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Chapter 1

Introduction

1.1 Queueing systems

A single station queueing system consists of a queueing buffer of finite or infinite size
and one or more identical servers. Such an elementary queueing system is also referred
to as a service station or, simply, as a node. First we start with a short description of
queueing systems, see for example, [7, 10, 18, 23, 46].

A server can only serve one customer at a time and hence, it is either in “busy”
or “idle” state. If all servers are busy upon the arrival of a customer, the newly ar-
riving customer is buffered, assuming that buffer space is available, and waits for its
turn. When the customer currently in service departs, one of the waiting customers is
selected for service according to aqueueing (or scheduling) discipline. An elementary
queueing system is further described by an arrival process, which can be characterized
by its sequence of interarrival time random variables{A1, A2, · · · }. It is common to
assume that the sequence of interarrival times is independent and identically distrib-
uted, leading to an arrival process that is known as a renewal process. The distribution
function of interarrival times can be continuous or discrete.

The average interarrival time is denoted byE[A] = TA and its reciprocal by the
average arrival rateλ:

λ =
1

TA

. (1.1)

The most common interarrival time distribution is the exponential, in which case the
arrival process is Poisson. The sequence{B1, B2, · · · } of service times of successive
jobs also needs to be specified. We assume that this sequence is also a set of indepen-
dent random variables with a common distribution function.

The mean service timeE[B] is denoted byb and its reciprocal by the service rate
µ:

µ =
1
b

. (1.2)

However, there are many practical situations when the request’s arrivals do not form
a renewal process, that is the arrivals may depend on the number of customers, request,
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8 CHAPTER 1. INTRODUCTION

jobs staying at the service facility. This happens in the case offinite-source queueing
systems .

Let us consider some specific examples following in the order of their appearance
in practice.

Example 1.1.1. Consider a set of N machines that operate independently of each
other. After a random time they may break down and need repair by one or multiple
operatives ( repairmen) for a random time. The repair is carried out by a specific dis-
cipline and after having been fixed each machine renew its operation. It is assumed
that the server can handle only one machine at a time. Besides the usual main charac-
teristics in reliability theory we would like to know the distribution of the failure-free
operation time of the whole system, that is distribution of time while the number of
stopped machines exceeds a given limit supposing certain initial conditions, usually,
that all the machines are operating.

Example 1.1.2. Suppose a single unloader system at which trains arrive which bring
coal from various mines. There are N trains involved in the coal transport. The coal
unloader can handle only one train at a time and the unloading time per train is a
random variable. The unloader is subject to random breakdowns when it is in oper-
ation. The operating time and the time to repair a broken unloader are also random
variables. The unloading of the train is resumed as soon as the repair of the unloader
is completed. An unloaded train returns to the mines for another load of coal. The time
for a train to complete a trip from the unloader to the mines and back is assumed to be
a random variable, too.

Example 1.1.3. N terminals request to use of a computer (server) to process transac-
tions. The length of time that the terminal takes to generate a request for the computer
is called ”thinking” time. The length of time from the instant a terminal generates
a transaction until the computer completes the transaction ( and instantaneously re-
sponds by communicating this fact to the user at the terminal ) is called ”response
time”. We would like to know, for example, the rate at which transactions are processed
( which in steady-state equals the rate at which they are generated ) is called ”through-
put”, which is one the most important performance measures showing the system’s
processing power.

Example 1.1.4. Let us consider a memory system where N disk units share a disk
controller (server) and transmit information when they find the controller idle. Unsat-
isfied requests are repeated after a disk’s rotation which can be modelled as a constant
repetition interval.

Example 1.1.5. In trunk mobile systems, telephone lines are interfaced with the radio
system at the repeaters which serve dispatch type mobile subscribers and telephone
line users. Let us consider a system which serves two different types of communication
traffic (i) dispatch traffic has short average service time and (ii) interconnect traffic of
telephone line users. Both types of users are assumed to arrive from a finite population.
The dispatch users are allowed to access all repeaters while interconnect users can
occupy only a fixed number of repeaters. A service sharing algorithm to derive blocking
probabilities of dispatch and interconnect users and average dispatch delay is to be
find.
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Example 1.1.6. Let us examine the dynamic behavior of a local area network based on
the non-persistent Carrier Sense Multiple Access with Collision Detection ( CSMA/CD
) protocol. In such a network a finite number, say N , of users ( or active terminals )
are connected by a single channel ( bus ). Under the specific protocol, if a terminal has
a message ready for transmission, the terminal immediately senses the channel to see
whether it is idle or busy. If the channel is sensed busy, it re-senses the channel after
a random amount of time. On the other hand, if the channel is sensed idle, it starts
transmitting the message immediately. Due to non-zero propagation delay, within a
certain time interval after the terminal starts transmitting the message, other terminals
( if any ) with messages ready for transmission may also sense the channel idle and
transmit their messages. This phenomenon is referred to as a collision. Each terminal
involved in a collision abandons its transmission and re-sense the channel at a later
time as if it had sensed a busy channel. A collision usually lasts for a certain amount
of time during which no terminals are allowed to transmit, that is, a recovery time is
needed by the channel to be free again. This kind of system can be modeled as retrial
queueing system with server’s vacation.

As we could see all the above mentioned examples have a common characteristic:
We have a queueing system in which requests for service are generated by a finite
numberN of identical or heterogeneous sources and the requests are handled by a
single or multiple server(s). The service times of the requests generated by the sources
are random variables. It is assumed that the server can handle only one request at a time
and uses specified service discipline. New requests for service can be generated only
by idle sources, which are sources having no previous request waiting or being served
at the server. A source idle at the present time will generate a request independently of
the states of the other sources after a random time with given distribution.

It is easy to see, that in homogeneous case this system can be considered as a closed
queueing network with two nodes one with an infinite server (source) and another one
with a single or multiple servers ( service facility ). Similarly, in heterogeneous case
it can be viewed as a closed network consisting ofN + 1 nodes where each request
has it own node where to it returns after having been serviced at the ” central ” node
representing the service facility.

