

λ1

.

Now, let us show how this problem can be solved by probabilistic reasoning.

At the beginning both components are operating, thus the mean of the first failure is

1

λ1 + λ2

.

The second failure happens if the remaining component fails, too. We have 2 cases,
depending which component failed first. It is easy to see that by the memoryless property
of the exponential distribution the distribution of the residual life time of the remaining
component is the same as it was at the beginning. Then by using the theorem of total
expectation for the mean residual life time after the first failure we have

λ1

λ1 + λ2

1

λ2︸ ︷︷ ︸
component 1 failed first

+
λ2

λ1 + λ2

1

λ1︸ ︷︷ ︸
component 2 failed first

.

Hence the mean operating time of a parallel system is

1

λ1 + λ2

+
λ1

λ1 + λ2

1

λ2

+
λ2

λ1 + λ2

1

λ1

.

In homogeneous case it reduces to 1
2λ

+ 1
λ
as we will see in the next problem.

It is easy to see that the second moment of the lifetime could be calculated by the same
way by using either the definition or the theorem of second moments and thus the variance
can be obtained. Of course these are much complicated formulas but in homogeneous case
they could be simplified as we see in the next Example.

Example 7 Find the mean and variance of a parallel system with homogeneous, inde-
pendent and exponentially distributed components, that is Xi ∈ Exp(λ), i = 1, . . . , n.

Solution:

P (max(X1, . . . , Xn) < x) =
n∏
i=1

P (Xi < x) = (1− e−λx)n.

As it is well-known if X ≥ 0 then

EX =

∫ ∞
0

P (X ≥ x) dx =

∫ ∞
0

(1− F (x)) dx.
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Using substitution t = 1− e−λx we get

E(max(X1, . . . , Xn)) =

∫ ∞
0

(1− (1− e−λx)n dx =
1

λ

∫ 1

0

(1− tn)
1

1− t
dt

=
1

λ

∫ 1

0

(1 + t+ . . .+ tn−1) dt =
1

λ

[
t+

t2

2
+ . . .+

tn

n

]1

0

= λ

[
1 +

1

2
+ . . .+

1

n

]
=

1

nλ︸︷︷︸
first failure

+
1

(n− 1)λ︸ ︷︷ ︸
second failure - first failure

+ . . .+
1

λ︸︷︷︸
nth failure - (n-1)th failure

=
1

λ

[
1 +

1

2
+ . . .+

1

n

]
.

Due to the memoryless property of the exponential distribution it is easy to see that
the time difference between the consecutive failures are exponentially distributed. More
precisely, the distribution of time between the (k− 1)th and kth failures is exponentially
distributed with parameter (n−k+ 1)λ, k = 1, . . . , n. Moreover, they are independent of
each other. This fact can be used to get the mean and variance of the kth failure. After
these arguments it is clear that

E(time of the kth failure ) =
1

nλ
+ . . .+

1

(n− k + 1)λ

V ar(time of the kth failure) =
1

(nλ)2
+ . . .+

1

((n− k + 1)λ)2

k = 1, . . . , n.

In particular, the variance of the lifetime of a parallel system is

1

(nλ)2
+ . . .+

1

λ2
.

Definition 6 Let X and Y independent random variables with density functions fX(x)
and fY (x), respectively. Then the density function of Z = X + Y can be obtained as

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x) dx,

which is said to be the convolution of fX(x) and fY (x).
In addition, if X ≥ 0 and Y ≥ 0, then

fZ(z) =

∫ z

0

fX(x)fY (z − x) dx.

Example 8 Let X and Y be independent and exponentially distributed random variables
with parameter λ. Find their convolution.

27



Solution:
After substitution we have

fX+Y (z) =

∫ z

0

λe−λxλe−λ(z−x) dx = λ2

∫ z

0

e−λz dx

= λ2e−λz
∫ z

0

1 dx = λ2e−λzz = λ(λz)e−λz,

which shows the fact that the sum of independent exponentially distributed random
variables is not exponentially distributed.

Example 9 Let Xn . . .Xn be independent and exponentially distributed random variables
with the same parameter λ . Show that

fX1+...+Xn(z) = λ
(λz)n−1

(n− 1)!
e−λz.

Solution:
To prove this we shall use induction. As we have seen this statement is true for k = 2.
Let us assume it is valid for k = n− 1 and let us see what happens to k = n.

fX1+...+Xn−1+Xn(z) =

∫ z

0

λ(λx)n−2

(n− 2)!
e−λxλe−λ(z−x) dx

= λ2 e−λz

(n− 2)!
λn−2

∫ z

0

xn−2 dx = λ2 e−λz

(n− 2)!
λn−2 zn−1

(n− 1)

= λ
(λz)n−1

(n− 1)!
e−λz,

what is exactly the density function of an Erlang distribution with parameters (n, λ).
This representation of the Erlang distribution help us to compute its mean and variance
in a very simple way without using its density function.

The Erlang distribution is very useful to approximate the distribution of such a random
variable X for which the squared coefficient of variation C2

X < 1. In other words, if the
first two moments of X are given then

fY (t) = p
λ(λt)k−2

(k − 2)!
e−λt + (1− p)λ(λt)k−1

(k − 1)!
e−λt

is the mixture of two Erlang distributions with parameters (k − 1, λ) and (k, λ), where

p =
1

1 + C2
X

(
kC2

X −
√
k(1 + C2

X)− k2C2
X

)
,

λ =
k − p
E(X)

,
1

k
≤ C2

X ≤
1

k − 1
,

with the property that
E(Y ) = E(X), C2

Y = C2
X .
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Such a distribution of Y -t is denoted by Ek−1,k(λ) and it matches X on the first two
moments.

Hypoexponential Distribution

Let Xi ∈ Exp(λi) (i = 1, . . . , n) be independent exponentially distributed random vari-
ables. The random variable Yn = X1 + . . . + Xn is said to have a hypoexponential
distribution.
It can be shown that its density function is given by

fYn(x) =

{
0, if x < 0,

(−1)n−1[
∏n

i=1 λi]
∑n

j=1
e−λjx∏n

k=1,k 6=j(λj−λk)
, if x ≥ 0.

It is easy to see that

E(Yn) =
n∑
i=1

1

λi
, V ar(Yn) =

n∑
i=1

1

λ2
i

.

Thus for the squared coefficient of variation we have

C2
Yn =

n∑
i=1

(
1

λi

)2

(
n∑
i=1

1

λi

)2 ≤ 1.

Hyperexponeniális distribution

Let Xi ∈ Exp(λi) (i = 1, . . . , n) and p1, . . . , pn be distribution. A random variable Yn is
said to have a hyperexponential distribution if its density function is given by

fYn(x) =

{
0, if x < 0∑n

i=1 piλie
−λix, if x ≥ 0.

Its distribution function is

FYn(x) =

{
0, if x < 0

1−
∑n

i=1 pie
−λix, if x ≥ 0.

It is easy to see that

E(Yn) =
n∑
i=1

pi
λi
, E(Yn)2 = 2

n∑
i=1

pi

λi
2 .
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It can be shown that

C2
Yn =

2
n∑
i=1

(
1

λi

)2

−

(
n∑
i=1

1

λi

)2

(
n∑
i=1

1

λi

)2 ≥ 1.

In the case when for a random variable X, C2
X > 1 then the the following two-moment

fit is suggested

fY (t) = pλ1e
−λ1t + (1− p)λ2e

−λ2t,

that is Y is a 2-phase hyperexponentially distributed random variable. Since the density
function of Y contains 3 parameters and the fit is based on the first two moments the
distribution is not uniquely determined.
The most commonly used procedure is the balanced mean method, that is

p

λ1

=
1− p
λ2

.

In this case

E(Y ) =
p

λ1

+
1− p
λ2

= E(X)

E(Y 2) =
2p

λ2
1

+
2(1− p)
λ2

2

= E(X2).

The solution is

p =
1

2

(√
C2
X − 1

C2
X + 1

)
, λ1 =

2p

E(X)
, λ2 =

2(1− p)
E(X)

.

If the fit is based on the first 3 m1, m2, m3 moments then the m3 ≥ 3
2
m2

2 condition is
needed, and it gives a unique solution. It can be shown that the gamma and lognormal
distributions satisfy this condition. The parameters of the resulting unique hyperexpo-
nential distribution are

λ1,2 =
1

2

(
a1 ±

√
a2

1 − 4a2

)
, p =

λ1(1− λ2m1)

λ1 − λ2

,

where

a2 = (6m2
1 − 3m2)/

(
3

2
m2

2 −m1m3

)
, a1 =

(
1 +

1

2
m2a2

)
/m1.
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Mixture of Distributions

Definition 7 Let Xi, X2, . . . be random variables and p1, p2, . . . be a distribution.
The distribution function F (x) =

∑
piFXi(x) is called the mixture of distributions

FXi(x) and weights pi.

Similarly
The density function f(x) =

∑
pifXi(x) is called themixture of density functions fXi(x)

and weights pi .
It is easy to see that F (x), f(x) are indeed distribution, density functions, respectively.
Using this terminology we can say that the hyperexponential is the mixture of exponential
distributions.

2.2 Basics of Reliability Theory
Definition 8 Let a random variable X denote the lifetime or time to failure of a com-
ponent.
Then R(t) = P (X > t) = 1− F (t) is called the reliability function of the component.

It can easily be seen that R′(t) = −fX(t), and E(X) =
∞∫
0

R(t)dt.

The reliability function is very useful in reliability investigations of different complex
systems. On the basic of the previous arguments we can formulate the reliability function
of series and parallel systems, namely

• Series system

RS(t) =
n∏
i=1

Ri(t)

• Parallel system

RP (t) = 1−
n∏
i=1

(1−Ri(t))

Another important function is failure rate, hazard rate function) defined by

h(t) = lim
x→0

P (X < t+ x|X ≥ t)

x
= lim

x→0

P (t < t+ x)

xP (X ≥ t)

= lim
x→0

F (t+ x)− F (t)

xR(t)
= lim

x→0

R(t)−R(t+ x)

xR(t)
=
f(t)

R(t)
.

Let us show how R(t) can be expressed by the help of h(t). Namely,
t∫

0

h(x)dx =

t∫
0

−R
′(x)

R(x)
dx

t∫
0

h(x)dx = [− lnR(x)]t0 = − lnR(t),
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since R(0) = 1. Thus

R(t) = e
−

t∫
0

h(x)dx
.

Let H(t) =
t∫

0

h(x)dx which is called cumulative failure rate, cumulative hazard

rate function.
So we have

R(t) = e−H(t).

In the following R(t), h(t), H(t) are listed for some important distributions. These for-
mulas can be computed by the definitions of the involved random variables.
At the same time we show what is the relationship between h(t)t and C2

X .

• Exponential distribution

X ∈ Exp(λ), R(t) = e−λt, h(t) = λ, H(t) = λt, C2
X = 1.

• Erlang distribution

X ∈ Erl(n, λ)

R(t) =
n−1∑
i=0

(λt)i

i!
e−λt

h(t) =
λ(λt)n−1e−λt

(n− 1)!
n−1∑
i=0

(λt)i

i!
e−λt

=
λ(λt)n−1

(n− 1)!
n−1∑
i=0

(λt)i

i!

which is monotone increasing function with image in the interval [0, λ].

C2
X =

n
λ2(
n
λ

)2 =
1

n
≤ 1.

• Weibull distribution

X ∈ W (λ, α), R(t) = e−λt
α

, h(t) =
λαtα−1e−λt

α

e−λtα
= λαtα−1.

That is h(t) monotone increasing for α > 1, and monotone decreasing for α < 1.
For α = 1 h(t) = λ, H(t) = λtα.

C2
X =

(
1
λ

) 2
α
(
Γ
(
1 + 2

α

)
− Γ2

(
1 + 1

α

))((
1
λ

)
Γ
(
1 + 1

α

))2 =
Γ
(
1 + 2

α

)
Γ2
(
1 + 1

α

) − 1

=
2αΓ

(
2
α

)
Γ2
(

1
α

) − 1.
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It can be shown that
C2
X > 1 , if 0 < α < 1,

C2
X < 1 , if α > 1.

• Pareto distribution

X ∈ Par(k, α), R(t) =

(
t

k

)α
, h(t) =

λ

t
, H(t) = α ln

(
t

k

)
, t ≥ k.

C2
X =

k2α
α−2
−
(
kα
α−1

)2(
kα
α−1

)2 =
k2α
α−2(
kα
α−1

)2 − 1 =
(α− 1)2

(α− 2)α
− 1, α > 2.

Seeing the above examples we might expect that if h(t) is monotone increasing (decreas-
ing) function then C2

X < 1 (> 1). However, in the case of the Pareto distribution h(t)
is monotone decreasing, but it easy to show that C2

X < 1 if α > 1 +
√

2 and C2
ξ > 1 if

2 < α < 1 +
√

2.

2.3 Generation of Random Numbers
We have seen that the generation of random numbers can be carried by the help of the
following formula, sometimes called inverse transformation method

Y = FX(X) ∈ U(0, 1), and thus X = F−1(Y ).

In the next examples we show how to generate random numbers having important con-
tinuous distribution.

Example 10 Generate an exponentially distributed random number with parameter λ.

Solution:
If X ∈ Exp(λ) and Y ∈ U(0, 1) then 1 − e−λX = Y so if we can generate a uniformly
distributed on [0,1] then the exponentially distributed random numbers are

X = −1

λ
ln(1− Y ).

Example 11 Generate a random number having Erlang distribution with parameters
(n, λ) .

Solution:
Keeping in mind the representation of the Erlang distribution it is easy to see that

Yn = X1 + . . .+Xn = −1

λ
ln(

n∏
i=1

(1− Yi)), where Yi ∈ U(0, 1) , i = 1, . . . , n

gives the desired random number.
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Example 12 Generate a hypoexponentially distributed random number.

Solution:
As the hypoexponential distribution is the generalization of the Erlang distribution the
following formula results in the desired random number

Yn = X1 + . . .+Xn = − 1

λ1

ln(1− Y1)− . . .− 1

λn
ln(1− Yn).

Example 13 Generate a hyperexponentially distributed random number.

Solution:
In the first step let us generate a uniformly distributed random number Y on [0, 1] and
then choose an i for which

i−1∑
j=1

pj < Y <
i∑

j=1

pj.

In the second step let us generate an exponentially distributed random number with
parameter λi as we discussed earlier.

Example 14 Generate a Weilbull distributed random number.

Solution:

Y = 1− e−λXα

, thus

X =

[
−1

λ
ln(1− Y )

] 1
α

.

Example 15 Generate a Pareto distributed random number.

Solution:

Y = 1−
(
k

X

)α
, thus

X = k(1− Y )
1
α .
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2.4 Random Sums

Definition 9 Let ν ∈ {0, 1, 2, 3, . . .} be a random variable and let {Xi}∞i=1 be independent
identically distributed random variables that are independent of ν, too.
The random variable Yν = X1 + . . .+Xν is called a random sum (ν ≥ 1, Y0 = 0).

The distribution of Yν can be obtained by using the theorem of total probability. Similarly,
the moments of the random sum can be calculated by the help of the theorem of total
moments.
Discrete case

P (Yν = n) =
∞∑
k=0

P (Yk = n)P (ν = k),

E(Y l
ν ) =

∞∑
k=0

E(Y l
k)P (ν = k).

Continuous case

fYν (x) =
∞∑
k=0

fYk(x)P (ν = k) , FYν (x) =
∞∑
k=0

FYk(x)P (ν = k),

E(Y l
ν ) =

∞∑
k=0

∫ ∞
−∞

xlfYk(x) dxP (ν = k) =
∞∑
k=0

E(Y l
k)P (ν = k).

Example 16 Let fXi(x) = λe−λx , i = 1, 2, . . . and let ν be geometrically distributed with
parameter p. Find the density function of Yν.

Solution:
Notice that Yk is Erlang distributed with parameters (k, λ), hence by substituting its
density function we have

fYν (x) =
∞∑
k=1

λ(λx)k−1

(k − 1)!
e−λxp(1− p)k−1

= λp e−λx
∞∑
k=1

(λx(1− p))k−1

(k − 1)!
=
∞∑
j=0

(λx(1− p))j

j!

= λp e−λxeλx(1−p) = λp e−λpx

It means that Yν ∈ Exp(λp).

Theorem 11 Mean of a random sum

E(Yν) = EX1 Eν.
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Proof: By the law of total expectation we have

E(Yν) =
∞∑
k=1

E(Yk)P (ν = k) =
∞∑
k=1

kEX1P (ν = k)

= E(X1)
∞∑
k=1

kP (ν = k) = EX1 Eν.

Theorem 12 Variance of a random sum

V ar(Yν) = V ar(X1)Eν + E2X1 V ar(ν).

Proof:
By applying the theorem of total moment we get

E(Y 2
ν ) =

∞∑
k=1

E(Y 2
k )P (ν = k) =

∞∑
k=1

E[(X1 + . . .+Xk)
2]P (ν = k)

=
∞∑
k=1

(kV ar(X)1 + k2E2X1)P (ν = k)

=
∞∑
k=1

kV ar(X)1P (ν = k) +
∞∑
k=1

k2E2X1P (ν = k) = V ar(X)1 Eν + E2X1 Eν2.