Depending on the assumptions on source, service times of the requests and the
service disciplines applied at the service facility, there is a great number of queueing
models at different level to get the main steady-state performance measures of the
system. It is also easy to see, that depending on the application we can use the terms
request, customer, machine, message, job equivalently. The above mentioned models (
problems ) are referred to asmachine repair, machine repairmen, machine interference,
machine service, unloader problem, terminal model, quasi-random input processes,
finite-source or population models , respectively.
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1.1.1 Kendall’s notation

The following notation, known as Kendall’s notation, is widely used to describe ele-
mentary queueing systems:

A/B/m/K/N - queueing discipline,

whereA indicates the distribution of the interarrival times,B denotes the distribution
of the service times,m is the number of servers,K is the capacity of the system, that
is the maximum number of customers staying at the facility (sometimes in the queue),
andN denotes the number of sources.

The following symbols are normally used forA andB:

M Exponential distribution (Markovian or memoryless property)
Ek Erlang distribution withk phases
Hk Hyperexponential distribution withk phases
Ck Cox distribution withk phases
D Deterministic distribution, i.e., the interarrival time

or service time is constant
G General distribution

Thequeueing discipline or service strategy determines which job is selected from
the queue for processing when a server becomes available.

As an example of Kendall’s notation, the expression

M/G/1 - LCFS preemptive resume (PR)

describes an elementary queueing system with exponentially distributed interarrival
times, arbitrarily distributed service times, and a single server. The queueing discipline
is LCFS where a newly arriving job interrupts the job currently being processed and
replaces it in the server. The servicing of the job that was interrupted is resumed only
after all jobs that arrived after it have completed service.

M/G/1/K/N

describes a finite-source queueing system with exponentially distributed source times,
arbitrarily distributed service times, and a single server. There areN request in the
system and they are accepted for service iff the number of requests staying at the server
is less thanK. The rejected customers return to the source and start a new source time
with the same distribution. It should be noted that as a special case of this situation the
M/G/1/N/N system could be considered. However, in this case we use the traditional
M/G/1//N notation, that is the missing letter, as usual in this framework, means
infinite capacity.

It is natural to extend this notation to heterogeneous requests, too. The case when
we have different requests is denoted by→. So, the

�M/�G/1/K/N

denotes the above system with different arrival rates and service times.
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1.2 Performance measures for finite-source systems

1.2.1 Homogeneous systems

For the better understanding let us consider anM/G/1//N system without server
vacations treated in details in [42]. One of the performance measures in our system
is themean message response time E[T ] defined as the mean time from the arrival of
a new message to its service completion, that is, the mean time a message spends in
the service facility. Since the mean time that each message takes to complete cycle of
staying in the source and staying in the service facility isE[T ] + 1/λ, thethroughput
γ of the system, which is defined as the mean number of messages served per unit time
in the whole system, is given byN/(E[T ] + 1/λ). If P0 denotes the probability that
the server is idle at an arbitrary time, thenρ′ = 1 − P0 is thecarried load or server
utilization, namely, the long run fraction of the time that the server is busy. Thus, the
throughput is also given by(1 − P0)/b. By equating these two expressions for the
throughput, we get

γ =
N

E[T ] + 1/λ
=

1 − P0

b
=

ρ′

b
(1.3)

Hence we have

E[T ] =
Nb

1 − P0
− 1

λ
(1.4)

If E[L] denotes the mean number of messages in the service facility at an arbitrary
time, we also have the relationship

γ = λ(N − E[L]) (1.5)

that equates the throughput to the mean number of messages arriving per unit of time.
Thus we get

E[L] = N − 1 − P0

λb
= γE[T ] (1.6)

which is an example ofLittle’s theorem applied to those messages that are accepted
by the service facility. The ratio

E =
N − E[L]

N
=

γ

Nλ
=

1 − P0

Nλb
(1.7)

is called themachine availability in machine interference models, since it represents
the expected fraction of time that a machine remains in working condition,E is the
machine efficiency, because it is the ratio of the total actual production to what would
have been achieved had no stoppage taken place. From (1.3) through (1.5, 1.6), it is
clear that performance measures such asρ′ , γ, E[T ], andE[L] can be obtained once
we have evaulatedP0.

Let E[Θ] be the mean length of a busy period. Since the state of the system repeats
regenerative cycles of a busy period of mean lengthE[Θ] and an idle period of mean
lengthE[I] = 1/(Nλ), the probabilityP0 that the server is idle at an arbitrary time is
given by

P0 =
E[I]

E[Θ] + E[I]
=

1/(Nλ)
E[Θ] + 1/(Nλ)

(1.8)
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If π0 denotes the probability that the service facility is empty after a service completion,
1/π0 is the mean number of messages that are served during each busy period. This
can be seen by considering a long period of time during which a large number of (say
N) messages are served. Such a period will includeNπ0 busy periods on the average,
becauseπ0 is the probability that a busy period is terminated after a service completion.
Therefore, on the average1/π0 messages are served per busy period. Hence, the mean
length of a busy period is given by

E[Θ] =
b

π0
(1.9)

From (1.8) and (1.9), we get

P0 =
π0

π0 + Nλb
(1.10)

Substituting (1.10) into (1.3),(1.4), and (1.6) we can express the throughputγ, the
mean message response timeE[T ], and the mean numberE[L] of messages in the
service facility at an arbitrary time in terms ofπ0, too, as

γ =
Nλ

π0 + Nλb
; E =

1
π0 + Nλb

(1.11)

E[T ] = Nb − 1 − π0

λ
(1.12)

E[L] = N

(
1 − 1

π0 + Nλb

)
(1.13)

We can findπ0 by analyzing a Markov chain of the queue size imbedded at service
completion times, or the method of supplementary variables can be applied to obtain
P0.

1.2.2 Asymptotic properties

We can discuss some asymptotic properties of these performance measures without
recourse to detailed analysis of the system state. WhenN is fixed, forλ ≈ 0 we have
almost no congestion at the service facility, which means thatπ0 ≈ 1, P0 ≈ 1, γ ≈
Nλ,E ≈ 1, E[T ] ≈ b andE[L] ≈ Nλb. As λ → ∞, every message whose service
has just been completed returns to the facility almost immediately.
Therefore

π0 → 0, P0 → 0, γ → 1/b,

E → 0, E[T ] → Nb, E[L] → N.

We note thatE[T ] in (1.4) or (1.12) as a function ofN has simple asymptotic forms.
WhenN = 1 (which is equivalent to aloss system M/G/l/l), we obviously haveπ0 = 1
andE[T ] = b. As N → ∞, we haveπ0 → 0 and so

E[T ] ≈ Nb − 1
λ

as N → ∞ (1.14)
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The value ofN , denoted byN∗, at which the two straight linesE[T ] = b and the one
in (1.14) as a function ofN intersect each other is called thesaturation number. It is
given by

N∗ = 1 +
1
λb

(1.15)

Note that this can be written asN∗ = (b + 1/λ)/b. Therefore, if nature were kind
and all messages required exactlyb service time and exactly1/λ generation time (a
deterministic system), thenN∗ would be the maximum number of messages that could
be scheduled without causing mutual interference, see [24] page 209.

It should also be mentioned that well-known book of Takagi [42] provides an or-
ganized and unified presentation of the analysis techniques forM/G/1//N systems
without and with vacations. TheM/G/1/K/N andM/G/m/m/N models are also
treated there. In Takagi [43] discrete-timeGeo/G/1/K/N systems are analyzed. To
the best knowledge of the author these books are the most comprehensive ones on this
special topic in the existing literature.

1.2.3 Heterogeneous systems

In this section, we studyM/G/1//N systems with a heterogeneous population; that
is, we assume that messages can be distinguished according to their arrival rates and
service time distributions. We consider three models that differ with respect to the
population constraint: an individual message model, a multiple finite-source model,
and a single finite-source model. In theindividual message model, each message has
a distinct arrival rate and a distinct service time distribution. It is also called asingle
buffer model because of its equivalence to a system of multiple classes of messages in
which each class is allotted a single buffer. In themultiple finite-source model, see [22]
(sec. III.1), there areP classes of messages and the population size of classp is fixed
atNp(< ∞) such thatN =

∑P
p=1 Np. The individual message model is a special case

of the multiple finite-source model in whichP = N andNp = 1 for i ≤ p ≤ N . In the
single finite source model the total number of messages in the system is fixed atN , and
each message becomes a message of one ofP classes with a given probability when it
leaves the source.

The multiple finite-source model and the single finite-source model may be associ-
ated withflow control andcongestion avoidance mechanisms in computer communica-
tion networks. Namely, the multiple finite-source model in which the population size
is fixed for each class corresponds to thewindow flow control. Let us first assume that
each of theN messages has different characteristics. In terms of machine interference
problems, each machine is assumed to have a different breakdown rate and a different
repair time distribution. Specifically, letλi be the rate at which messagei in the source
arrives at the service facility, and letBi(x) be the distribution function (DF) for the
service time of messagei, wherei = 1, 2, . . . , N . We also denote bybi andB∗

i (s)
the mean and Laplace-Stieltjes transform (LST) ofBi(x), respectively. We call this
system anindividual message model. The total arrival rate when all messages are in
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the source is denoted by

Λ =
N∑

i=1

λi (1.16)

We denote byE[Ti] the mean response time of messagei, and byγi the throughput
of messagei, that is, the mean number of times that messagei is served per unit time,
wherei = 1, 2, . . . , N . These are related by

γi =
1

E[Ti] + 1/λi
1 ≤ i ≤ N (1.17)

If Γi denotes the mean number of times that messagei is served in a busy period of
lengthΘ, the throughputγi can also be expressed as

γi =
Γi

E[Θ] + E[I]
1 ≤ i ≤ N (1.18)

where

E[I] =
1
Λ

(1.19)

is the mean lenght of an idle periodI, and

E[Θ] =
N∑

j=1

bjΓ(j) (1.20)

is the mean length of an busy periodΘ. The carried load (total server utilization)ρ′ is
given by

ρ′ =
E[Θ]

E[Θ] + E[I]
= 1 − P0 (1.21)

whereP0 is the probability that the service facility is empty at an arbitrary time. The
total throughputγ of the system is given by

γ =
N∑

i=1

γi =
∑N

i=1 Γi

E[Θ] + E[I]
(1.22)

Hence we can obtain the throughputγi and the mean response timeE[Ti] once we
have calculated{Γ(j); 1 ≤ j ≤ N}, wherei = 1, 2, . . . , N . The mean waiting time
of messagei is given by

E[Wi] = E[Ti] − bi =
1
γi

− 1
λi

− bi 1 ≤ i ≤ N (1.23)

If P (i) denotes the probability that messagei is present in the service facility at an
arbitrary time, we have

P (i) =
E[Ti]

E[Ti] + 1/λi
= γiE[Ti] = 1 − γi

λi
1 ≤ i ≤ N (1.24)
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which representsLittle’s theorem for messagei in the service facility. In terms of ma-
chine repairman problems,P (i) is the probability that machinei is down at an arbitrary
time. Alternatively, we can express the mean response timeE[Ti] and the throughput
γi for messagei in terms ofP (i) as

E[Ti] =
P (i)

λi(1 − P (i))
; γi = λi(1 − P (i)) (1.25)

Depending on the assumptions on source, service times of the requests and the
service disciplines applied at the service facility, there is a great number of queueing
models at different level to get the main steady-state performance measures of the sys-
tem. It is also easy to see, that depending on the application we can use the terms
request, customer, machine, message, job equivalently. The above mentioned models (
problems ) are referred to asmachine repair, machine repairmen, machine interference,
unloader problem, terminal model, or quasi-random input processes, finite population
models , respectively.

Because of the page limitation, only the most related references are cited. However,
a more detailed Bibliography can be found on this topic in [31].

For additional materials the interested reader is referred to the following basic com-
prehensive books [1, 7, 10, 11, 12, 17, 18, 22, 23, 24, 25, 26, 28, 40, 41, 42, 43, 44, 47].

The main aim of the following chapters is to show how different methods can be
applied in the investigation of finite-source queueing systems. Thus, analytical, numer-
ical and asymptotic approaches are presented.
The classicalM/M/r//N model is treated in full details because in this case the wait-
ing and response time distribution functions can explicitly be derived. Then by using
the supplementary variable technique closed-form steady-state distributions can be ob-
tained for systems with heterogeneous requests. After that a stable numerical algorith-
mic approach is introduced which works even in those cases when the calculation of
the famous Taḱacs-formulas is failed due to the factorial.
Recent tool-supported modeling techniques are illustrated by using the software pack-
age MOSEL for retrial systems with non-reliable servers.
Finally, asymptotic analysis for complex renewable systems with fast repair evolving
in random environment is presented. This approach is very effective since state space
explosion problems can be avoided by exploring the special structure of the underlying
Markov chain.