Thus

V ar(Yν) = V ar(X1)Eν + E2X1 Eν2 − E2X1 E2ν = V ar(X1)Eν + E2X1 V ar(ν).
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Chapter 3

Analytic Tools, Transforms

The concept of transform appear naturally for investigation of different problems in math-
ematics, physics, and engineering sciences. The main reason to introduce them is that they
greatly simplify the calculations. The type of transformation depends on the problem it-
self, that is why varieties of transform occur, see for example, Z-transform, moment gener-
ating function, Laplace-transform, Fourier-transform, Mellin-transform, Hankel-transform,
etc. Moreover, they may have different names as well, e.g., probability generating function,
characteristic function. This chapter is devoted to the probability generating function and
the Laplace-transform which are closely related to the discrete and continuous nonnega-
tive random variables. Their usefulness will be illustrated by several examples.
Of course, there many books dealing with special transform, but in this material I con-
centrate on our needs only keeping in mind their applications in queueing theory. As basic
sources I recommend the following books: Allen [1], Kleinrock [5], Trivedi [14].

3.1 Generating Function
Definition 10 Let X be a nonnegative discrete random variable having distribution
P (X = n) = pn, n = 0, 1, 2, . . ..
Then the generating function GX(s) of X is defined as

GX(s) =
∞∑
k=0

skpk = E(sX).

GX(s) is defined if the series is convergent.

Theorem 13 The generating function holds the following properties

1. GX(1) = 1,

2. |GX(s)| ≤ 1, if |s| ≤ 1,

3. E(X) = G′X(1),

4. E(X2) = G′′X(1) +G′X(1),

5. pk =
GkX(0)

k!
, k = 0, 1, 2, . . ..
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Proof:

1. GX(1) =
∑

k 1kpk =
∑

k pk = 1.

2. |GX(s)| ≤
∑

k |skpk| =
∑

k |s|
kpk ≤

∑
k 1pk ≤ 1.

3. G′X(s) =
∑

k(s
k)′pk =

∑
k ks

k−1pk thus G′X(1) =
∑

k kpk = EX.

4. G′′X(s)
∣∣
s=1

=
∑

k(s
k)′′pk =

∑
k(ks

k−1)′pk
∣∣
s=1

=
∑

k k(k− 1)sk−2pk
∣∣
s=1

=
∑

k k
2pk −∑

k kpk = E(X2)− E(X)

Collecting the terms we get

V ar(X) = G′′X(1) +G′X(1)− (G′X(1))2.

Theorem 14 If X1, . . . , Xn are independent then GX1+...+Xn(s) =
∏n

i=1 GXi(s).

Proof:
In the proof we use the theorem if the random variables are independent then the mean
of their product is equal to the product of their means. Thus we can write

GX1+...+Xn(s) = E(sX1+...+Xn) = E(sX1 . . . sXn) =
n∏
i=1

E(sXi) =
n∏
i=1

GXi(s).

Theorem 15 Generating function of a random sum

GYν (s) = Gν(GX1(s)).

Proof:
By the law of total expectation we get

GYν (s) =
∑
n

E(sYn)P (ν = n) =
∑
n

(GX1(s)
nP (ν = n) = Gν(GX1(s)).

The following two theorems play an important role in many applications and simplify the
calculations in limiting distributions.

Theorem 16 (Continuity Theorem ) Let X1, . . . , Xn, . . . be a sequence of nonnega-
tive, integer valued random variables. If the sequence of the corresponding distribution
converges to a distribution, that is limn→∞ pnk = pk (k = 0, 1, . . .), and

∑∞
k=0 pk = 1,

where pnk = P (Xn = k), (k = 0, 1, . . . , n = 1, 2, . . .) then the corresponding generating
functions of Xn converge to the generating function of {pk} at any point in [−1, 1], that
is

lim
n→∞

Gn(s) = G(s), (|s| ≤ 1),
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where

Gn(s) =
∞∑
k=0

pnks
k = GXn(s)

G(z) =
∞∑
k=0

pks
k.

If the limit limn→∞ pnk = pk exists, but
∑
pk 6= 1, then the convergence of the generating

functions holds only in (−1, 1).

Comment 1 For illustration let us see the following example
Let X ≡ n, that is pnn = 1, and pnk = 0, if k 6= n then

lim
n→∞

pnk = 0, (k = 0, 1, . . .).

However

lim
n→∞

Gn(s) = lim
n→∞

sn =


0, if |s| < 1

1, if s = 1

non exists, if s = −1

.

Theorem 17 (Continuity Theorem ) If a sequence of the generating function of Xn

converges to a function G(s) on |s| ≤ 1 then the sequence of the corresponding distribution
of Xn converges to a probability distribution with generating function G(s).

Comment 2 If we assume that limn→∞Gn(s) = G(s) exists but only on |s| < 1, then
G(s) is not necessarily a generating function as we see in the following example.

Example 17 If a random variable Xn takes the values 0 and n with the same probability
then Gn(s) = 1+sn

2
and thus limn→∞Gn(s) = 1

2
. It is easy to see that

∑
pk = 1 is not

valid since

lim
n→∞

pnk = pk =

{
1
2
, if k = 0

0 otherwise.
.

Generating Function of Important Distributions
Example 18 Find the generating function of a Bernoulli distribution, then the mean
and variance.

Solution:
Gχ(A)(s) = s0(1− p) + s1p = sp+ 1− p = 1 + p(s− 1),

G′χ(A)(s)
∣∣
s=1

= p , Eχ(A)2 = 0 + p , V arχ(A) = p− p2 = p(1− p).

Example 19 Find the generating function of a Poisson distribution with parameter λ,
and then the mean and variance.
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Solution:

GX(s) =
∞∑
k=0

sk
λk

k!
e−λ = e−λ

∞∑
k=0

(λs)k

k!
= e−λe−sλ = e−λ(1−s).

G′X(s)
∣∣
s=1

= e−λ(1−s)λ
∣∣
s=1

= λ,

G′′X(s)
∣∣
s=1

= e−λ(1−s)λλ
∣∣
s=1

= λ2, V ar(X) = λ2 + λ− λ2 = λ.

Example 20 By using the generating function approach find the convolution of two Pois-
son distributions.

Solution:
Applying the properties of the generating function it is easy to get the generating function
of the sum and by taking into account the generating function of a Poisson distribution
we have

GX+Y (s) = e−λ(1−s)e−µ(1−s) = e−(λ+µ)s,

that exactly the generating function of a Poisson distribution with parameter λ+ µ.

Example 21 By the help the generating functions show that
B(n, p)→ Po(λ), if n→∞, p→ 0 such that np→ λ.

Solution:
Use that if an → A then (1 + an

n
)n → eA.

We are going to show that the generating function of the binomial distribution converges
to the generating function of the Poisson distribution, that is

GXn(s) = (1− p(1− s))n = (1− np(1− s)
n

)n → e−λ(1−s)

that is the generating function of a Poisson distribution with parameter λ.

Example 22 Let Xi ∈ χ(A) and independent, ν ∈ Po(λ). Find the generating function
of the random sum Yν.

Solution:
By using the relationship to the generating function of a random sum and taking into
account the form of the generating function of a Bernoulli and Poisson distribution after
substitution we shall get the desired result. Therefore we can write

GYν (s) = Gν(GXi(s)) = e−λ(1−(1+p(s−1))) = e−λp(1−s),

which shows that Yν ∈ Po(λp).
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Example 23 Solve the following system of differential equations

dP0(t)

dt
= −λP0(t)

dP1(t)

dt
= −λP1(t) + λP0(t)

. . .

dPk(t)

dt
= −λPk(t) + λPk−1(t)

k=1,2,. . .

Pk(0) =

{
1, if k = 0,

0, if k 6= 0.

Solution:
Multiplying both sides of the equations by the appropriate power of s we get

dP0(t)

dt
= −λP0(t)

sdP1(t)

dt
= (−λP1(t) + λP0(t))s

. . .

skdPk(t)

dt
= (−λPk(t) + λPk−1(t))sk = −λskPk(t) + λssk−1Pk−1(t)

Let us introduce the generating function G(t, s) as

G(t, s) =
∞∑
k=0

skPk(t).

By adding both sides we have

∂G(t, s)

∂t
=
∞∑
k=0

sk
dPk(t)

dt

= −λ
∞∑
k=0

skPk(t)︸ ︷︷ ︸
G(t,s)

+λs
∞∑
k=1

sk−1Pk−1(t)︸ ︷︷ ︸
G(t,s)

.

The initial condition is
G(0, s) =

∑
k

skPk(0) = 1.

Thus the system of differential equations reduces to a single differential equation, namely

∂G(t, s)

∂t
= −λ(1− s)G(t, s),

with initial condition
G(0, s) = 1.
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Rearranging the terms we get

∂G(t,s)
∂t

G(t, s)
= −λ(1− s)

and the solution is

ln |G(t, s)| = −λt(1− s) + lnC.

Since G(t, s) = Ce−λt(1−s) and G(0, s) = 1, thus G(0, s) = Ce−0 = 1, that is C = 1.

Hence G(t, s) = e−λt(1−s) which shows that G(t, s) is the generating function of a Pois-
son distribution with parameter λt. Therefore the solution of the system of differential
equation is

Pk(t) =
(λt)k

k!
e−λt, k = 0, 1, . . .

3.2 Laplace-Transform

Definition 11 Let X be a nonnegative random variable with density function fX(x).
The Laplace-transform LX(s) of X is defined as

LX(s) =

∫ ∞
0

e−sxfX(x) dx = E(e−sX) = f ∗X(s).

Theorem 18 The Laplace-transform holds the following properties

1. LX(0) = 1,

2. 0 ≤ LX(s) ≤ 1, if s ≥ 0,

3. If X1, . . . , Xn are independent random variables then

LX1+...+Xn(s) =
n∏
i=1

LXi(s),

4. E(Xn) = (−1)nL
(n)
X (0).

Proof:

1. LX(0) =
∫∞

0
e−0·xfX(x) dx =

∫∞
0
fX(x) dx = 1.

2. The lower bound of LX(s) comes from the observation that e−sxfX(x) is nonnegative
and thus the integral is also nonnegative. For the upper bound we have

LX(s) =

∫ ∞
0

e−sxfX(x) dx ≤
∫ ∞

0

1fX(x) dx = 1.
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3.

LX1+...+Xn(s) = E(e−s(X1+...+Xn)) = E(e−sX1 · . . . · e−sXn) = E(
n∏
i=1

(e−sXi)

=
n∏
i=1

E(e−sXi) =
n∏
i=1

LXi(s),

because if X1, . . . , Xn are independent then e−sX1 , . . . , e−sXn are also independent
and hence the multiplicative law is valid.

4.

L
(n)
X (0) =

∫ ∞
0

(e−sx)(n)fX(x) dx
∣∣
s=0

=

∫ ∞
0

(−x)ne−sx
∣∣
s=0

fX(x) dx = (−1)n
∫ ∞

0

xnfX(x) dx︸ ︷︷ ︸
E(Xn)

hence
E(Xn) = (−1)nL

(n)
X (0).

The main advantage of the Laplace-transform is that it can be used to solve differential
equations. It should be noted that the Laplace-transform can be applied for any function
with nonnegative range. In the following we would like to solve some differential equations
that is why we need

Theorem 19 The Laplace-transform hold the following properties

1. (af(x) + bg(x))∗(s) = af ∗(s) + bg∗(s)

2. (f ′(x))∗(s) = sf ∗(s)− f(0), if limx→∞
f(x)
esx

= 0.

Proof:

1. (af(x)+bg(x))∗(s) =
∞∫
0

e−sx(af(x) + bg(x))dx = a
∞∫
0

e−sxf(x)dx+b
∞∫
0

e−sxg(x)dx =

af ∗(s) + bg∗(s)

2. Using integration by parts

(f ′(x))∗(s) =
∞∫
0

e−sxf ′(x)dx = [f(x)e−sx]
∞
0 + s

∞∫
0

e−sxf(x)dx = sf ∗(s)− f(0).

Theorem 20 Laplace-transform of a random sum

LYν (s) = Gν(LX1(s)).
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Proof:
By the theorem of total expectation we have

LYν (s) = E(e−sYν ) =
∞∑
n=0

E(e−sYn)P (ν = n) =
∞∑
n=0

(LX1(s))
nP (ν = n) = Gν(LX1(s).

Due to their practical importance we state the following theorems without proof.

Theorem 21 f ∗(s) yields the following limits

• Initial value theorem
lim
s→∞

sf ∗(s) = lim
t→0

f(t)

• Final value theorem
lim
s→0

sf ∗(s) = lim
t→∞

f(t)

Theorem 22 (POST-WIDDER inversion formula ) If f(x) is a continuous and
bounded function on (0,∞) then

lim
n→∞

nn dn−1

dsn−1L(f)(s)
∣∣
s=n

y

yn(n− 1)!
= f(y)

Theorem 23 (Continuity Theorem) Let X1, . . . , Xn, . . . be a sequence of random vari-
ables having distribution functions F1(x), F2(x), . . . , Fn(x), . . .. If limn→∞ Fn(x) = F (x),
where F (x) is the distribution function of some random variable X then for the corre-
sponding Laplace-transform we have

lim
n→∞

E(e−sXn) = E(e−sX),

and conversely
if the sequence of Laplace-transforms converges to a function then for the corresponding
distribution functions we have

lim
n→∞

Fn(x) = F (x)

and the limiting function is the Laplace-transform of some random variable X with dis-
tribution function F (x).

In the following let us find the Laplace-transform of some important distributions.

Example 24 Find the Laplace-transform if X ∈ Exp(λ).

Solution:

LX(s) =

∫ ∞
0

e−sxλe−λx dx =
λ

λ+ s

∫ ∞
0

(λ+ s)e−(λ+s)x dx︸ ︷︷ ︸
1

=
λ

λ+ s
.
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Example 25 Find the Laplace-transform if X ∈ Erl(n, λ).

Solution:
Since X is the sum of independent exponentially distributed random variables with the
same parameter by applying the convolution property of the Laplace-transform we have

LX(s) =

(
λ

λ+ s

)n
.

Example 26 Find the Laplace-transform of a hypoexponential distribution.

Solution:
Since a hypoexponentially distributed random variable is the sum of independent expo-
nentially distributed random variable with different parameters we obtain

LYn(s) =
n∏
i=1

λi
λi + s

.

In the next example we show how the nth moment of an exponentially distributed random
variable can be obtained in a simple way by using one of the properties of the Laplace-
transform. This calculation is rather cumbersome by the density function approach.

Example 27 Using the Laplace-transform show that if X ∈ Exp(λ), then

E(Xn) =
n!

λn
.

Solution:

E(Xn) = (−1)nL
(n)
X (0) = (−1)n

(
λ

λ+ s

)(n)∣∣
s=0

= (−1)nλ((λ+ s)−1)(n)
∣∣
s=0

= (−1)nλ((−1)(−2) . . . (−n)(λ+ s))−n−1
∣∣
s=0

= (−1)nλ(−1)n
n!

λn+1
= (−1)2nλ

n!

λn+1
=
n!

λn
.

Example 28 Let ν be a geometrically distributed counting random variable and
Xi ∈ Exp(λ) summands. Find the distribution of the random sum.

Solution:
Knowing that if ν ∈ Geo(p), then Gν(z) = zp

1−z(1−p) , thus

LYν (s) = Gν(LX1(s)) =
λp
λ+s

1− λ
λ+s

(1− p)
=

λp

λp+ s
.

That is exactly the Laplace-transform of Yν ∈ Exp(λp).
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Theorem 24 Laplace-transform of a mixture distribution is the mixture of the corre-
sponding Laplace-transforms.

Proof:
Let

fY (x) =
∞∑
i=1

pifXi(x).

Then

LY (s) =

∫ ∞
0

e−sx

(
∞∑
i=1

pifXi(x)

)
dx

=
∞∑
i=1

pi

∫ ∞
0

e−sxfXi(x)dx︸ ︷︷ ︸
LXi (s)

=
∞∑
i=1

piLXi(s).

Example 29 Find the Laplace-transform of the function g(t) = (λt)k

k!
e−λt.

Solution:

g∗(s) =

∫ ∞
0

e−st
(λt)k

k!
e−λt dt =

λk

k!

1

λ+ s

∫ ∞
0

(s+ λ)tke−(s+λ)t dt︸ ︷︷ ︸
EXk= k!

(λ+s)k

=
λk

k!

1

λ+ s

k!

(λ+ s)k
=

1

λ+ s

(
λ

λ+ s

)k
.

Example 30 Use the Laplace-transform to solve the system of differential equations

P ′0(t) = −λP0(t)

P ′1(t) = −λP1(t) + λP0(t)

. . .

P ′k(t) = −λPk(t) + λPk−1(t), k = 1, 2, . . .

with initial conditions

Pk(0) =

{
1, if k = 0,

0, if k 6= 0.
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Solution:
By taking the Laplace-transform of both sides we have

(P ′0(t))∗(s) = −λ(P0(t))∗(s)

. . .

(P ′k(t))
∗(s) = −λ(Pk(t))

∗(s) + λ(Pk−1(t))∗(s), k = 1, 2, . . .

Using integration by parts we get∫ ∞
0

e−stP ′k(t) dt = [e−stPk(t)]
∞
0 −

∫ ∞
0

−se−stPk(t) dt.

Assuming that Pk(t) is bounded that is |Pk(t)| < K then

[e−stPk(t)]
∞
0 = −Pk(0).

Consequently
(P ′k(t))

∗(s) = −Pk(0) + sP ∗k (s).

Using the initial condition we obtain

(P ′0)∗(s) = −1 + sP ∗0 (s)

and
(P ′k)

∗(s) = sP ∗k (s) for k ≥ 1.