In many cases the proofs are omitted. However, some theorems are stated because ei-
ther they follow from well-known theorems or they are important for possible future
investigations. In addition, the most important sources of information are listed to draw
attention of the interested readers. Finally, some of the recent works of the author are
either presented or cited.

Acknowledgement. The author is very grateful to Prof. M. Telek for his valuable
comments.
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Chapter 2

Analytical Methods

2.1 Homogeneous M/M/r//N systems, the classical model

This section presents the classical queuing theory approach for solving to machine
interference problem. It should be noted that this system is analyzed by many authors
in different books. It is a classical example for queueing systems with state-dependent
arrival rates and it can be treated in the framework of the so-calledbirth-and-death
processes. The present problem is descibed in several classical books on queueing
systems, for example [1, 9, 10, 23, 18, 20, 46] such to mention the basic ones. Our
aim is to show the form of the steady-state probabilities of stopped machines. In the
above mentioned works one can find the detailed analysis of waiting time, down time
distribution of machines, too. Several numerical examples from real life situations
illustrates this interesting system.

It is also proved that in steady-state the arriving machines’ distribution in system
containingN machines is the same as the outside observer’s distribution for the corre-
sponding system withN −1 machines, or other words in arrival epochs the distribution
is the same as the time-average distribution of system with one machine less .

The assumptions of the model are as follows:
Suppose that there areN machines andr operators,(r < N), and

1. The time between breakdowns (or production time) of any one of the machines is
a sample from anexponential probability distribution with mean1/λ, (or mean
rateλ). A breakdown is random and is independent of the operating behavior of
the other machines. Then, when there aren machines not working at timet,

Prob (one of theN − n machines goes down in the interval(t, t + ∆t)) =
(N − n)λ∆t + o(∆t),

where∆t is a small increment of time.

2. Any one of then down machines requires only one of ther operators to fix it.
The service time distribution isexponential with mean1/µ for each machine and
each operator. The service times are mutually independent and also independent
of the number of down machines.

17
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Then

Prob [one of then down machines is fixed in an interval∆t]

=

{
nµ∆t + o(∆t), for 1 ≤ n ≤ r,

rµ∆t + o(∆t), for r < n ≤ N.

3. The machines areserved in the order of their beakdowns.

Let
L(t) = the number of down machines at time t

and
Pn(t) = Prob(L(t) = n|L(0) = i), n = 0, . . . , N.

Then the stochastic process, (L(t), t ≥ 0), is a birth-and-death process, with rates

λn =

{
(N − n)λ, n = 0, 1, . . . , N,

0, n > N,

µn =

{
nµ, n = 1, 2, . . . , r,

rµ, n = r + 1, . . . , N.

The forward Kolmogorov-equations of the birth-death process are

P ′
0(t) = NλP0(t) + µP1(t),

P ′
n(t) = −((N − n)λ + nµ)Pn(t) + (N − n + 1)λPn−1(t) + (n + 1)µPn+1(t),

1 ≤ n < r,

P ′
n(t) = −((N − n)λ + rµ)Pn(t) + (N − n + 1)λPn−1(t) + rµPn+1(t),

r ≤ n < N,

P ′
N (t) = −rµPN (t) + λPn−1(t).

This finite system of ordinary differential equations can be solved and we can get the
transient probabilities.

For the equilibrium values ofPn these derivatives are equal to zero and the equi-
librium (or stationary or steady state) values are

Pn = lim
t→∞Pn(t).

The flow balance equations ( steady-state equations ) become

NλP0 = µP1,

((N − n)λ + nµ)P0 = (N − n + 1)λPn−1 + (n + 1)µPn+1, 1 < n < r,

((N − n)λ + rµ)P0 = (N − n + 1)λPn−1 + rµPn+1, r ≤ n < N,

rµPN = λPN−1.

These equations are solved recursively using the relationship
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(N − n)λPn = (n + 1)µPn+1, 0 ≤ n < r,

(N − n)λPn = rµPn+1, r ≤ n < N.

Lettingρ = λ/µ (the servicing factor), the steady-state probabilities are

Pn =
(

N

n

)
ρnP0 for 0 ≤ n ≤ r, (2.1)

Pn =
N !

(N − n)!r!rn−r
ρnP0 for r ≤ n ≤ N.

whereP0 is obtained by solving
N∑

n=0
Pn = 1 to get

P0 =

(
r∑

n=0

(
N

n

)
ρn +

N∑
n=r+1

(
N

n

)
n!

r!rn−r
ρn

)−1

In the following only themain performance measures of the machine interference
problem are mentioned.

1. The expected (average) number of down machines

E[L] =
N∑

n=0

nPn.

2. Machine efficiency or machine utilization

Um =
N − E[L]

N
,

which is the percentage of average production obtained (or the fraction of total
production time on all machines).

3. Average operator utilization

US =
N∑

n=0

nPn

r
+

N∑
n=r+1

Pn

which is fraction of time an operator would be working.

4. Average number of idle operators

r − rUs =
r∑

n=0

(r − n)Pn.
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5. Average number of machines waiting

Q =
N∑

n=r+1

(n − r)Pn.

6. Average down time of machines

T =
E(L)

λ(N − E(L))
.

7. Mean waiting time of machines

W =
Q

λ(N − E(L))
.

By dividing measure 4 by the number of operators,r, and measure 5 by the number of
machines,N , some related measures can be obtained

• Coefficient of loss for operator∑N
n=0(r − n)Pn

r

or percentage of idle operators.

• Coefficient of loss for machines∑N
n=r+1(n − r)Pn

N

or percentage of interference time.

In general, there is no closed form solution for these characterisrics. However, for
the single server case all of these measures can be expressed as the function ofUS in
the following way.

Pk =
N !

(N − k)!
ρkP0, ρ =

λ

µ

P0 =
1

N∑
k=0

N !
(N − k)!

ρk

.

If z =
µ

λ
= ρ−1, then we get the following very useful relation

P0 =
1

N∑
k=0

N !
(N − k)!

ρk

=
1

N∑
k=0

N !
k!

ρN−k

=
1

N !ρN

N∑
k=0

1
k!ρk

=

zN

N !
N∑

k=0

zk

k!

= B(N, z),
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whereB(N, z) is the well-knownErlang’s B formula , or loss formula. It can easily
be seen that the following recurrence relation is valid

B(m, z) =
zB(m − 1, z)

m + zB(m − 1, z)
m = 2, 3, ...

B(1, z) =
z

1 + z
.

Hence the server utilization is

US = 1 − P0 = 1 − B(N, z).

After some elementary calculations for the performance measures we obtain

E[L] = N − US

ρ
,

Q =
N∑

k=1

(k − 1)Pk =
N∑

k=1

kPk −
N∑

k=1

Pk = N −
(

1 +
1
ρ

)
US ,

Um =
N − E[L]

N
=

US

Nρ
,

T =
E[L]

λ(N − E[L])
=

1
µ

(
N

US
− 1

ρ

)
,

W =
Q

λ(N − E(L))
=

1
µ

(
N

US
− 1 + ρ

ρ

)
.

Let us denote byUS [N ] the server’s utilization emphasizing that the number of ma-
chines isN . Hence, we can write

US [N ] = 1 − B

(
N,

1
ρ

)
= 1 −

1
ρ
B

(
N − 1,

1
ρ

)

N +
1
ρ
B

(
N − 1,

1
ρ

) =

=
N

N +
1
ρ
B

(
N − 1,

1
ρ

) =
Nρ

Nρ + B

(
N − 1,

1
ρ

) =

=
Nρ

Nρ + 1 − US [N − 1]
, N = 2, 3, ....
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with the initial value

US [1] =
ρ

1 + ρ
.

As a result we have a very useful recurrence formula for calculating the performance
measures for case of one more machines. To derive the distribution function for the
waiting time of a machine,W [·], we reason that an arriving machine (customer) must
queue for repair (service) only ifn ≥ r, wheren is the number of customers found
in the repair system. When this is the case, the arrival must wait for the departure of
(n−r)+1 customers. (Ifn = r, one customer must depart, ifn = r+1, two customers
must depart, etc.) LetNa be the number of customers an arriving machine finds in the
repair facility so thatqn = P [Na = n]. If n ≥ r andk = n−r, thenP [q > t|Nq = n]
is the probability thatk or fewer customers depart in an interval of lengtht. But this
probability is given by

P [q > t|Nq = n] = e−rµt
k∑

i=0

(rµt)i

i!
= Q[k; rµt], (2.2)

whereQ[k; rµt] is the cumulative Poisson distribution. Formula (2.2) follows from the
fact that the service facility services customers like a single server with an exponential
distribution and mean service time1/(rµ). Thus, the number of customers processed
in an interval of lengtht has a Poisson distribution with meanrµt. We have

P [q > t] =
N−1∑
n=r

P [q > t|Nq = n]qn =
N−1∑
n=r

qnQ[n − r; rµt]. (2.3)

To complete the derivation, we show that anyN -source birth-and-death queueing
system with quasi-random input, the arriving customer’s distribution in steady-state is
the same as the outside observer’s distribution for the corresponding(N − 1)-source
system.

We consider a system withN sources, each source originating requests at rateλ
when idle and rate0 otherwise (quasi-random input). Then the request rate whenn
sources are busy (in service or waiting for service) is

λn = (N − n)λ (n = 0, 1, ..., N). (2.4)

To calculate the arriving customer’s distribution{qn}, by using the Bayes-formula
it is easy to see that we get

qn =
(N − n)Pn∑
k

(N − k)Pk

. (2.5)

In order to emphasize the dependence on the numberN of sources, we writePn =
Pn[N ] andqn = qn[N ]. Then (2.5) becomes
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qn[N ] =
(N − n)Pn[N ]

N−1∑
k=0

(N − k)Pk[N ]
n = 0, 1, ..., N − 1. (2.6)

Thus, the outside observer’s distribution can be written as

Pn[N ] =
N(N − 1) · · · (N − n + 1)λn

µ1µ2 · · · µn
P0[N ] n = 1, 2, ..., N (2.7)

and

P0[N ] =

(
1 +

N∑
k=1

N(N − 1) · · · (N − k + 1)λk

µ1µ2 · · · µk

)−1

. (2.8)

Substitution of (2.7) into (2.6) yields

qn[N ] =
N(N−1)···(N−n+1)λn

µ1µ2···µn
P0[N ]

NP0[N ] +
N−1∑
k=1

N(N−1)···(N−k+1)(N−k)λk

µ1µ2···µk
P0[N ]

n = 1, 2, ..., N − 1. (2.9)

After cancellation of the factorNP0[N ] in (2.9), we have

qn[N ] =
(N−1)···(N−n)λn

µ1µ2···µn

1 +
N−1∑
k=1

(N−1)···(N−k)λk

µ1µ2···µk

n = 1, 2, ..., N − 1. (2.10)

Comparison of Equation (2.10) with (2.7) and (2.8) shows thatqn[N ] = Pn[N −1]
for j = 1, 2, ..., N − 1. Since we must have

N−1∑
n=0

Pn[N − 1] =
N−1∑
n=0

qn[N ] = 1, (2.11)

we conclude that

qn[N ] = Pn[N − 1] n = 0, 1, ..., N − 1. (2.12)

It should be mentioned that this theorem can be generalized to closed queueing net-
works stating:
In a closed queueing network the (stationary) state probabilities at customer arrival
epochs are identical to those of the same network in long-term equilibrium with one
customer removed.

Theqn’s in (2.3) are written asqn[N ] in the notation (2.12). By
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Pn =




(
N
n

)(
λ
µ

)n

P0, n = 0, 1, ..., r

n!
r!rn−r

(
N
n

)(
λ
µ

)n

P0, n = r + 1, ..., N,
(2.13)

P0 =

(
r∑

k=0

(
N

k

)(
λ

µ

)k

+
N∑

k=r+1

k!
r!rk−r

(
N

k

)(
λ

µ

)k
)−1

(2.14)

whenn ≥ r, we can write, usingz = µ/λ,

Pn[N ] =
n!

r!rn−r

(
N

n

)
znP0[N ] =

n!rr

r!rn

N !zn

(N − n)!n!
P0[N ]

=
rr

r!
P0[N ]

e−rz(rz)N−n

(N−n)!

e−rz(rz)N

N !