After substitution we get
−1 + sP ∗0 (s) = −λP ∗0 (s)

thus
P ∗0 (s) =

1

λ+ s
.

Furthermore
sP ∗k (s) = −λP ∗k (s) + λP ∗k−1(s),

hence
P ∗k (s) =

λ

λ+ s
P ∗k−1(s),

and thus it is easy to see that

P ∗k (s) =
1

λ+ s

(
λ

λ+ s

)k
.

Keeping in mind the previous example finally we get the solution as

Pk(t) =
(λt)k

k!
e−λt, k = 0, 1, 2 . . .
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Chapter 4

Stochastic Systems

This chapter is devoted to the stochastic modeling of dynamic systems. The most well-
know stochastic process, the Poisson process is introduced and it is shown what is its
relationship to other distributions. Simple stochastic systems are investigated serving as
a building blocks for the more complex ones. Different methods and approaches are used
to get the main performance measures of these systems. Variety of Examples helps the
reader to understand the topic. The material is based mainly on the following books:
Allen [1], Ovcharov [7], Trivedi [14].

4.1 Poisson Process

Definition 12 Let τ1, τ2 . . . be nonnegative, independent and identically distributed ran-
dom variables. The random variable counting the number of events until time t, that
is

ν(t) = max
n
{

n∑
i=1

τi < t}

is called renewal process, and its mean m(t) = Eν(t)-t is referred to as f renewal
function.

Theorem 25 If τ1, τ2 . . . are exponentially distributed with parameter λ then P (ν(t) =

k) = (λt)k

k!
e−λt.

Proof:
It can be seen from the construction that Sn =

∑n
i=1 τi is Erlang distributed with param-

eters (n, λ) thus its distribution function is

P (Sn < x) = FSn(x) = 1−
n−1∑
i=0

(λx)i

i!
e−λx.

In the proof we use that if an event A involves event B, denoted as A ⊂ B in probability
theory, then P (B \ A) = P (B) − P (A). Clearly, in our case event A can be defined as
{Sn+1 < t} and event B is {Sn < t}.
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It can easily be seen that exactly k events occur iff Sk < t, Sk+1 ≥ t. Hence

P (ν(t) = k) = P (Sk < t, Sk+1 ≥ t) = FSk(t)− FSk+1
(t)

= 1−
k−1∑
i=0

(λx)i

i!
e−λx −

(
1−

k∑
i=0

(λx)i

i!
e−λx

)
=

(λt)k

k!
e−λt.

As we can see the number of events that happened until time t is Poisson distributed
with parameter λt and it is called a Poisson process with rate λ.

It is not difficult to verify that

1. P (ν(h) = 0) = e−λh = 1− λh+ o(h),

2. P (ν(h) = 1) = λhe−λh = λh(1− λh+ o(h)) = λh+ (λh)2 + λho(h) = λh+ o(h),

3. P (ν(h) ≥ 2) = 1− [(1− λh+ o1(h)) + λh+ o2(h)] = o(h).

Definition 13 Rarity condition

lim
h→0

P (ν(h) ≥ 2)

P (ν(h) = 1)
= lim

h→0

o(h)

λh+ o(h)
= lim

h→0

o(h)
h

λ+ o(h)
h

= 0.

Let ν(t, t + h) denote the number of events (number of renewals ) that occurred in the
interval (t, t+h). Due to the construction of the Poisson process and the memoryless prop-
erty of the exponential distribution one can easily see that the distribution of ν(t, t+ h)
depends only on h irrespective to the position of the interval ( time-homogeneous ). In
addition, the number of renewals happened during non-intersected intervals are indepen-
dent random variables ( independent increments ).

The Poisson process has been introduced as a counting process with probability distri-
bution Pk(t) for the number of arrival during a given interval of length t, namely we
have

P (ν(t) = k) =
(λt)k

k!
e−λt.

Let us investigate the joint distribution of the arrival epochs during a given time interval
of length t when it is known in advance that exactly arrivals have occurred during that
interval. Let us divide the interval (0, t) into 2k + 1 nonoverlapping intervals in the
following way. Intervals of length αi always precede the interval of length βi, (i = 1, . . . , k),
and the interval is of length αk+1 and in addition

k+1∑
i=1

αi +
k∑
i=1

βi = t.

Let Ak denote the event that exactly one arrival occurs in each of the intervals βi,
(i = 1, 2, ..., k), and that no arrival occurs in any of the intervals αi, (i = 1, 2, ..., k + 1) .
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We would like to calculate the probability of event Ak given that exactly k arrivals have
occurred in the interval (0, t).
By the definition of the conditional probability thus we have

P (Ak|exactlyk arrivals in (0, t))

=
P (Ak and exactly k arrivals in (0, t))

P (exactly k arrivals in (0, t))
.

When the number of arrivals of a Poisson process during nonoverlapping intervals are
considered, they can be viewed as independent random variables with Poisson distribu-
tion. Thus the probability of the joint events may be calculated as the product of the
individual probabilities. ( Poisson process has independent increments ) Therefore

P (one arrival in interval of length βi) = λβie
−λβi

and
P (no arrival in interval of length αi) = e−λαi .

By using these probabilities we immediately get

P (Ak|exactly k arrivals in (0, t)) =

(λβ1λβ2...λβke
−λβ1e−λβ2 ...e−λβk)(e−λα1e−λα2 ...e−λαk)

((λt)k/k!)e−λt

=
β1β2...βk

tk
k!.

On the other hand, let us consider another process that selects k points in the interval
(0, t) independently where each point has uniform distribution over this interval. It can
easily be verified that

P (Ak|exactly k arrival in (0, t)) =

(
β1

t

)(
β2

t

)
...

(
βk
t

)
k!,

where the term k! comes about because the permutations of the k points are not distin-
guished.

Since these two conditional distributions are the same we can conclude that if in an
interval of length t there are exactly k arrivals from a Poisson process, then the joint dis-
tribution of the moments when these arrivals have occurred is the same as the distribution
of k points independent and uniformly distributed over the same interval.

Example 31 What is the rate ( intensity ) of the renewals

Solution:
lim
t→∞

E(ν(t))

t
= lim

t→∞

λt

t
= λ =

1

Eτ1

.
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Definition 14 (Stochastic convergence, convergence in probability) A sequence of ran-
dom variables Xn is said to converge in probability to a random variable X if , for any
ε) > 0,

lim
n→∞

P (|Xn −X|) ≥ ε) = 0

Theorem 26 ν(t)
t

converges in probability to λ

Proof:

By applying the Chebychev inequality and observing that

E(
ν(t)

t
) =

λt

t
= λ, V ar(

ν(t)

t
) =

λt

t2
=
λ

t

we get

0 ≤ P (|(ν(t)

t
− λ| ≥ ε) ≤ λ

tε2

which implies that

lim
t→∞

P (|(ν(t)

t
− λ| ≥ ε) = 0.

Definition 15 The rate of renewals is defined as

lim
t→∞

m(t)

t
.

Theorem 27 ( The Elementary Renewal Theory)

lim
t→∞

m(t)

t
=

1

Eτ1

.

Derivation of system of differential equations for the Poisson pro-
cess

Let Pk(t) denote the probability that until time t k events occurred. Due to the properties
of the Poisson process the following system of equations can be written

P0(t+ h) = P0(t)(1− λh+ o(h))

P1(t+ h) = P1(t)(1− λh+ o(h)) + P0(t)(λh+ o(h))

Pk(t+ h) = Pk(t)(1− λh+ o(h)) + Pk−1(t(λh+ o(h))

+
k∑
j=2

Pk−j(t)P (j events happened during h )︸ ︷︷ ︸
o(h)

P0(0) = 1.
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The first equation can be rewritten as

P0(t+ h)− P0(t) = −λhP0(t) + o(h),

which implies
P ′0(t) = −λP0(t).

Similarly to this the other equations imply the following system of differential equations
with initial condition

P ′0(t) = −λP0(t)

P ′1(t) = −λP1(t) + λP0(t)

P ′k(t) = −λPk(t) + λPk−1(t)

P0(0) = 1.

Notice that we have solved this system at Examples 23 and 30 and the solution is the
Poisson distribution, that is

Pk(t) =
(λt)k

k!
e−λt , k = 0, 1, . . .

4.2 Performance Analysis of Some Simple Systems
In the next section several simple systems are investigated with the aim that understand-
ing their performance more complicated ones could be analyzed.

Example 32 Let us consider a component having two states (0 if it operating, 1 if it
failed ) and let us suppose that at time 0 it is operating. Find the probability that at
time t it is failed assuming that the operating times are exponentially distributed random
variables with parameter λ and they are independent of the the repair times that are
exponentially distributed random variables with parameter µ.

Solution:
To formulate the problem in mathematical terms let introduce the following notations.
Let

X(t) =

{
0, if at time t the component is operating
1, if at time t the component is failed

furthermore its distribution is denoted by

Pi(t) = P (X(t) = i) , i = 0, 1.

Then by the help of the theorem of total probability and the memoryless property of the
exponential distribution we get

P0(t+ h) = P0(t)(1− λh+ o(h)) + P1(t)(µh+ o(h)) + o(h)

P0(t) + P1(t) = 1, which is called the normalizing condition
P0(0) = 1, is the initial condition.
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It is easy to see that after substitution and rearranging the terms we have

P0(t+ h)− P0(t) = −λhP0(t) + o(h) + (1− P0(t))µh+ o(h) + o(h).

Thus
P0(t+ h)− P0(t) = −(λ+ µ)hP0(t) + µh+ o(h)

lim
h→0

P0(t+ h)− P0(t)

h
= −(λ+ µ)P0(t) + µ

P ′0(t) = −(λ+ µ)P0(t) + µ.

Hence the calculations have reduced to

P ′0(t) + (λ+ µ)P0(t) = µ , P0(0) = 1,

which is a first-order inhomogeneous linear differential equation with constant coefficients.
Its solution can be obtained in different ways. In the next part we show how to get the
solution by applying the Laplace-transform method.
In the mean time we shall use the following properties of the Laplace-transform

(P ′(t))∗(s) = −P (0) + sP ∗(s)

and the Laplace-transform of a constant c is c
s
.

Taking the Laplace-transform of both side and keeping in mind these properties the
transformed differential equation can be written as

−1 + sP ∗0 (s) + (λ+ µ)P ∗0 (s) =
µ

s

By using the method of partial fractions we get

P ∗0 (s) =
µ+ s

s

1

s+ λ+ µ
=
A

s
+

B

s+ λ+ µ
=

(A+B)s+ A(λ+ µ)

s(s+ λ+ µ)
,

resulting
A+B = 1, A(λ+ µ) = µ

thus
A =

µ

λ+ µ
, B =

λ

λ+ µ
.

Therefore
P ∗0 (s) =

µ

λ+ µ

1

s
+

λ

λ+ µ

1

s+ λ+ µ
.

Knowing that

(δe−δt)∗(s) =
δ

s+ δ
, (e−δt)∗(s) =

1

s+ δ

inverting the terms we obtain the solution, namely

P0(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t,
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P1(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t.

If the initial condition is P1(0) = 1, then the solution is

P0(t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t,

P1(t) =
λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t.

Steady-state (stationary) distribution

Let Pi = limt→∞ Pi(t), i = 0, 1. Then taking the limits in the corresponding equations it
is easy to see that the solution is

• at initial condition P0(0) = 1

P0 =
µ

λ+ µ
, P1 =

λ

λ+ µ
,

• at initial condition P1(0) = 1

P0 =
µ

λ+ µ
, P1 =

λ

λ+ µ
.

Notice that we have the same distribution and the the initial condition has no effect on
the limiting distribution.

Example 33 Find P0, P1 by the help of the steady-state balance equations.

Solution:
Since in steady-state the functions do not depend on the time their derivatives are zero.
Hence from the corresponding differential equation and the normalizing condition we have

P0 =
µ

λ+ µ
, P1 =

λ

λ+ µ
.

Example 34 Find P0 by the help of the expectations of the operating and repair times.

Solution:
Let Yi, Xi denote the operating times, repair times of the component, respectively. Let
us assume that all these times are independent of each other.
As the time goes the states of the component alternate, and Yi+Xi create so called cycle
which are independent of each other. It can be proved that the stationary distribution
that the component is operating is the ratio of the mean operating time and the mean
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cycle time.

In the case of exponentially distributed times

P0 =
EY1

EY1 + EX1

=
1
λ

1
λ

+ 1
µ

=
1
λ

µ+λ
λµ

=
λµ
λ

λ+ µ
=

µ

λ+ µ
,

which the same as we have in the previous Example.

In the reliability theory the distribution of the time to the first system failure plays a
very important role. Obviously, this distribution should depend on the initial condition
of the system. The aim of the next Example to illustrate this topic.

Example 35 Let us consider a system consisting of two components having exponentially
distributed operating times with parameter λ. The failed component is maintained by a
single repairman and the repair times are supposed to be exponentially distributed random
variables with parameter µ. If both components are failed the system is said to be failed and
the whole operation stops. Assuming that at the beginning all components are operating
and they are independent of each other find the mean time to the first system failure.

Solution:
As in the previous Example let i denote the number of failed components, i = 0, 1, 2.
Since if the process enters to state 2 the system stops it is an absorbing state. It is not
difficult to see that the transition rates between the states can be illustrated as follows

Figure 4.1: Transition rates in Example 35

It can easily be verified that for the distribution of the system the following differential
equations with initial condition can be written

P ′0(t) = −2λP0(t) + µP1(t)

P ′1(t) = −(λ+ µ)P1(t) + 2λP0(t)

P ′2(t) = λP1(t)

P0(0) = 1.

It is enough to solve P0(t) and P1(t) since

P2(t) = 1− (P0(t) + P1(t)).
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Taking the Laplace-transform at both sides and using the initial condition we have

sP ∗0 (s)− 1 = −2λP ∗0 (s) + µP ∗1 (s)

sP ∗1 (s) = −(λ+ µ)P ∗1 (s) + 2λP ∗0 (s)

P ∗1 (s) =
2λ

s+ λ+ µ
P ∗0 (s)

(s+ 2λ)P ∗0 (s) =
2λµ

s+ λ+ µ
P ∗0 (s) + 1

(2λ+ s)(s+ λ+ µ)P ∗0 (s) = 2λµP ∗0 (s) + s+ λ+ µ

[(2λ+ s)(s+ λ) + sµ]P ∗0 (s) = s+ λ+ µ.

Thus

P ∗0 (s) =
s+ λ+ µ

s2 + (3λ+ µ)s+ 2λ2

P ∗1 (s) =
2λ

s2 + (3λ+ µ)s+ 2λ2
.

Distribution of the time to the first system failure

Let Y denote the time to the first system failure.
It is easy to see

P (Y < t) = P2(t) = 1− (P0(t) + P1(t)).

Thus
E(Y ) =

∫ ∞
0

P (Y > t) dt =

∫ ∞
0

(P0(t) + P1(t)) dt = P ∗0 (0) + P ∗1 (0)

since P ∗i (0) =
∫∞

0
Pi(t) dt.

Therefore
E(Y ) =

λ+ µ

2λ2
+

1

λ
=
λ+ µ+ 2λ

2λ2
=

3λ+ µ

2λ2
=

3

2λ
+

µ

2λ2

Specially, if µ = 0, which means that there is no repair, this formula simplifies to

E(Y ) =
3

2λ
=

1

2λ
+

1

λ

as we could see in the case of a parallel system.

Of course, the density function of the time to the first system failure can be obtained this
way. Let us see what to do get it.

Determination of density function fY (t)

To get fY (t) let us notice that fY (t) = P ′2(t). Using the properties of the Laplace-transform
this can be transformed to

f ∗Y (s) = (P ′2)∗(s) = sP ∗2 (s)− P2(0)
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= sP ∗2 (s) = s(1− P0(t)− P1(t))∗(s) = s

(
1

s
− P ∗0 (s)− P ∗1 (s)

)
.

Alternatively, at balance equation

P ′2(t) = λP1(t)

taking the Laplace-transform we have

f ∗Y (s) = λP ∗1 (s) =
2λ2

s2 + (3λ+ µ)s+ 2λ2
=

2λ2

α1 − α2

(
1

s+ α2

− 1

s+ α1

)
where

s2 + (3λ+ µ)s+ 2λ2 = (s+ α1)(s+ α2)

α1,2 =
(3λ+ µ)±

√
λ2 + 6λµ+ µ2

2
.

Thus
fY (t) =

2λ2

α1 − α2

(e−α2t − e−α1t).

Therefore

E(Y ) =

∫ ∞
0

yfY (y) dy =
2λ2

α1 − α2

[
1

α2
2

− 1

α2
1

]
=

2λ2(α1 + α2)

(α1α2)2

=
2λ2(3λ+ µ)

(2λ2)2
=

3

2λ
+

µ

2λ2
.

Example 36 Modify the initial condition and let us assume that the system operation
start with 1 operating component. Find the mean time to the first system failure.

Solution:
Let us notice that we have the same system of differential equations just the initial
condition has changed. That is

P ′0(t) = −2λP0(t) + µP1(t)

P ′1(t) = −(λ+ µ)P1(t) + 2λP0(t)

P ′2(t) = λP1(t)

P1(0) = 1.

Similarly to the previous solution we have

sP ∗0 (s) = −2λP ∗0 (s) + µP ∗1 (s)

sP ∗1 (s)− 1 = −(λ+ µ)P ∗1 (s) + 2λP ∗0 (s)

P ∗1 (s) =
s+ 2λ

µ
P ∗0 (s)
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[(s+ λ+ µ)(
s+ 2λ

µ
) + 2λ]P ∗0 (s) = 1

Thus

P ∗0 (s) =
µ

(s+ λ+ µ)(s+ 2λ) + 2λµ
=

µ

s2 + (3λ+ µ)s+ 2λ2 + 2λµ+ 2λµ

=
µ

s2 + (3λ+ µ)s+ 2λ(λ+ 2µ)

P ∗1 (s) =
s+ 2λ

µ

P ∗0 (s) =
s+ 2λ

s2 + (3λ+ µ)s+ 2λ(λ+ 2µ)
.

Hence the mean is

E(Y ) = P ∗0 (0) + P ∗1 (0) =
µ

2λ(λ+ 2µ)
+

2λ

2λ(λ+ 2µ)
=

2λ+ µ

2λ(λ+ 2µ)
.

In particular, in the case of non-maintained system, that in when µ = 0 it reduces to
E(Y ) = 1

λ
, which shows that our calculation is correct.

Let E(Yi) denote the mean time to the first system failure with initial state i. On the
basic of the previous calculations we have

E(Y0) =
3λ+ µ

2λ2
, E(Y1) =

2λ+ µ

2λ(λ+ 2µ)
.

It is easy to see that E(Y0) > E(Y1), since

E(Y0)

E(Y1)
=

3λ+µ
2λ2

2λ+µ
2λ(λ+2µ)

=
(3λ+ µ)(λ+ 2µ)

λ(2λ+ µ)
=

3λ2 + 7λµ+ 2µ2

2λ2 + λµ

= 1 +
λ2 + 6λµ+ 2µ2

2λ2 + λµ
> 1,

which was expected.

Example 37 Find the steady-state probability that k components are operating in a sys-
tem containing of n independent components.

Solution:
The key to this problem is the binomial distribution with parameters (n, µ

λ+µ
) since in

steady-state the probability that a given component is operating is µ
λ+µ

. Since we have n
components the probability in question is

Pk =

(
n

k

)(
µ

λ+ µ

)k(
λ

λ+ µ

)n−k
.
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Mean operation time of a parallel system

Let A denote the steady-state availability coefficient of a system, that is the steady-
state probability that the system is operating. As we have seen a parallel system is
operating if there exists operating component. In other words it is failed if all the compo-
nents are failed. In the case of a system containing of n independent components having
exponentially distributed operating time, repair times with parameters λ, µ, respectively,
this probability is given by ( λ

λ+µ
)n.

Thus
A = 1−

(
λ

λ+ µ

)n
.

Let E(S) denote the mean sojourn time of the system in failed state and let E(O) denote
the mean operating time of the system. Then

A =
E(O)

E(O) + E(S)
= 1−

( λ
µ

1 + λ
µ

)n
.

Therefore
A(E(O) + E(S)) = E(O), E(O) =

A

1− A
E(S).

In the case of a parallel system it has the form of

E(O) =

1−
(

λ
µ

1+λ
µ

)n
(

λ
µ

1+λ
µ

)n · 1

nµ
.

The term 1
nµ

is the mean time while all the components are failed. Since this time is the
minimum of the repair times it is exponentially distributed with parameter nµ because
the repair times are exponentially distributed with parameter µ.

Example 38 Let us consider a system with two components and two repairmen. Let i
denote the number of failed components. Assuming independent exponentially distributed
operating and repair times derive the corresponding set of differential equations.

Solution:
Similarly as we have done earlier it is easy to see that the transition rates can be written
as it is illustrated and hence the differential equations can easily be derived in the usual
way, that is we have

P ′0(t) = −2λP0(t) + µP1(t)

P ′1(t) = −(λ+ µ)P1(t) + 2λP0(t) + 2µP2(t)

P ′2(t) = −2µP2(t) + λP1(t)

P0(t) + P1(t) + P2(t) = 1

P0(0) = 1.
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Figure 4.2: 2 components, 2 repairmen

Example 39 Let as consider the previous Example with a single repairman. Find the
steady-state distribution, the mean operating time of the system, and the mean busy period
of the repairman.

Solution:
Of course we have to modify the repair rates, as it is illustrated, but after that the
steady-state balance equations can easily be derived in the usual way as follows

Figure 4.3: 2 components, 1 repairman

2λP0 = µP1

(λ+ µ)P1 = 2λP0 + µP2

µP2 = λP1

P0 + P1 + P2 = 1

It is easy to verify that the solution is

P1 =
2λ

µ
P0,

P2 =
λ

µ
P1 =

2λ2

µ2
P0,

P 0
−1 = 1 +

2λ

µ
+

2λ2

µ2
.

For the mean operating time we have the general formula, namely

E(O) =
A

1− A
E(S).
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Since we have only a single repairman and the repair time is exponentially distributed
thus E(S) = 1

µ
. The availability coefficient A = 1− P2.

To answer the third question let us introduce the following notations. Let E(i) be the
mean idle time and E(δ) be the mean busy period of the server. Since

P0 =
E(i)

E(i) + E(δ)
,

thus
E(δ) =

1− P0

P0

E(i).

This time E(i) = 1
2λ
, and in the case of n components it is E(i) = 1

nλ
, since the idle time

is the minimum of the operating times of the components.

Example 40 Compare the mean operation time E(O1) and E(O2) of the systems with 1
and 2 repairmen.

Solution:
In the case of two repairmen

As we have calculated earlier

E(O2) =
1− ( λ

λ+µ
)2

( λ
λ+µ

)2
· 1

2µ
=

µ

2λ2
+

1

λ
.

As we have shown in Example 35 the mean time to the first system failure starting with
two operating components is

T̄0 =
3λ+ µ

2λ2
.

It is easy to see that
T̄0 > E(O2).

In the case of a single repairman

E(O1) =
1− 2λ2

µ2
P0

2λ2

µ2
P0

· 1

µ
, whereP0 =

1

1 + 2λ
µ

+ 2λ2

µ2

=
µ2

µ2 + 2λµ+ 2λ2
.

Thus

E(O1) =

1− 2λ2

µ2

µ2

µ2 + 2λµ+ 2λ2

2λ2

µ2

µ2

µ2 + 2λµ+ 2λ2

· 1

µ
=

µ2(µ2 + 2λµ+ 2λ2)− 2λ2µ2

µ2(µ2 + 2λµ+ 2λ2)

2λ2µ2

µ2(µ2 + 2λµ+ 2λ2)

· 1

µ

=
µ2 + 2λµ+ 2λ2 − 2λ2

2λ2

1

µ
=
µ2 + 2λµ

2λ2

1

µ
=

2λ+ µ

2λ2

=
µ

2λ2
+

1

λ
.
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Surprisingly there is no difference in the two cases. Of course the steady-state distributions
are different, but nevertheless the mean value is the same.

So far we have investigated systems with homogeneous components. In the next section
we are dealing with systems with heterogeneous elements resulting more complicated set
of differential equations and formulas.

Example 41 Let us consider a system with heterogeneous components and with 2 repair-
man. The ith component has exponentially distributed operating times and repair times
with parameter λi and µi, respectively, i=1,2.
Assuming that the involved random variables are independent of each other find the tran-
sient distribution of the system starting with 2 operating components. Furthermore, in
steady-state compute the mean operating time of this parallel system.
What is the mean operating time without repair ?

Solution:
To describe the behavior of the system we need more sophisticated notations since we
have to keep in mind the heterogeneity of the components. Thus let us denote by 0 the
state when both components are operating, by 1 when component with index 1 is failed,
by 2 when component with index 2 is failed, and finally by 1, 2 when both components
are failed. The transition rates are illustrated in the following Figure, showing a more
complicated situation. By the help of these rates the corresponding differential equations
can be written in the traditional way.

Figure 4.4: Heterogeneous case with 2 repairmen
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Transient distribution

P ′0(t) = −(λ1 + λ2)P0(t) + µ1P1(t) + µ2P2(t)

P ′1(t) = −(λ2 + µ1)P1(t) + λ1P0(t) + µ2P1,2(t)

P ′2(t) = −(λ1 + µ2)P2(t) + λ2P0(t) + µ1P1,2(t)

P ′1,2(t) = −(µ1 + µ2)P1,2(t) + λ2P1(t) + λ1P2(t)

P0(0) = 1.

After elementary calculations we can verify that the solution is

P0(t) =

(
µ1

λ1 + µ1

+
λ1

λ1 + µ1

e−(λ1+µ1)t

)(
µ2

λ2 + µ2

+
λ2

λ2 + µ2

e−(λ2+µ2)t

)
P1(t) =

(
λ1

λ1 + µ1

− λ1

λ1 + µ1

e−(λ1+µ1)t

)(
µ2

λ2 + µ2

+
λ2

λ2 + µ2

e−(λ2+µ2)t

)
P2(t) =

(
µ1

λ1 + µ1

+
λ1

λ1 + µ1

e−(λ1+µ1)t

)(
λ2

λ2 + µ2

− λ2

λ2 + µ2

e−(λ2+µ2)t

)
P1,2(t) =

(
λ1

λ1 + µ1

− λ1

λ1 + µ1

e−(λ1+µ1)t

)(
λ2

λ2 + µ2

− λ2

λ2 + µ2

e−(λ2+µ2)t

)
Further performance measures are

R(t) = 1− P1,2(t), A = 1− P1,2, E(O) =
1− P1,2

P1,2

1

µ1 + µ2

Steady-state distribution

Let Qi = P ( i components are failed ) As we have seen earlier

P (ith component is operating) =
1
λi

1
λi

+ 1
µi

.

Thus it is easy to see that
Q0 =

µ1

λ1 + µ1

µ2

λ2 + µ2

Q1 =
λ1

λ1 + µ1

µ2

λ2 + µ2

+
µ1

λ1 + µ1

λ2

λ2 + µ2

Q2 =
λ1

λ1 + µ1

λ2

λ2 + µ2

.

Therefore the mean operation time of the system is

E(O) =
1−Q2

Q2

E(S) =

1− λ1

λ1 + µ1

λ2

λ2 + µ2

λ1

λ1 + µ1

λ2

λ2 + µ2

· 1

µ1 + µ2

=
(λ1 + µ1)(λ2 + µ2)− λ1λ2

λ1λ2

· 1

µ1 + µ2

=
λ1λ2 + λ1µ2 + µ1λ2 + µ1µ2 − λ1λ2

λ1λ2

· 1

µ1 + µ2

=
λ1µ2 + µ1λ2 + µ1µ2

λ1λ2

· 1

µ1 + µ2

.
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Example 42 Let as consider the previous system with a single repairman.
Find the steady-state performance measures under different service disciplines.
Assuming that at the beginning both components are operating find the mean time to the
first system failure in the case of a parallel system.

Fist-In First-Out (FIFO) discipline

As usual, first we have to introduce the states of the system keeping in mind the order
of arrivals of the failed components. Thus

• 0 - there is no failed component

• 1 - component with index 1 is failed

• 2 - component with index 2 is failed

• 1, 2 - both components are failed, but component with index 1 arrived first

• 2, 1 - both components are failed, but component with index 2 arrived first

The transition rates are illustrated in the following Figure. The set of steady-state balance
equations can be written as usual.

Figure 4.5: FIFO discipline
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The equations and the normalizing condition are

(λ1 + λ2)P0 = µ1P1 + µ2P2

(µ1 + λ2)P1 = λ1P0 + µ2P2,1

(µ2 + λ1)P2 = λ2P0 + µ1P1,2

µ1P1,2 = λ2P1

µ2P2,1 = λ1P2

P0 + P1 + P2 + P1,2 + P2,1 = 1

After these by elementary but lengthly calculations one can verify that the solution is

P−1
0 = 1 +

λ1(λ1 + λ2 + µ2)

λ2µ2 + µ1(λ1 + µ2)
+

λ2(λ2 + λ1 + µ1)

λ1µ1 + µ2(λ2 + µ1)

+
λ2

µ1

λ1(λ1 + λ2 + µ2)

λ2µ2 + µ1(λ1 + µ2)
+
λ1

µ2

λ2(λ2 + λ1 + µ1)

λ1µ1 + µ2(λ2 + µ1)

P1 =
λ1(λ1 + λ2 + µ2)

λ2µ2 + µ1(λ1 + µ2)
P0

P2 =
λ2(λ2 + λ1 + µ1)

λ1µ1 + µ2(λ2 + µ1)
P0

P1,2 =
λ2

µ1

P1

P2,1 =
λ1

µ2

P2

Hence the distribution of the number of failed components can be computed as

Q0 = P0, Q1 = P1 + P2, Q2 = P1,2 + P2,1.

It is easy to see that the main performance measures are

E(δ) =
(1− P0)

P0

· 1

λ1 + λ2

E(O) =
1−Q2

Q2

(
1

µ1

· P1,2

Q2

+
1

µ2

· P2,1

Q2

).

Processor Sharing (PS) discipline

Under this discipline the order of arrivals is not significant and that is why if both
components are failed it is denoted by 1, 2. However, in this state the repair intensity is
halved.
The transition rates are illustrated in the following Figure
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Figure 4.6: Processor Sharing discipline

The steady-state balance equations and the normalizing condition can be written as

(λ1 + λ2)P0 = µ1P1 + µ2P2

(λ2 + µ1)P1 = λ1P0 +
µ2

2
P1,2

(λ1 + µ2)P2 = λ2P0 +
µ1

2
P1,2(µ1

2
+
µ2

2

)
P1,2 = λ2P1 + λ2P2

P0 + P1 + P2 + P1,2 = 1

Q0 = P0 , Q1 = P1 + P2 , Q2 = P1,2

The solution is much simpler, namely

P1 =
λ1

µ1

P0, P2 =
λ2

µ2

P0, P1,2 = 2
λ1λ2

µ1µ2

P0

P−1
0 = 1 +

λ1

µ1

+
λ2

µ2

+ 2
λ1λ2

µ1µ2

The main performance measures are

E(δ) =
(1− P0)

P0

· 1

λ1 + λ2

, E(O) =
1−Q2

Q2

2

µ1 + µ2

.

Preemptive Priority discipline

Under this discipline component with index 1 has preemptive priority over component
with index 2. This means if component 1 fails when component 2 is under repair the
service process stops and the service of component 1 starts immediately. In other words,
service of component 2 can be carried out only when component 1 is operating. It is
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Figure 4.7: Preemptive Priority discipline

easy to see that the states remain the same but the transition rates are different as it is
illustrated in the following Figure.
For the steady-state balance equations we have

(λ1 + λ2)P0 = µ1P1 + µ2P2

(λ2 + µ1)P1 = λ1P0

(λ1 + µ2)P2 = λ2P0 + µ1P1,2

µ1P1,2 = λ2P1 + λ1P2

P0 + P1 + P2 + P1,2 = 1.

The distribution of the number of failed components can be obtained as

Q0 = P0 , Q1 = P1 + P2 , Q2 = P1,2.

It is not too difficult to verify that the solution is of the form

P−1
0 = 1 +

λ1

µ1 + λ2

+
λ2

µ2

· λ1 + λ2 + µ1

λ2 + µ1

+ 2
λ1λ2

µ1µ2

λ1 + λ2 + µ1 + µ2

λ2 + µ1

P1 =
λ1

µ1 + λ2

P0

P2 =
λ2

µ2

· λ1 + λ2 + µ1

λ2 + µ1

P0

P1,2 = 2
λ1λ2

µ1µ2

λ1 + λ2 + µ1 + µ2

λ2 + µ1

P0.

For the performance measures we get

E(δ) =
1− P0

P0

1

λ1 + λ2

, E(O) =
1−Q2

Q2

1

µ1

.
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Knowing the distribution in all 3 disciplines it is quite simple to get the distribution for
the homogeneous case. Namely, we obtain

Q1 =
2λ

µ
P0,

Q2 =
λ

µ
P1 =

2λ2

µ2
P0,

Q0
−1 = P 0

−1 = 1 +
2λ

µ
+

2λ2

µ2
,

as we have seen in the earlier Examples.

Mean time to the first system failure

Solution:

To get the distribution of the time to the first system failure one can easily see that
the service discipline has no effect on it if we have only two components. Omitting the
tiresome Laplace-transform method the mean time can be obtained relative simple by
probabilistic reasoning. To do so we need the following notation.
Let E(Ti) denote the mean time to the first system failure starting from state i, i = 0, 1, 2.
By the theorem of total expectation and the properties of the exponential distribution
the following equations can be written

E(T1) =
1

λ2

λ2

µ1 + λ2

+
µ1

µ1 + λ2

E(T0), E(T2) =
1

λ1

λ1

µ2 + λ1

+
µ2

µ2 + λ1

E(T0)

E(T0) =
1

λ1 + λ2

+
λ1

λ1 + λ2

E(T1) +
λ2

λ1 + λ2

E(T2).

After elementary calculations we obtain

E(T1) =
1

µ1 + λ2

+
µ1

µ1 + λ2

E(T0), E(T2) =
1

µ2 + λ1

+
µ2

µ2 + λ1

E(T0)

E(T0) =
1

λ1 + λ2

(
1 +

λ1

λ2 + µ1

+
λ2

λ1 + µ2

)
/

/

(
1− λ1

λ1 + λ2

µ1

µ1 + λ1

− λ2

λ1 + λ2

µ2

µ2 + λ2

)
.

In particular, if µ1 = µ2 = 0, that is when there is no repair this formula reduces to the
result of Example 6, that is

E(T0) =
1

λ1 + λ2

(
1 +

λ1

λ2

+
λ2

λ1

)
.
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By applying the theorem of total moments the second moment of these times could be
calculated and thus the variance of T0 could be obtained.
In particular, if µ1 = µ2 = 0, that is when there is no repair this formula could reduce to
the result of Example 6.