=
rr

r!
P0[N ]

P [N − n; rz]
P [N ; rz]

, (2.15)

wherePD(k, rz) denotes the Poisson distribution with parameterrz, that isPD(k, rz) =
(rz)k

k! e−rz.

Therefore,

qn[N ] = Pn[N − 1] =
rr

r!
P0[N − 1]

PD[N − n − 1; rz]
PD[N − 1; rz]

. (2.16)

Substituting the above formula forqn[N ] into (2.3) yields

P [q > t] =
N−1∑
n=r

Pn[N − 1]Q[n − r; rµt]

=
rrP0[N − 1]

r!PD[N − 1; rz]

N−1∑
n=r

PD[N − n − 1; rz]Q[n − r; rµt]

=
rrP0[N − 1]

r!PD[N − 1; rz]

N−r−1∑
n=0

PD[N − r − 1 − n; rz]Q[n; rµt]

=
rrP0[N − 1]

r!PD[N − 1; rz]
Q[N − r − 1; rz + rµt],

(2.17)

In the last step of (2.17), we applied the identity

k∑
j=0

P [k − j;λ]Q[j;µ] = Q[k;λ + µ].

Now we can use (2.17) to write
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W [t] = 1 − rrP0[N − 1]Q[N − r − 1; r(z + µt)]
r!PD[N − 1; rz]

. (2.18)

The derivation of the distribution functionR[·] of the response time, or sojourn
time of requests staying in the system is much more complicated. It is derived in the
solutions manual for Kobayashi [25]. The result is

R[t] = 1 − C1 × e−µt + C2 × Q[N − r − 1; r(z + µt)] t ≥ 0, (2.19)

where

C1 = 1 + C2 × Q[N − r − 1; rz], (2.20)

and

C2 =
rrP0[N − 1]

r!(r − 1)(N − r − 1)!PD[N − 1; rz]
. (2.21)

Formula (2.14) (withN replaced byN − 1 everywhere it appears) can be used to
calculateP0[N − 1] in (2.18) and (2.21).

To make easier the calculations, as it was shown in Kobayashi [25],P−1
0 [N ] satisfies

the following recurrence relation

P−1
0 [N ] = 1 +

N

rz
P−1

0 [N − 1] +
N

z

r−1∑
i=0

(
N−1

i

)
zi

[
1

i + 1
− 1

r

]
, N > r

with initial value

P−1
0 [r] =

(
1 +

1
z

)r

.
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2.2 The �G/M/r//N/FCFS sytem

Requests emanate from a finite source of sizeN and are served by one ofr(r ≤ N)
servers at a service facility according to a First-Come-First-Served (FCFS) discipline.
The service times of the requests are supposed to be identically and exponentially dis-
tributed random variables with means1/µ. After completing service, requesti returns
to the source and stays there for a random time having general distribution function
Fi(x) with densityfi(x). All of these random variables are assumed to be independent
of each other.

2.2.1 The mathematical model

Let the random variablev(t) denote the number of requests staying in the source at
time t and(α1(t), . . . , αv(t)(t)) indicate their indices ordered lexicographically. Let
us denote by(β1(t), . . . , βN−v(t)(t)) the indices of the requests waiting for the ser-
vice facility in the order of their arrival. Clearly the sets{α1(t), . . . , αv(t)(t)} and
{β1(t), . . . , βN−v(t)(t)} are disjoint.

Introduce the process

Y (t) = (α1(t), . . . , αv(t)(t);β1(t), . . . , βN−v(t)(t)).

The stochastic process(Y (t), t ≥ 0) is not Markovian unless the distribution functions
Fi(x) are exponential,i = 1, . . . , N .

Let us also introduce the supplementary variablesξαl(t) to denote the random time
that requestαl(t) has been spending in the source until timet, l = 1, . . . , N . Define

X(t) = (α1(t), . . . , αv(t)(t); ξα1(t), . . . , ξαv(t)(t);β1(t), . . . , βN−v(t)(t)).

Then process(X(t), t ≥ 0) exhibits the Markov property.
Let V N

k andCN
k denote the set of all variations and combinations of orderk of the

integers1, 2, . . . , N respectively, ordered lexicographically. Then the state space of the
processX(t) consist of the sets

(i1, . . . , ik;x1, . . . , xk; j1, . . . , jN−k), (i1, . . . , ik) ∈ CN
k ,

(j1, . . . , jN−k) ∈ V n
N−k, xi ∈ R+, i = 1, . . . , k, k = 0, . . . , N

Let Qi1,...,ik;j1,...,jN−k
(x1, . . . , xk; t) denote the probability that at timet the process

is in state(i1, . . . , ik;x1, . . . , xk; j1, . . . , jN−k) if k requests with indices(i1, . . . , ik)
have been staying in the source for times(x1, . . . , xk) respectively, while the rest need
service and their indices in order of arrival arej1, . . . , jN−k).

Let λi defined by1/λi =
∫ ∞
0

xdFi(x). Then we have:

Theorem 2.2.1. If 1/λi < ∞, i = 1, . . . , N , then the process (X(t), t ≥ 0) possesses
a unique limiting (stationary) ergodic distribution independent of the initial conditions,
namely

Q0;j1,...,jN
= lim

t→∞Q0;j1,...,jN
(t),

Qi1,...,ik;j1,...,jN−k
(x1, . . . , xk) = lim

t→∞Qi1,...,ik;j1,...,jN−k
(x1, . . . , xk; t). (2.22)
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Notice thatX(t) belongs to the class of piecewise-linear Markov processes, subject to
discontinuous changes treated by [17] in detail. Our statement follows from the theo-
rem on page 211 of that monograph.