70



Chapter 5

Continuous-Time Markov Chains

The evolution of time-dependent systems can be obtained by different methods, the most
commonly known one is the method of differential equations. In addition, if they exhibit
random movements the situation becomes even more complicated. It is not the aim of this
chapter to deal with the theory of stochastic processes since it has a wide literature and
their mathematical level exceeds the level of the note. Omitting the precise mathematical
treatment we concentrate only on the simplest processes which be used later on in the
performance modeling of queueing systems. There is a variety of sources on this topic in
either digital or printed form but for our purposes the following books fit best: Allen [1],
Kleinrock [5], Ovcharov [7], Sztrik [12], Tijms [13], Trivedi [14].

This section is devoted to one of the most commonly used stochastic processes, that is
when each time t we have a random variable taking values 0, 1, ... representing the states
of the process. To know the evolution of the process we need the connection of the random
variables at different times, in other words, we have to formulate mathematically how the
future depends on th past. The simplest relationship is when the future depends on the
past only through the present which can expressed as follows

Definition 16 (Markov-property) If for any n and states i1, · · · , in+1

P (X(tn+1) = in+1|X(t1) = i1, · · · , X(tn) = in) = P (X(tn+1) = in+1|X(tn) = in)

then process X(t) is called a Markov chain.

Let Pij(t, t+h) = P (X(t+h) = j|X(t) = i) denote the transition probability probability
of the chain, which is in time-homogeneous case is denoted by Pij(h). Clearly it means
that the process during time h changes its state from i to j irrespective to where it is.

It is easy to see that ∑
j

Pij(t, t+ h) = 1.

To get how the distribution of the states changes during the time we have to know how
the transition probabilities changes. Thus we define
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Definition 17 (Intensity matrix, rate matrix ) The intensity matrix Q with elements qij
is defined by

qij =

{
limh→0

Pij(h)

h
, if i 6= j,

limh→0
Pij(h)−1

h
, if i = j.

Pij(0) =

{
1, if i = j

0, if i 6= j
, that is qij = lim

h→0

Pij(h)− Pij(0)

h

Hence the transition probabilities can be expressed as

Pij(h) = qijh+ o(h)

Pii(h) = 1− qiih+ o(h)

Let us introduce the distribution of the process at time t, that is

Pj(t) = P (X(t) = j), j = 0, 1, 2 . . . .

Then for the balance equations we have

Pj(t+ h) = Pj(t) · Pjj(h) +
∑
i 6=j

Pi(t)Pij(h), j = 0, 1, 2, . . .

These can be written as

Pj(t+ h)− Pj(t) = Pj(t) · (Pjj(h)− 1) +
∑
i 6=j

Pi(t)Pij(h), j = 0, 1, 2, . . .

Pj(t+ h)− Pj(t)
h

=
Pj(t) · (Pjj(h)− 1)

h
+
∑
i 6=j

Pi(t)Pij(h)

h
, j = 0, 1, 2, . . .

Taking the limit the desired system of differential equations can be obtained, namely

P ′j(t) = qjjPj(t) +
∑
i 6=j

qijPi(t), j = 0, 1, 2, . . .∑
j

Pj(t) = 1, normalizing condition

Pj(0) =

{
1, if j = k,

0, if j 6= k
k = 0, 1, 2 . . . initial condition.

Steady-state, stationary distribution

One can easily notice that all the systems treated in the previous problems are special
cases of continuous-time Markov chains. As we have seen it is rather difficult to get the
transient solution even for quite simple systems. To obtain treatable formulas we are
interested in the limiting distribution which is called steady-state, stationary distri-
bution. Mathematically this can be written as

Pk = lim
k→∞

Pk(t).
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Then the steady-state balance equations can be obtained as

qjPj =
∑
i 6=j

qijPi,
∑
j

Pj = 1, qj = −qjj.

In performance modeling of different systems we have to identify the stochastic process
describing the dynamic behavior of the system. The most widely used, consequently the
most thoroughly investigated class of stochastic process is the Markov process. Many
practical problems can be treated by the help of a continuous-time Markov chain that is
why without proof we state the following theorem

Theorem 28 A stochastic process X(t) is a continuous-time Markov chain if and only
if the sojourn time in any state j is an exponentially distributed random variable with
parameter qj, j = 0, 1, 2 . . ..

5.1 Birth-Death Processes
To simplify the investigations let us assume that the process enters to neighboring states
only. This situation can be formulated as follows

qii+1 = λi, Pii+1(h) = λih+ o(h), i = 0, 1, . . .

qii−1 = µi, Pii−1(h) = µih+ o(h), i = 1, . . .

qii = −(λi + µi), Pii(h) = 1− (λi + µi)h+ o(h), i = 0, 1, . . .

qij = 0, Pij = o(h) if |i− j| > 1 , i, j = 0, 1, . . .

µ0 = 0.

In this case λi, and µi are called birth, death intensities, respectively. Then the balance
equations are also simplified, namely

P ′j(t) = −(λj + µj)Pj(t) + λj−1Pj−1(t) + µi+1Pj+1(t), j = 0, 1, . . .

In steady-state we have

(λj + µj)Pj = +λj−1Pj−1 + µi+1Pj+1, j = 0, 1, . . .∑
j

Pj = 1

µ0 = 0

To obtain the solution let us notice that for any j we get

Dj = λjPj − µj+1Pj+1 = 0,

since it is easy to see that
D0 = λ0P0 − µ1P1 = 0,

Dj = λjPj − µj+1Pj+1 = λj−1Pj−1 − µjPj = Dj−1, j = 1, . . . .
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By using this relationship it can be verified that

Pj+1 =
λj
µj+1

Pj,

thus

(5.1) Pi =
λ0 · · ·λi−1

µ1 · · ·µi
P0, i = 1, 2, · · · , P 0

−1 = 1 +
∞∑
i=1

λ0 · · ·λi−1

µ1 · · ·µi
,

which is called the steady-state distribution of a birth-death process and later on
plays an important role in modeling several queueing systems.

In the case of an infinite state space the series concerning to the normalizing condition
should be convergent. In many times conditions assuring the convergence are referred to
as stability conditions. It could be proved that under stability condition the solution
is unique.

Let us consider the following simple example

Example 43 Let λi = λ, i = 0, 1, . . . and µi = µ i = 1, 2, . . ..
Then

Pi =

(
λ

µ

)i
P0, P 0

−1 =
∞∑
i=0

(
λ

µ

)i
,

which is convergent iff λ < µ.

Pure Birth Processes

If λi = λ , i = 0, 1, . . . and µi = 0 , i = 1, 2, . . ., then we are speaking about a pure birth
process and hence the set of differential equations reduces to

P ′0(t) = −λP0(t)

P ′j(t) = −λPj(t) + λPj−1(t)

Pk(0) =

{
1, if k = 0,

0, if k 6= 0.

which was obtained for the Poisson process.
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Part II

Exercises
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Chapter 6

Basic Concepts from Probability
Theory

6.1 Discrete Probability Distributions

Exercise 1 Show that if X ∈ B(n, p) then EX = np, and V ar(X) = np(1− p).

Solution:

EX =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k = n

n∑
k=1

p

(
n− 1

k − 1

)
pk−1(1− p)n−1−(k−1)

= np
n−1∑
j=0

(
n− 1

j

)
pj(1− p)n−1−j

︸ ︷︷ ︸
Binomimial theorem

= np(p+ 1− p)n−1 = np.

EX2 =
n∑
k=0

k2

(
n

k

)
pk(1− p)n−k =

n∑
k=1

(k(k − 1) + k)

(
n

k

)
pk(1− p)n−k

=
n∑
k=2

k(k − 1)

(
n

k

)
pk(1− p)n−k +

n∑
k=1

k

(
n

k

)
pk(1− p)n−k︸ ︷︷ ︸
np

= n(n− 1)p2

n∑
k=2

(
n− 2

k − 2

)
pk−2(1− p)n−2−(k−2) + np

= n(n− 1)p2

n−2∑
j=0

(
n− 2

j

)
pj(1− p)n−2−j + np

= n(n− 1)p2 + np = np((n− 1)p+ 1) = np(np− p+ 1).

V ar(X) = EX2−E2X = np(np− p+ 1)− (np)2 = (np)2−np2 +np− (np)2 = np(1− p).

Exercise 2 Show that if X ∈ Po(λ), then EX = λ, and V ar(X) = λ.
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Solution:

EX =
∞∑
k=0

k
λk

k!
e−λ = e−λλ

∞∑
k=1

λk−1

(k − 1)!
= e−λλ

∞∑
j=0

λj

j!
= e−λλeλ = λ.

EX2 =
∞∑
k=0

k2λ
k

k!
e−λ =

∞∑
k=1

(k(k − 1) + k)
λk

k!
e−λ

=
∞∑
k=2

k(k − 1)
λk

k!
e−λ +

∞∑
k=1

k
λk

k!
e−λ︸ ︷︷ ︸

λ

= λ2e−λ
∞∑
k=2

λk−2

(k − 2)!
+ λ = λ2e−λeλ + λ = λ2 + λ.

V ar(X) = EX2 − E2X = λ2 + λ− λ2 = λ.

Exercise 3 Show that if X ∈ Geo(p), then EX = 1
p
, and V ar(X) = q

p2
.

Solution:

EX =
∞∑
k=1

kpqk−1 = p
∞∑
k=1

kqk−1 = p
∑
k=1

(qk)′ = p

( ∞∑
k=1

qk
)′

= p

(
q

1− q

)′
= p

1(1− q)− (−1)q

(1− q)2
=

p

p2
=

1

p
.

We used the fact that in the case of absolute convergent series the summation and deriva-
tive are interchangeable.

EX2

∞∑
k=1

k2pqk−1 = p

∞∑
k=1

k2qk−1 = p

∞∑
k=1

(k(k − 1) + k)qk−1

= p
∞∑
k=1

k(k − 1)qk−1 + p

∞∑
k=1

kqk−1

︸ ︷︷ ︸
1
p

= p

∞∑
k=1

k(k − 1)qk−2q +
1

p
= pq

∞∑
k=1

(qk)′′ +
1

p

= pq

( ∞∑
k=1

qk
)′′

+
1

p
= pq

(
q

1− q

)′′
+

1

p
= pq

(
1

(1− q)2

)′
+

1

p
= pq

2

(1− q)3
+

1

p

=
2(1− p)

p2
+

1

p
=

2− 2p+ p

p2
=

2− p
p2

.

Thus

V arX =
2− p
p2
−
(

1

p

)2

=
2− p− 1

p2
=

q

p2
.
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In the following we can show how these results can be obtained by using the property of
the geometric distribution.

E(X) =
∞∑
k=1

kp(1− p)k−1 = (1− p)
∞∑
k=1

(k − 1)p(1− p)k−2 +
∞∑
k=1

p(1− p)k−1

= (1− p)E(X) + 1.

So E(X) = 1
p
. Similarly

E(X2) =
∞∑
k=1

k2p(1− p)k−1 =
∞∑
k=1

((k − 1)2 + 2k − 1)p(1− p)k−1

= (1− p)
∞∑
k=1

(k − 1)2p(1− p)k−2 + 2E(X)− 1

= (1− p)E(X2) +
2

p
− 1.

Thus

E(X2) = (1− p)E(X2) +
2− p
p

E(X2) =
2− p
p2

.

Hence

V ar(X) =
2− p
p2
− 1

p2
=

1− p
p2

.

Exercise 4 Find the mean and variance of a modified geometric distribution with success
parameter p .

Solution:
As we know the modified geometric distribution is P (X∗ = k) = pqk , k = 0, 1 . . . and
X∗ = X − 1, where X ∈ Geo(p). Hence

E(X∗) = E(X − 1) = EX − 1 =
1

p
− 1 =

1− p
p

=
q

p
,

V ar(X∗) = V ar(X).

Exercise 5 Show that that the geometric distribution yields

P (X = k + l|X > k) = P (X = l),

that is the so-called memoryless property holds.
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Solution:

P (X = k + l|X > k) =
P (X = k + l)

P (X > k)
=

p(1− p)k+l−1∑∞
j=k+1 p(1− p)j−1

=
(1− p)k+l−1∑∞
j=k+1(1− p)j−1

=
(1− p)k+l−1

(1−p)k
1−1+p

=
(1− p)k+l−1

(1−p)k
p

=
p(1− p)k+l−1

(1− p)k
= p(1− p)l−1 = P (X = l).

Exercise 6 Let X ∈ B(n, ρ), Y ∈ B(m, ρ) and independent random variables. Find that

P (X = i|X + Y = k).

Solution:

P (X = i|X + Y = k) =
P (X = i,X + Y = k)

P (X + Y = k)
=
P (X = i, Y = k − i)
P (X + Y = k)

.

Since X and Y are independent then the convolution of X, Y is also binomial so we have

P (X = i|X + Y = k) =

(
n
k

)
pi(1− p)n−i

(
m
k−i

)
pk−i(1− p)m−k+i(

n+m
k

)
pk(1− p)n+m−k =

(
n
i

)(
m
k−i

)(
n+m
k

)
that is we obtain the hypergeometric distribution.

Exercise 7 Let X ∈ Po(λ) and Y ∈ Po(β) independent random variables. Find that

P (X = k|X + Y = n).

Solution:

P (X = k|X + Y = n) =
P (X = k, Y = n− k)

P (X + Y = n)
=
P (X = k)P (Y = n− k)

P (X + Y = n)

=

λk

k!
e−λ βn−k

(n−k)!
e−β

(λ+β)n

n!
e−(λ+Y )

=

λk

k!
βn−k

(n−k)!

(λ+β)n

n!

=

(
n
k

)
λkβn−k

(λ+ Y )n
=

(
n

k

)
λk

(λ+ β)k
βn−k

(λ+ β)n−k

=

(
n

k

)(
λ

λ+ β︸ ︷︷ ︸
p

)k(
β

λ+ β︸ ︷︷ ︸
1−p

)n−k
=

(
n

k

)
pk(1− p)n−k ∈ B(n, p).
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Exercise 8 Let us consider a supermarket at which customers arrive according to a
Poisson distribution with parameter λ and choose the ith cashier with probability pi
(i = 1, . . . , n ,

∑
i pi = 1). Find the distribution of the number of customers at cashier i.

Solution:
Let us perform a random experiment withN independent and identical trials. Let describe
Xi , i = 1, . . . , n the number of ith outcome. As the joint distribution of (X1, . . . , Xn) is
a multinomial distribution with parameters N and p1, . . . , pn we have

P (X1 = k1, . . . , Xn = kn|X1 + . . .+Xn = N) =
N !

k1! . . . kn!
pk11 . . . pknn .

Since X1 + . . .+Xn = X ∈ Po(λ)

P (X1 = k1, . . . , Xn = kn) = P (X1 = k1, . . . , Xn = kn|X1 + . . .+Xn = N)P (X = N)

=
N !

k1! . . . kn!
pk11 . . . pknn

λN

N !
e−λ =

pk11 . . . pknn
k1! . . . kn!

λk1+...+kne−λ(
∑n
i=1 pi)

=
(p1λ)k1

k1!
e−λpn . . .

(pnλ)kn

kn!
e−λpn .

It follows that Xi ∈ Po(λpi) , i = 1, . . . , n, and are independent random variables.

6.2 Continuous Probability Distributions
Exercise 9 Let

Γ(α) =

∞∫
0

tα−1e−tdt , α > 0

so-called complete Gamma function ( Γ(α) function ). Show that

Γ(α) = (α− 1)Γ(α− 1), α > 1 .

Solution:
Using integration by parts we have

Γ(α) =

∞∫
0

tα−1e−tdt =
[
−tα−1e−t

]∞
0

+ (α− 1)

∞∫
0

tα−2e−tdt

= (α− 1)Γ(α− 1)

since the value of the first part is zero. It can easily be proved by the help of the L’Hospital’
rule.
It is easy to see that Γ(1) = 1, so Γ(n) = (n− 1)! that is Γ(α) can be considered as the
generalization of the factorial function.

81



Exercise 10 Show that Γ

(
1

2

)
=
√
π .

Solution:

Γ

(
1

2

)
=

∞∫
0

t
1
2
−1e−tdt =

∞∫
0

1√
t
e−tdt.

Introducing the substitution t =
x2

2
we have

dt

dx
= x, thus

Γ

(
1

2

)
=

∞∫
0

√
2

x
e−

x2

2 · xdx =
√
π

∞∫
−∞

1√
2π
e−

x2

2 dx =
√
π.

Exercise 11 Find the mean, variance and the kth moment of the gamma distribution
with parameters (α, λ).

Solution:

E(X) =

∞∫
0

x
λ(λx)α−1e−λx

Γ(α)
dx,

where

Γ(α) =

∞∫
0

tα−1e−tdt.

Introducing the substitution u = λx

E(X) =

∞∫
0

uα · e−u

Γ(α)

1

λ
du =

Γ(α + 1)

λΓ(α)
=
α

λ
,

since Γ(α + 1) = αΓ(α).
Similarly

E(X2) =

∞∫
0

x2λ(λx)α−1e−λx

Γ(α)
dx =

1

λ

∞∫
0

(λx)α+1e−λx

Γ(α)
dx

=
1

λ2Γ(α)
·
∞∫

0

uα+1e−udu =
Γ(α + 2)

λ2Γ(α)
=

(α + 1)α

λ2
.
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Thus

V ar(X) = E(X2)− (E(X))2 =
(α + 1)α

λ2
−
(α
λ

)2

=
α

λ2
.