Let Qi1,...,ik,j1,...,jN−k
denote the steady state probability that requests with indices

(i1, . . . , ik) are in the source and the order of arrival of the rest to the service facility
is (j1, . . . , jN−k). Furthermore, denote byQi1,...,ik

the steady state probability that
requests with indices(i1, . . . , ik) are staying at the source.
As it was proved in [35] that these probabilities can be expressed in the following form

Qi1,...,ik
=

(N − k)!
r!rN−r−kµN−kλi1 , . . . , λik

CN , (2.23)

(i1, . . . , ik) ∈ CN
k , k = 0, 1, . . . , N − r.

Similarly,

Qi1,...,ik
=

1
µN−kλi1 . . . λik

CN (2.24)

(i1, . . . , ik) ∈ CN
k , k = N − r, . . . , N. (2.25)

Let Q̂k and P̂l denote the steady state probabilities thatk requests are staying in
the source andl requests are at the service facility, respectively. Clearly

Qi1,...,iN
= Q1,...,N = Q̂N = P̂0 Q̂k = P̂N−k.

It is easy to see that

Cn = Q̂nλ1 . . . λn and Q̂k =
∑

(i1,...,ik)∈CN
k

Qi1,...,ik
,

whereQ̂N can be obtained with the aid of the norming condition

N∑
k=0

Q̂k = 1.

In the homogeneous case, whenλi = λ, i = 1, . . . , N relations (2.23) and
(2.2.1) yield

Q̂k =
N !

k!r!rN−r−k

(
λ

µ

)N−k

Q̂N for 0 ≤ k ≤ N − r,

Q̂k =
(

N

k

)(
λ

µ

)N−k

Q̂n for N − r ≤ k ≤ N.
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Thus, the probability thatk requests are not in the source is

P̂k =
(

N

k

)(
λ

µ

)k

P̂0 for 0 ≤ k ≤ r,

P̂k =
N !

(N − k)!r!rk−r

(
λ

µ

)k

P̂0 for r ≤ k ≤ N.

This is exactly the same result as the one obtained in [8]. The equivalence of the finite-
sourceEk/M/1 to theM/M/1 and in addition to that of theG/M/r to theM/M/r
model ( see 2.1 ), respectively, are just special cases of the more general result obtained
here.

Before determining the main characteristics of the system we need one more the-
orem. In order to formulate it, we introduce some further notations. LetQ(i)(P (i))
denote the steady state probability that requesti is in the source (at the service facility)
for i = 1, . . . , N . It is clear that the process(Y (t), t ≥ 0) is a Markov-regenerative
process with state space⋃

(i1, . . . , ik) ∈ CN
k , (j1, . . . , jN−k) ∈ V N

N−k,
(i1, . . . , ik) ∩ (j1, . . . , jN−k) = 0,

k = 0, 1, . . . , N

{(i1, . . . , ik; j1, . . . , jN−k)}.

Let Hi be the event that requesti is in the source andZHi
(t) its characteristic

function, that is

ZHi
(t) =

{
1 if Y (t) ∈ Hi

0 otherwise

Then we have

Theorem 2.2.2.

lim
T→∞

1
T

∫ T

0

ZHi
(t)dt =

1/λi

1/λi + W i + 1/µ
= Q(i) = 1 − P (i),

where W i denotes the mean waiting time of request i.

The statement is a special case of a theorem concerning the expected sojourn time for
semi-Markov processes, (see [45] ).

Sometimes we need the long-run fraction of time the requesti spends in the source.
This happens e.g., in themachine interference model. In that case for the utilization of
machinei we have

Ui = Q(i) =
n∑

k=1

∑
i∈(i1,...,ik)∈CN

k

Qi1,...,ik
.
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2.2.2 The main performance measures

(i) Utilizations
Utilizations can now be considered for individual servers or for the system as a
whole. The process(X(t), t ≥ 0) is assumed to be in equilibrium. Considering
the system as the whole, it will be empty only when there are no requests at the
service facility and will be busy at other times. As usual, using renewal-theoretic
arguments for the system utilization, that is the long-run fraction of time when
at least one server is busy, we have

U = 1 − Q̂N and Q̂N =
Eη∗

Eη∗ + Eδ

whereη∗ = min(η1, . . . , ηN ), random variableηi denotes the source time of
requesti, i = 1, . . . , N , andNδ denotes the average busy period of the system.

Thus the expected length of the busy period is given by

Eδ = Eη∗
1 − Q̂N

Q̂N

.

In particular, ifFi(x) = 1 − exp(−λix), i = 1, . . . , N , we get

Eδ =
1 − Q̂N

Q̂N

1∑
λi

.

It is also easy to see that for the utilization of a given server, which is called
utilization in general, the following relation holds:

Us =
1
r

(
N∑

k=1

kP̂k + r

N∑
k=r+1

P̂k

)
=

r

r
,

wherer denotes the mean number of busy servers.

(ii) Mean waiting times
By the virtue of Theorem 2.2.1 we obtainQ(i) = (1 + λiW i + λi/µ)−1. Con-
sequently, the average waiting time of requesti is

W i = (1 − Q(i))(λiQ
(i))−1 − 1/µ.

It follows that the mean sojourn time of requesti, that is, the sum of waiting and
service times , can be obtained by

T i = W i + 1/µ = (1 − Q(i))(λiQ
(i))−1 for i = 1, . . . , N. (2.26)

Since
∑N

i=1(1 − Q(i)) = N , whereN denotes the mean number of requests
staying at the service facility we have, by reordering and adding (2.26)

N∑
i=1

λiT iQ
(i) = N. (2.27)
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This is theLittle’s formula for the finite source�G/M/r queue. In particular, if
Fi(x) = F (x), i = 1, . . . , N , (2.27) can be written asλ(N − N)T = N , where
(N − N) is the expected number of requests staying in the source.

Using the method of supplementary variables similar problems were treated in [34, 36,
37, 38, 39].