That is the squared coefficient of variation is C2
X = 1/α, that can be less and greater

than 1 .

Finally

E(Xk) =

∞∫
0

xk
λ(λx)α−1e−λx

Γ(α)
dx =

1

λk−1

∞∫
0

(λx)k+α−1e−λx

Γ(α)
dx

=
1

λkΓ(α)
·
∞∫

0

uk+α−1e−udu =
Γ(k + α)

λkΓ(α)
=
α(α + 1) . . . (α + k − 1)

λk
.

In particular, in the case of α = n we have the Erlang distribution with parameters (n, λ)
and we obtain

E(Xk) =
n(n+ 1) . . . (n+ k − 1)

λk
.

In case of n = 1 it reduces to the exponential distribution, that is E(Xk) =
k!

λk
.

Exercise 12 Find the mean and variance of the Pareto distribution with parameters
(k, α).

Solution:

E(X) =

∞∫
k

xαkαx−α−1dx =

∞∫
k

αkαx−αdx

=

[
αkαx−α+1

α− 1

]∞
k

=


kα
α−1

, α > 1

∞ , α ≤ 1

E(X2) =

∞∫
k

αkαx−α+1dx =


k2α
α−2

, α > 2

∞ , α ≤ 2

Thus

V ar(X) =
k2α

α− 2
−
(

kα

α− 1

)2

, α > 2
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Exercise 13 Let X ∈ Exp(λ), and Y = c · eαX , where α, c > 0. Find the distribution
function of Y .

Solution:

P (Y < x) = P (ceαX < x) = P
(
αX < ln

(x
c

))
= P

(
X <

1

α
ln
(x
c

))
= 1− e−

λ
α

ln(xc ) = 1− eln( cx)
λ
α

= 1−
( c
x

) λ
α
,

that is we obtain the Pareto distribution with parameters
(
c, λ

α

)
.
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Chapter 7

Fundamentals of Stochastic Modeling

7.1 Exponential Distribution and Related Distributions
Exercise 14 Show that that the exponential distribution obeys

P (X > x+ y|X > x) = P (X > y),

which is referred to as memoryless, or Markov property.

Solution:
P (X > x+ y|X > x) =

P (X > x+ y)

P (X > x)
=

1− P (X < x+ y)

1− P (X < x)

=
1− (1− e−λ(x+y))

1− (1− e−λx)
= e−λy = P (X > y).

Exercise 15 Find the nth moment of an exponentially distributed random variable with
parameter λ.

Solution:

E(Xn) =

∞∫
0

xnλe−λxdx =
[
−xne−λx

]∞
0

+
n

λ

∞∫
0

xn−1λe−λxdx.

Using the L’Hospital’s rule it is easy to prove that the value of the first part is 0 and thus

E(Xn) =
n

λ
E(Xn−1).

Taking into account the recursion one can easily see that

E(Xn) =
n!

λn
.
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Exercise 16 Let us assume that at t = 0 two independent activities start. Their durations
are denoted by X, Y and are supposed to be exponentially distributed random variables
with parameters λ, µ, respectively. Let V = minima(X, Y ), Z = maxima(X, Y ), and
W = Z − V .
Find

1. The distribution and mean of V ,

2. P (X < Y ), that is X completes first,

3. The distribution and mean of W , that is the distribution of the time between the
first and second events,

4. The probability that at an arbitrary time t

P (X < t < Y ), P (V < t < Z), P (X < t, Y < t),

5. P (W + V < t)),

6. P (X < t|X < τ),

7. P (X < t|X < Y ),

8. P (X < t|Y < X).

Solution:

1. Distribution of the first event
P (V < t) = 1− P (V > t) = 1− P (X > t, Y > t)

= 1− P (X > t)P (Y > t) = 1− e−λte−µt = 1− e−(λ+µ)t

that is, V is exponentially distributed with parameter λ+ µ,
consequently E(V ) = 1

λ+µ
,

2. X completes first

P (X < Y ) =

∫ ∞
y=0

P (X < y)fY (y) dy =

∫ ∞
y=0

(1−e−λy)µe−µy dy = 1− µ

λ+ µ
=

λ

λ+ µ
,

3. distribution of the time between the first and second event

P (W < t) = P (W < t|X < Y )P (X < Y ) + P (W < t|X > Y )P (X > Y )

given (X < Y ), W represents the residual time of Y and similar argument is valid
for X.
Due to the memoryless property of Y,X

P (W < t|X < Y )P (X < Y ) + P (W < t|X > Y )P (X > Y )

=
λ

λ+ µ
(1− e−µt) +

µ

λ+ µ
(1− eλt).

Consequently

E(W ) =
λ

µ(λ+ µ)
+

µ

λ(λ+ µ)
,
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4. X has been completed, but Y is still running

P (X < t < Y ) = P (X < t)P (Y > t) = (1− e−λt)e−µt,

the first event has been completed, but the second is still running

P (V < t < Z) =

= P (V < t < Z|X < Y )P (X < Y ) + P (V < t < Z|X > Y )P (X > Y )

= P (X < t < Y |X < Y )P (X < Y ) + P (Y < t < X|X > Y )P (X > Y )

= P (X < t < Y,X < Y ) + P (Y < t < X,X > Y ) = P (X < t < Y ) + P (Y < t < X)

= (1− e−λt)e−µt + (1− e−µt)e−λt,

both events have been completed

P (X < t, Y < t) = P (Z < t) = P (X < t)P (Y < t) = (1− e−λt)(1− e−µt),

5. distribution of the sum of W and V
Since W,V are dependent random variables their convolution cannot be applied.
However, it is easy to see that

P (W + V < t) = P (Z < t) = (1− e−λt)(1− e−µt),

6. distribution of X given X < τ

P (X < t|X < τ) =
P (X < t,X < τ)

P (X < τ)
=

{
P (X<t)
P (X<τ)

= 1−e−λt
1−e−λτ ha 0 < t < τ

1 ha t > τ.

7. distribution of X given X < Y

P (X < t|X < Y ) =
P (X < t,X < Y )

P (X < Y )
=

∞∫
y=0

P (X < t,X < y)fY (y) dy

P (X < Y )

=

t∫
y=0

P (X < y)fY (y) dy

P (X < Y )
+

∞∫
y=t

P (X < t)fY (y) dy

P (X < Y )

= 1− e−(λ+µ)t,

that is, it follows an exponential distribution with parameter λ+ µ,

8. distribution of X given X > Y

P (X < t|X > Y ) =
P (X < t,X > Y )

P (X > Y )
=

∫∞
y=0

P (X < t,X > y)fY (y) dy

P (X > Y )

=

∫ t
y=0

P (y < X < t)fY (y) dy

P (X > Y )
+

∫ t
y=0

(FX(t)− FX(y))fY (y) dy

P (X > Y )

= 1− e−λt − λ

µ
e−µt(1− e−µt).
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Exercise 17 Find the probability that Xi = min{X1, . . . , Xn},
supposing that Xk ∈ Exp(λk), k = 1, . . . , n and are independent.

Solution:
By the law of total probability

P (Xi < min(X1, . . . , Xi−1, Xi+1, . . . , Xn)) =

∫ ∞
0

P (Xi < x)fmin(X1,...,Xi−1,Xi+1,...,Xn)(x) dx

=

∫ ∞
0

(1− e−λix) ·
( n∑
j=1,j 6=i

λj

)
e−

∑n
j=1,j 6=i λjx dx =

∫ ∞
0

( n∑
j=1,j 6=i

λj

)
e−

∑n
j=1,j 6=i λjx dx

−
∫ ∞

0

( n∑
j=1,j 6=i

λj

)
e−λixe−

∑n
j=1,j 6=i λjx dx = 1−

∫ ∞
0

e−
∑n
j=1 λjx

( n∑
j=1,j 6=i

λj

)
dx

1−
n∑

j=1,j 6=i

λj

∫ ∞
0

e−
∑n
j=1 λjx

( n∑
j=1

λj

)
︸ ︷︷ ︸

1

dx
1∑n
j=1 λj

= 1−
∑n

j=1,j 6=i λj∑n
j=1 λj

=
λi∑n
j=1 λj

.

Exercise 18 Find the distribution and mean of a series system consisting of independent
and exponentially distributed components.

Solution:
In the case of series system

E(min(X1, . . . , Xn)) =
1∑n
j=1 λj

=
1∑n

j=1
1

EXj

≤ min(EX1, . . . ,EXn).

Exercise 19 Find the distribution, mean and variance of a parallel system consisting of
independent and exponentially distributed components with the same failure rate, that is
Xi ∈ Exp(λ) , i = 1, . . . , n.

Solution:

P (max(X1, . . . , Xn) < x) =
n∏
i=1

P (Xi < x) = (1− e−λx)n.

Apply the following useful relation. If X ≥ 0 then

EX =

∫ ∞
0

P (X ≥ x) dx =

∫ ∞
0

(1− F (x)) dx.

Substitute t = 1− e−λx then
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E(max(X1, . . . , Xn)) =

∫ ∞
0

(1− (1− e−λx)n dx =
1

λ

∫ 1

0

(1− tn)
1

1− t
dt

=
1

λ

∫ 1

0

(1 + t+ . . .+ tn−1) dt =
1

λ

[
t+

t2

2
+ . . .+

tn

n

]1

0

=
1

λ

[
1 +

1

2
+ . . .+

1

n

]
=

1

nλ︸︷︷︸
1. failure

+
1

(n− 1)λ︸ ︷︷ ︸
2. - 1. failure

+ . . .+
1

λ︸︷︷︸
n. - n-1. failure

.

Due to the memoryless property of the exponential distribution the time between the
consecutive failures are also exponentially distributed and are independent of each other.
It is easy to see that the parameter of the time between (k − 1) th and kth failure is
(n − k + 1)λ, k = 1, . . . , n. This fact can be used to calculate the mean and variance of
the time to the kth failure.
Hence

E(time to the kth failure ) =
1

nλ
+ . . .+

1

(n− k + 1)λ

V ar(time to the kth failure) =
1

(nλ)2
+ . . .+

1

((n− k + 1)λ)2

k = 1, . . . , n.

In particular, the variance of the life time of a parallel system is the variance of the last
failure, that is

1

(nλ)2
+ . . .+

1

λ2
.

Exercise 20 Let Xi ≥ 0, i = 1, . . . , n, be independent random variables.
Show that

E(max(X1, . . . , Xn)) ≥ max(E(X1), . . . ,E(Xn))

E(min(X1, . . . , Xn)) ≤ min(E(X1), . . . ,E(Xn)).

Solution:

P (max(X1, . . . , Xn) < x) =
n∏
i=1

P (Xi < x) ≤ P (Xi < x)

hence

P (max(X1, . . . , Xn) ≥ x) ≥ P (Xi ≥ x)
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thus

E(max(X1, . . . , Xn)) =

∞∫
0

P (max(X1, . . . , Xn) ≥ x)dx

≥
∞∫

0

P (Xi ≥ x)dx = E(Xi), i = 1, . . . , n,

from which the statement follows.
Similarly

P (min(X1, . . . , Xn) ≥ x) =
n∏
i=1

P (Xi ≥ x) ≤ P (Xi ≥ x),

thus

E(min(X1, . . . , Xn)) =

∞∫
0

P (min(X1, . . . , Xn) ≥ x)dx

≤
∞∫

0

P (Xi ≥ x)dx = E(Xi), i = 1, . . . , n,

from which the statement follows.

Exercise 21 Prove that the distribution function of the Erlang distribution with param-
eters (n, λ) is

FYn(x) = 1−
n−1∑
j=0

(λx)j

j!
e−λx !

Solution:

FYn(x) =

∫ x

0

λ(λt)n−1

(n− 1)!
e−λt dt =

λn

(n− 1)!

∫ x

0

tn−1e−λt dt

Using integration by parts, where g(x) = tn−1 , f(x) = − 1
λ
e−λt we get

λn

(n− 1)!

∫ x

0

tn−1e−λt dt︸ ︷︷ ︸
In(x)

=
λn

(n− 1)!
([−1

λ
e−λttn−1]x0 −

∫ x

0

(−1

λ
e−λt)(n− 1)tn−2 dt)

= − λxn−1

(n− 1)!
e−λx +

∫ x

0

λ(λt)n−2

(n− 2)!
e−λt dt︸ ︷︷ ︸

In−1(x)

= − λxn−1

(n− 1)!
e−λx − λxn−2

(n− 2)!
e−λx + In−2(x)

= . . . = 1−
n−1∑
j=0

(λx)j

j!
e−λx.
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Consequently

∞∑
j=n

(λx)j

j!
e−λx =

∫ ∞
x

λ(λt)n−1

(n− 1)!
e−λt dt.

Exercise 22 Let X ∈ Exp(λ) and Y ∈ Exp(µ) and independent random variables.
Find their convolution.

Solution:

fX+Y (z) =

∫ z

0

λe−λxµe−µ(z−x) dx = λµ

∫ z

0

e−λx−µ(z−x) dx = λµe−µz
∫ z

0

e−x(λ−µ) dx

= λµe−µz[
−1

λ− µ
e−x(λ−µ)]z0 =

λµe−µz

−(λ− µ)
(e−z(λ−µ) − 1) =

λµ

µ− λ
e−λz − λµ

µ− λ
e−µz

=
µ

µ− λ
λe−λz +

λ

λ− µ
µe−µz.

Exercise 23 Find the mean of the previous convolution by using the density function.

Solution:

E(X + Y ) =

∫ ∞
0

x(
µ

µ− λ
λe−λx +

λ

λ− µ
µe−µx) dx

=
µ

µ− λ

∫ ∞
0

xλe−λx dx+
λ

λ− µ

∫ ∞
0

xµe−µx dx =
µ

µ− λ
1

λ
+

λ

λ− µ
1

µ
=

µ2 − λ2

λµ(µ− λ)

=
(λ+ µ)(µ− λ))

λµ(µ− λ)
=
λ+ µ

λµ
=

1

λ
+

1

µ
.

Obviously E(X + Y ) = E(X) + E(Y ) thus we could check the correctness of the density
function.

Exercise 24 Derive the density function of the Erlang distribution with parameters (2, λ)
from the 2-phase hypoexponential distribution.

Solution:
As we have seen

fX+Y (x) =
λ

λ− µ
µe−µx +

µ

µ− λ
λe−λx.
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Taking the limit as µ→ λ we get the desired result, that is

lim
µ→λ

λ

λ− µ
µe−µx +

µ

µ− λ
λe−λx = lim

µ→λ

λµ
(
e−λx − e−µx

)
µ− λ

=
0

0
,

therefore we apply the L’Hospital’s rule. Thus we obtain λ2 · xe−λx, what is the density
function we needed.

Exercise 25 Find the distribution function of the 2-phase hypoexponential distribution.

Solution:

FX+Y (x) =

x∫
0

fX+Y (y)dy =

x∫
0

(
λ

λ− µ
µe−µx +

µ

µ− λ
λe−λx

)
dy

=
λ

λ− µ
(
1− e−µx

)
+

µ

µ− λ
(
1− e−λx

)
=
λ− λe−µx − µ+ µe−λx

λ− µ

= 1 +
1

λ− µ
(
µe−λx − λe−µx

)
.

To check its correctness let us take the limit as µ→ λ. Applying the L’Hospital’s rule we
have

1− e−λx − λxe−λx

which is exactly the distribution function of the Erlang distribution with parameters
(2, λ).

Exercise 26 Let X ∈ Exp(λ), Y ∈ Exp(µ) and independent random variables.
Find the conditional density function fX|X+Y (x|y).

Solution:

fX|X+Y (x|y) =
fX(x) · fY (y − x)

fX+Y (y)
=
λe−λx · µ · e−µ(y−x)

λµ
λ−µ (e−µy − e−λy)

= (λ− µ)
e−(λ−µ)x

1− e−(λ−µ)y
, 0 < x < y.

Specially, if λ = µ, then using the L’Hospital’s rule and taking substitution z = λ−µ we
get

lim
z→0

z · e−z·x

1− e−z·y
= lim

z→0

z

1− e−z·y
= lim

z→0

1

y · e−z·y
=

1

y
,
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that is we have the uniform distribution.
If at the beginning we assume that λ = µ then

fX|X+Y (x|y) =
λe−λx · λ · e−λ(y−x)

λ(λy)e−λy
=

1

y
,

since X + Y follows the Erlang distribution with parameters (2, λ).

Exercise 27 Find the squared coefficient of variation of the Erlang distribution with
parameters (n, λ).

Solution:

CYn =

√
V ar(X1) + . . .+ V ar(Xn)

EX1 + . . .+ EXn

=

√
n
λ2

n
λ

=

√
n

n
=

1√
n
≤ 1.

Exercise 28 Verify the density function of the hyperexponential distribution.

Solution:
It is easy to see that it is nonnegative, furthermore∫ ∞

0

fYn(x) dx =

∫ ∞
0

n∑
i=1

piλie
−λix dx =

n∑
i=1

pi

∫ ∞
0

λie
−λix dx︸ ︷︷ ︸

1

=
n∑
i=1

pi = 1.

Exercise 29 Show that the squared coefficient of variation of the hyperexponential dis-
tribution is always at least 1

Solution:
To prove it, we need

C2
Yn =

∑n
i=1 pi

2
λ2i
− (
∑n

i=1 pi
1
λi

)2

(
∑n

i=1 pi
1
λi

)2
≥ 1⇐⇒

n∑
i=1

pi
1

λ2
i

≥
( n∑
i=1

pi
1

λi

)2

,

which follows from the Cauchy-Bunyakovszkij-Schwartz inequality with substitutions

yi =
√
pi , xi =

√
pi

λi

.
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Exercise 30 Let Xi ∈ W (λi, α), i = 1, . . . , n, independent random variables.
Show that

min(X1, . . . , Xn) ∈ W

(
n∑
i=1

λi, α

)
.

Solution:
It is well-known that

P (min(X1, . . . , Xn) < x) = 1−
n∏
i=1

(1− P (Xi < x)) = 1−
n∏
i=1

(
e−λix

α)

= 1− e
−


n∑
i=1

λi

xα
,

from which our statement follows.
In particular, if α = 1 we obtain the relations valid for the exponential distribution.

7.2 Basics of Reliability Theory
Exercise 31 Find the hazard rate ( known also as failure rate, intensity, conditional
failure rate) function of the hyperexponential distribution.

Solution:

h(t) =

n∑
i=1

piλie
−λit

n∑
i=1

pie
−λit

,

which is monotone decreasing and its image is in the interval

[
min(λ1, . . . , λn),

n∑
i=1

piλi

]
.

It can be shown in the following way. If h′(t) < 0 on the interval [0,∞) then h(t) is
monotone decreasing on it. Since by the rule of the derivative of a ratio the denominator
is always positive it is enough to investigate the sign of the numerator of h′(t).
For the numerator we have

−

(
n∑
i=1

piλ
2
i e
−λit

)(
n∑
i=1

pie
−λit

)
+

(
n∑
i=1

piλie
−λit

)2

.

Apply the well-known inequality(
n∑
i=1

aibi

)2

≤
n∑
i=1

a2
i

n∑
i=1

b2
i
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with substitutions
ai =

√
pie−λit, bi = λi

√
pie−λit

thus h′(t) < 0. It can also be seen that h(t) takes its maximum at 0, therefore h(0) =
n∑
i=1

piλi. Furthermore, one can easily verify that h(t) ≥ min(λ1, . . . , λn).

Exercise 32 Find the hazard rate function of the 2-phase hypoexponential distribution.

Solution:

h(t) =
λ1λ2
λ2−λ1

(
e−λ1t − e−λ2t

)
λ2 − λ1

/

(
λ2

λ2 − λ1

e−λ1t − λ1

λ2 − λ1

e−λ2t
)

=
λ1λ2

(
e−λ1t − e−λ2t

)
λ2e−λ1t − λ1e−λ2t

,

which is monotone increasing and its image is in the interval [0,min(λ1, λ2)].

Similarly to the previous exercise the sign of h′(t) is determined by

(−λ1e
−λ1t + λ2e

−λ2t)2 + (λ1λ2e
−λ1t − λ1λ2e

−λ2t)(e−λ1t − e−λ2t)

= (−λ1e
−λ1t + λ2e

−λ2t)2 + λ1λ2(e−λ1t − e−λ2t)2 > 0

thus h(t) is monotone increasing and h(0) = 0.

If λ1 < λ2, then h(t) ≤ λ1λ2
λ2

= λ1. Similarly, if λ2 < λ1, then h(t) ≤ λ1λ2
λ1

= λ2.

Exercise 33 Find the hazard rate function of the Erlang distribution with parameters
(n, λ) and show that it is monotone increasing.

Solution:
Similarly to the previous exercises we deal with the numerator of h′(t), that is we have

λλ(λx)n−2(n− 1)

(n− 1)!

n−1∑
i=0

(λx)i

i!
− λ(λx)n−1

(n− 1)!

n−2∑
i=0

λ(λx)i

i!
=

= λ2 (λx)n−2

(n− 2)!

(
n−2∑
i=0

(λx)i

i!
+

(λx)n−1

(n− 1)!
− λx

n− 1

n−2∑
i=0

(λx)i

i!

)
.

Its sign depends on the second term. Let us denote it by

Sn =
n−2∑
i=0

(λx)i

i!

(
1− λx

n− 1

)
+

(λx)n−1

(n− 1)!

S2 = 1− λx

1
+ λx = 1 > 0.
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If n ≥ 3, then

Sn =
n−3∑
i=0

(λx)i

i!

(
1− λx

n− 1

)
+

(λx)n−2

(n− 2)!

(
1− λx

n− 1

)
+

(λx)n−1

(n− 1)!

=
n−3∑
i=0

(λx)i

i!

(
1− λx

n− 1

)
+

(λx)n−2

(n− 2)!
.

It is easy to see that

S3 = 1− λx

2
+ λx =

2 + λx

2
> 0.

Let us suppose that Sn > 0 then prove that Sn+1 > 0 by induction.

Sn+1 =
n−2∑
i=0

(λx)i

i!

(
1− λx

n

)
+

(λx)n−1

(n− 1)!

=
n−3∑
i=0

(λx)i

i!

(
1− λx

n

)
+

(λx)n−2

(n− 2)!

(
1− λx

n

)
+

(λx)n−1

(n− 1)!

>
n−3∑
i=0

(λx)i

i!

(
1− λx

n− 1

)
+

(λx)n−2

(n− 2)!
+

(λx)n−1

(n− 2)!

(
1

n− 1
− 1

n

)
=Sn +

(λx)n−1

(n− 2)!

1

(n− 1)n
> 0,

since Sn > 0.

7.3 Random Sums

Exercise 34 Find the distribution of the mixture of Erlang distributions with parameters
(i, λ) and geometric distribution with parameter p.

Solution:

f(x) =
∞∑
i=1

p(1− p)i−1λ(λx)i−1

(i− 1)!
e−λx = pλe−λx

∞∑
i=1

(1− p)i−1 (λx)i−1

(i− 1)!

= pλe−λx
∞∑
j=0

((1− p)λ)x)j

j!
= pλe−λxe(1−p)λx = pλe−pλx ∈ Exp(pλ).

Exercise 35 Find the distribution of the mixture of binomial and Poisson distributions.
( pk(i) =

(
i
k

)
pi(1− p)i−k , qi = λi

i!
e−λ ) ?
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Solution:

pk =
∞∑
i=1

(
i

k

)
pk(1− p)i−kλ

i

i!
e−λ = e−λpkλk

1

k!

∞∑
i=k

1

(i− k)!
((1− p)λ)i−k

=
(pλ)k

k!
e−λ

∞∑
j=0

((1− p)λ)j

j!
=

(pλ)k

k!
e−λe(1−p)λ =

(pλ)k

k!
e−pλ ∈ Po(pλ).

Exercise 36 Let Xi ∈ Exp(λ), ν ∈ Geo(p) and independent random variables.
Find the density function of the random sum Yν.

Solution: By the theorem of total probability

fYν (x) =
∞∑
k=1

fYk(x)︸ ︷︷ ︸
(n,λ)Erlang

P (ν = k)

f(x) =
∞∑
i=1

p(1− p)i−1λ(λx)i−1

(i− 1)!
e−λx = pλe−λx

∞∑
i=1

(1− p)i−1 (λx)i−1

(i− 1)!

= pλe−λx
∞∑
j=0

((1− p)λ)x)j

j!
= pλe−λxe(1−p)λx = pλe−pλx ∈ Exp(pλ).

Exercise 37 Let Xi(A) be Bernoulli distributed with parameter p, ν ∈ Po(λ) and inde-
pendent random variables.
Find the distribution of Yν = X1(A) + . . .+Xν(A).

Solution:

pk =
∞∑
i=k

(
i

k

)
pk(1− p)i−kλ

i

i!
e−λ = e−λpkλk

1

k!

∞∑
i=k

1

(i− k)!
((1− p)λ)i−k

=
(pλ)k

k!
e−λ

∞∑
j=0

((1− p)λ)j

j!
=

(pλ)k

k!
e−λe(1−p)λ =

(pλ)k

k!
e−pλ ∈ Po(pλ).
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Chapter 8

Analytic Tools, Transforms

8.1 Generating Function
Exercise 38 Find the generating function of the binomial distribution with parameters
(n, p) and then its mean, variance and distribution.

Solution:

GX(s) =
n∑
k=0

sk
(
n

k

)
pk(1−p)n−k =

n∑
k=0

(
n

k

)
(sp)k(1−p)n−k = (sp+(1−p))n = (1+p(s−1))n.

EX = GX(1) = n(1 + p(s− 1))n−1p
∣∣
s=1

= np(1 + p(s− 1))n−1
∣∣
s=1

= np.

G′′X(1) = (np(1 + p(s− 1))n−1)′
∣∣
s=1

= np(n− 1)p(1 + p(s− 1))n−2
∣∣
s=1

= n(n− 1)p2.

V ar(X) = n(n− 1)p2 + np− (np)2 = np(1− p).

G
(k)
X (s) = n(n− 1)(n− 2) . . . (n− k + 1)pk(1 + p(s− 1))n−k.

G
(k)
X (0) = n(n− 1)(n− 2) . . . (n− k + 1)pk(1− p))n−k.

pk =
G

(k)
X (0)

k!
=
n(n− 1)(n− 2) . . . (n− k + 1)

k!︸ ︷︷ ︸
(nk)

pk(1− p)n−k.

Exercise 39 Find the generating function of the geometric distribution with parameter
p. Furthermore, investigate for which s it will be convergent, then calculate the mean and
variance.

Solution:

GX(s) =
∞∑
k=1

skp(1− p)k−1 = sp
∞∑
k=1

((1− p)s)k−1 =
sp

1− (1− p)s
, if |s| < 1

1− p
.

EX =
p(1− (1− p)s)− sp(−(1− p))

(1− (1− p)s)2

∣∣
s=1

=
p2 − p2 + p

(1− 1 + p)2
=

1

p
.
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Exercise 40 Find the distribution by the help of the generating function

GX(s) = e−λ(1−s).

Solution:
G

(k)
X (s) = λ . . . λ︸ ︷︷ ︸

k

e−λ(1−s) = λke−λ(1−s).

Thus

pk =
G

(k)
X (0)

k!
=
λk

k!
e−λ,

that is, GX(s) is the generating function of the Poisson distribution with parameter λ.

Exercise 41 Find the mean and variance of the random sum by the help of the generating
function.

Solution:
As it has been proved the generating function of the random sum is

GYν (s) = Gν(GX1(s)).

Hence
EYν = G′ν(GX1(s))G

′
X1

(s)
∣∣
s=1

= G′ν(GX1(1)︸ ︷︷ ︸
1

)G′X1
(s) = EνEX1.

Furthermore

G′′Yν (s)
∣∣
s=1

= (G′ν(GX1(s))G
′
X1

(s))′
∣∣
s=1

= G′′ν(GX1(s))G
′
X1

(s)G′X1
(s)
∣∣
s=1

+G′ν(GX1(s))G
′′
X1

(s)
∣∣
s=1

= G′′ν(1)(EX1)2 + EνG′′X1
(1),

thus
E(Y 2

ν ) = G′′ν(1)(EX1)2 + EνG′′X1
(1) + EνEX1.

Therefore

V ar(Yν) = G′′ν(1)(EX1)2 + EνG′′X1
(1) + EνEX1 − (EνEX1)2

= (Eν2 − Eν)(EX1)2 + Eν(EX2
1 − EX1) + EνEX1 − (EνEX1)2

= (EX1)2(Eν2 − (Eν)2) + Eν(EX2
1 − (EX1)2) = (EX1)2V ar(ν) + EνV ar(X1).
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8.2 Laplace-Transform
Exercise 42 Find the mean and variance of the random sum by the help of the Laplace-
transform.

Solution:
EYν = −L′Yν (0) = −G′ν(LX1(0))︸ ︷︷ ︸

Eν

L′X1
(0) = EνEX1,

L′′Yν (s) = G′′ν(LX1(s))L
′
X1

(s)L′X1
(s) + L′′X1

(s)G′ν(LX1(s))

L′′Yν (0) = G′′ν(LX1(0)︸ ︷︷ ︸
1

)L′X1
(0)L′X1

(0) + L′′X1
(0)G′ν(LX1(0)︸ ︷︷ ︸

1

) = G′′ν(1)(−EX1)2 + EX2
1Eν

= (Eν2 − Eν)(EX1)2 + EX2
1Eν = Eν2(EX1)2 + Eν(EX2

1 − (EX1)2︸ ︷︷ ︸
V ar(X1)

)

= Eν2(EX1)2 + EνV ar(X1).

Therefore

V ar(Yν) = Eν2(EX1)2 + EνV ar(X1)− (EνEX1)2 = (Eν2 − (Eν)2︸ ︷︷ ︸
V ar(ν)

)(EX1)2 + EνV ar(X1)

= V ar(ν)(EX1)2 + EνV ar(X1).

Exercise 43 Find the Laplace-transform of the Erlang distribution with parameters (n, λ),
and then the mean and variance.

Solution:

LX(s) =

∫ ∞
0

e−sx
λ(λx)n−1

(n− 1)!
e−λx dx =

λn

(n− 1)!

1

λ+ s

∫ ∞
0

(λ+ s)xn−1e−(λ+s)x dx︸ ︷︷ ︸
E(Xn−1)=

(n−1)!

(λ+s)n−1

=
λn

(n− 1)!

1

λ+ s

(n− 1)!

(λ+ s)n−1
=

λn

(λ+ s)n
=

(
λ

λ+ s

)n
.

EX = (−1)((
λ

λ+ s
)n)′
∣∣
s=0

= −λn((λ+ s)−n)′
∣∣
s=0

= −λn(−n(λ+ s)−n−1)
∣∣
s=0

= −λn(−n)λ−n−1 =
n

λ

L′′X(0) = (−λn((λ+ s)−n)′′
∣∣
s=0

= −λn(−n(λ+ s)−n−1))′
∣∣
s=0

= λn(−n)(−n− 1)(λ+ s)−n−2
∣∣
s=0

= λn(n2 + n)λ−n−2 =
n2 + n

λ2
.

Therefore

V ar(X) =
n2 + n

λ2
− (

n

λ
)2 =

n

λ2
.
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Exercise 44 Find the mean of the hyperexponential distribution by the help of the Laplace-
transform.

Solution:

EX = (−1)

( n∑
i=1

pi
λi

λi + s

)′∣∣
s=0

= (−1)

(
n∑
i=1

piλi(−1)(λi + s)2

)∣∣
s=0

=
n∑
i=1

piλi
1

(λi + s)2

∣∣
s=0

=
n∑
i=1

pi
λi
λ2
i

=
n∑
i=1

pi
λi
.

Exercise 45 Find the Laplace-transform of the hypoexponential distribution.

Solution:
By applying the properties of the Laplace-transform we have

LYn(s) =
n∏
i=1

(
λi

λi + s

)n
.

Exercise 46 Find the Laplace-transform of the gamma distribution.

Solution:

LX(s) =

∞∫
0

e−stλ(λt)α−1e−λt

Γ(α)
dt =

∞∫
0

λαtα−1e−(α+s)t

Γ(α)
dt

=

(
λ

λ+ s

)α ∞∫
0

(λ+ s)αtα−1e−(α+s)t

Γ(α)
dt =

(
λ

λ+ s

)α ∞∫
0

zα−1 · e−z

Γ(α)
dz

=

(
λ

λ+ s

)α
· Γ(α)

Γ(α)
=

(
λ

λ+ s

)α
,

where z = (λ+ s)t.

Exercise 47 Show that if Xi ∈ Γ(αi, λ), i = 1, . . . , n and are independent random vari-
ables, then

Y =
n∑
i=1

Xi ∈ Γ

(
n∑
i=1

αi, λ

)
.

Solution:

LY (s) =
n∏
i=1

(
λ

λ+ s

)αi
=

(
λ

λ+ s

) n∑
i=1

αi

which proves the statement.
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Chapter 9

Stochastic Systems

9.1 Poisson Process

Exercise 48 Find the correlation coefficient of the Poisson process.

Solution:
R(ν(t), ν(t+ h)) =

E(ν(t)ν(t+ h))− Eν(t)Eν(t+ h)

Dν(t)Dν(t+ h)
,

where DX =
√
V ar(X).

To get E(ν(t)ν(t+ h)) we need the following steps

E(ν(t)(ν(t+ h)− ν(t)︸ ︷︷ ︸
ν(h)

)) = E(ν(t)ν(t+ h))− Eν2(t)

E(ν(t)(ν(t+ h)− ν(t)︸ ︷︷ ︸
ν(h)

)) = Eν(t)Eν(h) since ν(t) and ν(t+ h)− ν(t) are independent.

Thus
Eν(t)Eν(h) + Eν2(t) = E(ν(t)ν(t+ h)).

After substitution we obtain

Eν(t)(Eν(h)− Eν(t+ h)) + Eν2(t)

Dν(t)Dν(t+ h)
=
λt(λh− λt− λh) + λt+ (λt)2

√
λt
√
λ(t+ h)

=
−(λt)2 + λt+ (λt)2

√
λt
√
λ(t+ h)

=
λt√

λ2t(t+ h)
=

t√
t2 + th

=
1√

1 + h
t

.

Exercise 49 Let us consider a service system at which the inter-arrival times of the
customers are exponentially distributed with parameter λ and the service times are also
exponentially distributed with parameter µ. Supposing that the involved times are inde-
pendent of each other find the distribution of the number of customers arrived during a
service.
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Solution: By the theorem of total probability

P (Na(S) = k) =

∫ ∞
0

P (Na(S) = k|S = x)fS(x) dx.

If fS(x) = µe−µx, then

P (Na(S) = k) =

∫ ∞
0

(λx)k

k!
e−λx + µe−µx dx

=
λkµ

k!

1

λ+ µ

∫ ∞
0

xk(λ+ µ)e−(λµ)x dx︸ ︷︷ ︸
k!

(λ+µ)k

=
λkµ

(λ+ µ)k+1
=

µ

λ+ µ

(
λ

λ+ µ

)k
,

which is a modified geometric distribution with parameter µ
λ+µ

.

Exercise 50 Find the mean number of customers arrived during a service having a gen-
eral distribution.

Solution:
To solve the problem let us apply the properties of the generating function and the
Laplace-transform. So we get

GNa(S)(z) =
∞∑
k=0

zk
∫ ∞

0

(λx)k

k!
e−λxfS(x) dx =

∫ ∞
0

∞∑
k=0

zk
(λx)k

k!
e−λxfS(x) dx

=

∫ ∞
0

∞∑
k=0

(zλx)k

k!
e−λxfS(x) dx

=

∫ ∞
0

ezλxe−λxfS(x) dx =

∫ ∞
0

e−λx(1−z)fS(x) dx = LS(λ(1− z)),

that is
GNa(S)(z) = LS(λ(1− z)).

Therefore

E(Na(S)) = G′Na(S)(1) = (LS(λ(1− z)))′
∣∣
s=1

= −λLS(0) = λES.

Exercise 51 Let the service times be Erlang distributed random variables with parame-
ters (r, µ). Similarly to the previous problem find the distribution of the number of cus-
tomers arrived during a service time if the arrival process remains the same.
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Solution:∫ ∞
0

(λx)k

k!
eλx

µ(µx)r−1

(r − 1)!
e−µx dx =

λk

k!

µr

(r − 1)!

∫ ∞
0

xk+r−1e−(λ+µ)x dx

=
λk

k!

µr

(r − 1)!(λ+ µ)

∫ ∞
0

xk+r−1(λ+ µ)e−(λ+µ)x dx︸ ︷︷ ︸
E(Xk+r−1)=

(r+k−1)!

(λ+µ)r+k−1

=
λk

k!

µr

(r − 1)!(λ+ µ)

(r + k − 1)!

(λ+ µ)r+k−1

=
λkµr

(λ+ µ)r+k

(
r + k − 1

r − 1

)
=

(
λ

λ+ µ

)k(
µ

λ+ µ

)r(
r + k − 1

r − 1

)
=

(
r + k − 1

r − 1

)
(1− p)kpr, where p =

µ

λ+ µ
,

that is we get the negative binomial ( Pascal ) distribution with parameters (p, r).

9.2 Some Simple Systems
Exercise 52 Solve the following first-order inhomogeneous linear differential equation

P ′0(t) + (λ+ µ)P0(t) = µ with initial condition P0(0) = 1

.

Solution: The homogeneous part is

P ′0(t) + (λ+ µ)P0(t) = 0

P ′0(t) = −(λ+ µ)P0(t)

P ′0(t)

P0(t)
= −(λ+ µ)∫

P ′0(t)

P0(t)
dt =

∫
−(λ+ µ) dt

lnP0(t) = −(λ+ µ)t+ lnC

P0(t) = Ce−(λ+µ)t

A particular solution of the inhomogeneous part can be obtained by appying the method
of variation of parameters ( or variation of constant ), that is

P0(t) = c(t)e−(λ+µ)t

c′(t)e−(λ+µ)t + c(t)(−(λ+ µ)e−(λ+µ)t) + (λ+ µ)c(t)e−(λ+µ)t = µ

c′(t)e−(λ+µ)t = µ

c′(t) = µe(λ+µ)t

c(t) =
µ

λ+ µ
e(λ+µ)t,
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Thus a particular solution is

P0(t) =
µ

λ+ µ
e(λ+µ)te−(λ+µ)t =

µ

λ+ µ
.

Hence for the general solution we have

P0(t) = Ce−(λ+µ)t +
µ

λ+ µ
.

Taking into account the initial condition P0(0) = 1 we obtain 1 = C+ µ
λ+µ

thus C = λ
λ+µ

.
Therefore

P0(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
.

P1(t) = 1− P0(t) =
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t.

If the initial condition is P1(0) = 1 then the solution is

P0(t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t

P1(t) =
µ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ

Taking the limit as t→∞ for the steady-state distribution we get

P0 = lim
t→∞

P0(t) =
µ

λ+ µ
=

1
λ

1
λ

+ 1
µ

P1 = lim
t→∞

P1(t) =
λ

λ+ µ
=

1
µ

1
λ

+ 1
µ

.

Exercise 53 Find the probability that at time t k components are operating provided that
at the beginning n components were operational and m were failed.

Solution:

P0,k(t) =
k∑
l=0

(
n

l

)(
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ

)l(
λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t

)n−l
(

m

k − l

)(
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t

)k−l(
µ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ

)m−(k−l)

.

For the steady-state distribution we have

lim
t→∞

P0,k(t) =
k∑
l=0

(
n

l

)(
µ

λ+ µ

)l(
λ

λ+ µ

)n−l(
m

k − l

)(
µ

λ+ µ

)k−l(
λ

λ+ µ

)m−(k−l)

=
k∑
l=0

(
n

l

)(
m

k − l

)(
µ

λ+ µ

)k(
λ

λ+ µ

)n+m−k

=

(
n+m

k

)(
µ

λ+ µ

)k(
λ

λ+ µ

)n+m−k

.
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Cold reserve

Exercise 54 Let us consider a system containing a main component having an expo-
nentially distributed operating time with parameter λ. As soon as it fails a reserve unit
start operation with the same probabilistic manner. There are 2 repairmen and the ser-
vice times are supposed to be exponentially distributed random variables with parameter
µ. Assuming that the involved random variables are independent find the main stead-state
performance measures of the system.

Solution:
It is easy to see that the transition rates are the following

Figure 9.1: Cold reserve

In stationary case let us introduce the usual notations, that is denote by Pi the probability
that i components are failed.
Then for the balance equations we have

λP0 = µP1

(λ+ µ)P1 = λP0 + 2µP2

2µP2 = λP1

The solution can be obtained up to a multiplicative constant

P1 =
λ

µ
P0 , P2 =

λ

2µ
P1 =

λ2

2µ2
P0,

which must satisfy the normalizing condition, that is

P0 =
1

1 + λ
µ

+ λ2

2µ2

=
2µ2

2µ2 + 2λµ+ λ2
=

1

1 + %+ %2

2

, wherel % =
λ

µ
.

The mean operating time of the system is

E(O) =
1− P2

P2

E(S) =
1− P2

P2

1

2µ
.
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Figure 9.2: Warm reserve

Warm reserve

Exercise 55 In this case both components can operate simultaneously but the reserve’s
failure rate is λ′ (λ′ < λ). Find the usual performance measures.

Solution:
In this case the balance equations are

(λ+ λ′)P0 = µP1

(λ+ µ)P1 = (λ+ λ′)P0 + 2µP2

2µP2 = λP1

The solution is

P1 =
λ+ λ′

µ
P0, P2 =

λ

2µ
P1 =

λ+ λ′

µ

λ

2µ
P0

where

P−1
0 = 1 +

λ+ λ′

µ
+
λ+ λ′

µ

λ

2µ
.

Finally

E(O) =
1− P2

P2

1

2µ
.

Exercise 56 Let us consider a component which in case of failure needs a detection time
before repairing. This time is supposed to be an exponentially distributed random variable
with parameter ν. Find the steady-state distribution of the system.

Figure 9.3: Detection time

Solution:
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Similarly to the previous parts it easy to see that we can obtain the steady-state balance
equations as

λP0 = µP2,

νP1 = λP0,

µP2 = νP1.

Thus

P1 =
λ

ν
P0 , P2 =

ν

µ
P1 =

ν

µ

λ

ν
P0 =

λ

µ
P0

Using the normalizing condition P0 + P1 + P2 = 1 we have

P0 =
1

1 + λ
ν

+ λ
µ

=
νµ

νµ+ λ(µ+ ν)
.

Exercise 57 Assume that we have a two-component parallel-redundant system with a
single repair facility. The operating times for both components are supposed to be expo-
nentially distributed random variables with parameter λ and the repair times are also
exponentially distributed with parameter µ. When both components have failed, the sys-
tem is considered to have failed and no recovery is possible, in other words it is a parallel
system with repairs. Let us denote by 0, 1, 2, the number of failed components and let the
system start from state 0, that is both components are operating. Find the mean time to
the first system failure supposing that the involved random variables are independent of
each other.

Solution:

Figure 9.4: Parallel-redundant system

The transient probability distribution of the system can be obtained from the following
balance equations

P0(t+ h) = P0(t)(1− 2λh+ o(h)) + P1(t)(µh+ o(h)) + o(h)

P1(t+ h) = P1(t)(1− (λ+ µ)h+ o(h)) + P0(t)(2λh+ o(h)) + o(h)

P2(t+ h) = P1(t)(λh+ o(h)) + o(h).
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For the differential equations we have

P ′0(t) = −2λP0(t) + µP1(t)

P ′1(t) = −(λ+ µ)P1(t) + 2λP0(t)

P ′2(t) = λP1(t)

P0(0) = 1 , P1(0) = 0 , P2(0) = 0

with the above initial conditions. This case, however, we need the time dependent solution,
that is we have to solve the system of differential equations. Using Laplace-transform we
obtain

sP ∗0 (s)− 1 = −2λP ∗0 (s) + µP ∗1 (s)

sP ∗1 (s) = −(λ+ µ)P ∗1 (s) + 2λP ∗0 (s)

sP ∗2 (s) = λP ∗1 (s).

After simple calculations we get

P ∗1 (s) =
s

λ
P ∗2 (s) , P ∗0 (s) =

1

2λ
P ∗2 (s)(

s2

λ
+ (λ+ µ)

s

λ
).

Since P0(t) + P1(t) + P2(t) = 1, it is clear that P ∗0 (s) + P ∗1 (s) + P ∗2 (s) = 1
s
, thus we have

P ∗2 (s) =
1

s(1 + s
λ

+ s2

2λ2
+ (λ+µ)s

2λ2
)

=
2λ2

s(s2 + (3λ+ µ)s+ 2λ2)
.

By inversion P2(t) can be obtained, that is at time t the system is failed since there is no
operating component.

Let Y be denote the time to the first system failure.
Then P2(t) means that the operating time of the system is less than t. Hence the reliability
function of the system is

R(t) = 1− P2(t) , thus −R′(t) = P ′2(t) , P (Y < t) = P2(t) , fY (t) = P ′2(t).

Using the technique of Laplace-transform we get

(P ′2)∗(s) = sP ∗2 (s)− P2(0) =
2λ2

s2 + (3λ+ µ)s+ 2λ2
.

The denominator can be written in the form (s + a1)(s + a2) and thus we can use the
method of partial ratios. So

2λ2

s2 + (3λ+ µ)s+ 2λ2
= 2λ2

(
1

(s+ a1)(s+ a2)

)
= 2λ2

(
A

s+ a1

+
B

s+ a2

)

where a1,2 =
(3λ+ µ)±

√
λ2 + 6λµ+ µ2

2
and A =

1

a2 − a1

, B =
1

a1 − a2

.

Therefore
2λ2

s2 + (3λ+ µ)s+ 2λ2
=

2λ2

a1 − a2

(
1

s+ a2

− 1

s+ a1

)
.
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Hence

fY (t) =
2λ2

a1 − a2

(e−a2t − e−a1t) since if f ∗(s) =
1

s+ a
, then f(t) = e−at.

The mean time to the first system failure can be computed in the following way

E(Y ) =

∫ ∞
0

yfY (y) dy =
2λ2

a1 − a2

[∫ ∞
0

ye−a2y dy −
∫ ∞

0

ye−a1y dy

]
=

2λ2

a1 − a2

[
1

a2

∫ ∞
0

a2ye
−a2y dy − 1

a1

∫ ∞
0

ya1e
−a1y dy

]
=

2λ2

a1 − a2

[
1

a2
2

− 1

a2
1

]
=

2λ2(a1 + a2)

(a1a2)2
=

2λ2(3λ+ µ)

(2λ2)2
=

3

2λ︸︷︷︸
without repair

+
µ

2λ2︸︷︷︸
increase

.

It should be noted that E(Y ) can be determined without the density function, since its
Laplace-transform is known. Thus

E(Y ) = −L′Y (0) =
−d(P ′2)∗(s)

ds

∣∣∣∣
s=0

= −
(

2λ2

s2 + (3λ+ µ)s+ 2λ2

)′∣∣∣∣
s=0

=
2λ2(2s+ 3λ+ µ)

(s2 + (3λ+ µ)s+ 2λ2)2

∣∣∣∣
s=0

=
2λ2(3λ+ µ)

4λ4
=

3λ+ µ

2λ2
=

3

2λ
+

µ

2λ2
.

In the case when the component are not repaired, that is when µ = 0 we get a parallel
system treated earlier. After substitution we have

α1 = 2λ, α2 = λ

and then

f ∗Y (s) =
2λ2

λ

(
1

s+ λ
− 1

s+ 2λ

)
=

2λ2

(s+ λ)(s+ 2λ)
=

2λ

s+ 2λ
· λ

s+ λ
.

This can be interpreted as follows. The system failure time is the sum of the time of the
first failure of the components and the residual operating time of the second component.
The first failure is exponentially distributed with parameter 2λ and the remaining time
is also exponentially distributed with parameter λ , furthermore they are independent of
each other.

Exercise 58 Let us modify the previous system in the following way. The repairs are
carried out by 2 repairmen and assume that the repair starts when both components are
failed. Find the steady-state characteristics of the system.

Solution:
Let us introduce the following notations

111



Figure 9.5: Exercise 58

• 0 - both components are operating

• 1 - 1 component is failed, there is no repair

• 2 - 2 components are failed

• 3 - 1 component is failed the other is under repair.

It is easy to see that the steady-state balance equations are

2λP0 = µP3

λP1 = 2λP0

2µP2 = λP1 + λP3

(λ+ µ)P3 = 2µP2

For the solution we obtain

P3 =
2λ

µ
P0, P1 = 2P0, P2 =

λ+ µ

2µ
P3 =

λ+ µ

2µ

λ

µ
P0.

Using the normalizing condition we have

P0 =
1

3 + (λ+µ)λ
µ2

+ 2λ
µ

=
µ2

3µ2 + λ2 + 3λµ
.

The availability A of the system is

A = 1− P2 =
3µ2 + 2λµ

3µ2 + λ2 + 3λµ
, since P2 =

(λ+ µ)λ

3µ2 + λ2 + 3λµ
.

Furthermore, for the mean operating time of the system we get

E(O) =
1− P2

P2

1

2µ
=

2λ+ 3µ

2λ(λ+ µ)
.
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Appendix

In this Appendix some properties of the generating function, sometimes called as z-
transform, and the Laplace-transform are listed. More properties can be found, for ex-
ample in Kleinrock [5].

Some properties of the generating function

Sequence ⇐⇒ Generating function

1. fn, n = 0, 1, 2, . . . G(z) =
∞∑
n=0

fnz
n

2. afn + bgn aG(z) + bH(z)

3. anfn f(az)

4. fn
k
, n = 0, k, 2k, . . . G(zk)

5. fn+k, k > 0 G(z)
zk
−

k∑
i=1

zi−k−1fi−1

6. fn−k, k > 0 zkG(z)

7. n(n− 1) · · · (n−m+ 1)fn zm dm

dzm
G(z), m ≥ 1

8. fn ∗ gn :=
∞∑
k=0

fn−kgk G(z)H(z)

9. fn − fn−1 (1− z)G(z)

10.
n∑
k=0

fk, n = 0, 1, 2, . . . G(z)
1−z

11.
∑

∂
∂a
fn

∂
∂a
G(z)

12. Series sum property G(1) =
∞∑
n=0

fn

13. Alternating sum property G(−1) =
∞∑
n=0

(−1)nfn

14. Initial value theorem G(0) = f0

15. Intermediate value theorem 1
n!

dnG(z)
dzn

∣∣∣
z=0

= fn

16. Final value theorem lim
z→1

(1− z)G(z) = lim
n→∞

fn
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Some properties of the Laplace-transform
Function ⇐⇒ Transform

1. f(t), t ≥ 0 f ∗(s) =
∞∫
0

f(t)e−stdt

2. af(t) + bg(t) af ∗(s) + bg∗(s)

3. f
(
t
a

)
, (a > 0) af ∗(as)

4. f(t− a) e−asf ∗(s)

5. e−atf(t) f ∗(s+ a)

6. tnf(t) (−1)n d
nf∗(s)
dsn

7. f(t)
t

∞∫
s1=s

f ∗(s1)ds1

8. f(t)
tn

∞∫
s1=s

ds1

∞∫
s2=s1

ds2 . . .
∞∫

sn=sn−1

dsnf
∗(sn)

9. f(t) ∗ g(t) =
t∫

0

f(t− x)g(x)dx f ∗(s)g∗(s)

10. df(t)
dt

sf ∗(s)− f(0)

11. dnf(t)
dtn

:= f (n)(t) snf ∗(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0)

12. ∂
∂a
f(t) a is parameter a ∂

∂a
F (s)

13. Integral property f ∗(0) =
∞∫
0

f(t)dt

14. Initial value theorem lim
s→∞

sf ∗(s) = lim
t→0

f(t)

15. Final value theorem lim
s→0

sf ∗(s) = lim
t→∞

f(t)

if sf ∗(s) is analytic for Re(s) ≥ 0
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