Chapter 3

Numerical Methods

Closed-form solutions for the steady-state probabilities are very rare. Different ana-
lytical methods are used to investigate the involved processes and related numerical
problems. For the most common procedures and tools the interested reader is referred
to [6, 16, 19, 20, 21, 27, 29, 30, 44, 47]

3.1 A recursive method for the M/G/1//N system

In the following the results of [19] are introduced since it give a very stable algo-
rithm for the calculations. Takács [40] gives an explicit expression for the stationary
distribution of the number of working (up) machines of theM/G/1//N model. How-
ever, for a large number of machines the computation of probabilities using Theorem
2 in [40] (p. 195) may pose problem as it involves many factorials. Even for the
simpleM/M/r//N model, Gross and Harris [18] (p. 108) makes similar comments
and proposed a recursive method for computing probabilities. To obtain the steady
state probability distribution of the number of down machines at arbitrary time epoch
Pn(0 ≤ n ≤ N) one can also use the embedded Markov chain technique, see [42].
The objective of this section is to provide an alternative method, using the supplemen-
tary variable technique and considering the supplementary variable as the remaining
repair time, to obtainPn(0 ≤ n ≤ N) for M/G/1//N model which is used to obtain
the various system performance measures such as average number of down machines,
average waiting time and operator utilization etc. The method is recursive and can be
used for several repair time distribution such as mixed generalized Erlang(MGEh),
generalized Erlang(GEh), hyperexponential(HEh), generalized hyperexponential
(GHh) and uniformU(a, b) etc. The only input required for efficient evaluation of
state probabilities is the Laplace-Stieltjes Transform of the repair time distribution.

3.1.1 The mathematical model

Consider a machine repairman problem with a single repairman and a set ofN working
machines. Let us assume that the running times of the machines between breakdowns

31
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have an exponential distribution with mean1/λ and the repair (service) time of the ma-
chines are independent and identically distributed random variables having distribution
functionB(u), probability density functionb(u) and a mean repair timeb. The state of
the system at timet is given by

N(t) = Number of down machines, and
U(t) =Remaining repair time for the machine under repair.

Let us define

P0(t) = P (N(t) = 0), (3.1)

and

Pn(u, t)du = P{N(t) = n, u < U(t) ≤ u + du},
u ≥ 0, n = 1, 2, . . . , N. (3.2)

Pn(t) = P (N(t) = n) =

∞∫
0

Pn(u, t)du, n = 1, 2, . . . , N. (3.3)

Relating the states of the system at timet andt + dt, we obtain

∂

∂t
P0(t) = −NλP0(t) + P1(0, t), (3.4)(

∂

∂t
− ∂

∂u

)
P1(u, t) = −(N − 1)λP1(u, t) + NλP0(t)b(u) +

+ P2(0, t)b(u), (3.5)(
∂

∂t
− ∂

∂u

)
Pr(u, t) = −(N − r)λPr(u, t) + (N − r + 1)λPr−1(u, t) +

+ Pr−1(0, t)b(u), 2 ≤ r ≤ N − 1 (3.6)(
∂

∂t
− ∂

∂u

)
PN (u, t) = λPN−1(u, t). (3.7)

Since we discuss the model in steady state, we lett → ∞ in equations (3.4)-(3.7).
Further define

Pn = lim
t→∞Pn(t), 0 ≤ n ≤ N (3.8)

Pn(u) = lim
t→∞Pn(u, t), 1 ≤ n ≤ N. (3.9)

B∗(s) =
∫ ∞

0

e−sudB(u) =
∫ ∞

0

e−sub(u)du, (3.10)

P ∗
n(s) =

∫ ∞
0

e−suPn(u)du 1 ≤ n ≤ N

Pn = P ∗
n(0) =

∫ ∞
0

Pn(u)du, 1 ≤ n ≤ N.


 (3.11)

and ∫ ∞

0

e−su ∂

∂u
Pn(u)du = sP ∗

n(s) − Pn(0). (3.12)
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From (3.4)-(3.12) and the fact that all derivatives with respect tot are zero, it follows
that

NλP0 = P1(0), (3.13)

((N − 1)λ − s)P ∗
1 (s) = NλP0B

∗(s) + P2(0)B∗(s) − P1(0), (3.14)

((N − r)λ − s)P ∗
r (s) = (N − r + 1)λP ∗

r−1(s) + Pr+1(0)B∗(s) − Pr(0),
2 ≤ r ≤ N − 1 (3.15)

−sP ∗
N (s) = λP ∗

N−1(s) − PN (0). (3.16)

Using (3.13) in (3.14) and then adding (3.14) to (3.16), we obtain

N∑
r=1

P ∗
r (s) =

1 − B∗(s)
s

N∑
r=1

Pr(0). (3.17)

Takings → 0 in (3.17), we get

N∑
r=1

P ∗
r (0) = b1

N∑
r=1

Pr(0), (3.18)

whereb = −B∗(1)(0) is mean repair time.
Our main objective is to obtainPn ≡ P ∗

n(0)(1 ≤ n ≤ N) from (3.13 -(3.16). To
achieve it, our strategy will be to obtain firstPn(0)(1 ≤ n ≤ N) and then using it we
finally evaluateP ∗

n(0)(1 ≤ n ≤ N).
Using (3.13) in (3.14) and then settings = (N − 1)λ ands = 0 respectively in

(3.14), we get

P2(0) =
Nλ(1 − B∗((N − 1)λ))

B∗((N − 1)λ)
P0, (3.19)

and

P ∗
1 (0) =

1
(N − 1)λ

P2(0). (3.20)

Now settings = (N − r)λ, in (3.15), we obtain

Pr+1(0) =
1

B∗((N − r)λ)
(Pr(0) − (N − r + 1)λP ∗

r−1((N − r)λ)),

2 ≤ r ≤ N − 1. (3.21)

Settings = (N − r)λ in (3.14) forr = 2, 3, . . . , N − 1, we get

P ∗
1 ((N − r)λ) =

1
(r − 1)λ

(NλP0{B∗((N − r)λ) − 1} +

+ P2(0)B∗((N − r)λ)). (3.22)
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From equation (3.15) forr = 3, 4, . . . , N − 1, we get

P ∗
j ((N − r)λ) =

1
(r − j)λ

(
(N − j + 1)λP ∗

j−1((N − r)λ) +

+ Pj+1(0)B∗((N − r)λ) − Pj(0)
)
, (3.23)

2 ≤ j ≤ r − 1.

HenceP3(0), P4(0), . . . , PN (0) can be obtained recursively using (3.19), (3.22), (3.23)
and (3.21) in terms ofP0.

Now settings = 0 in (3.15), we get

P ∗
r (0) =

1
(N − r)λ

(
(N − r + 1)λP ∗

r−1(0) + Pr+1(0) − Pr(0)
)
,

2 ≤ r ≤ N − 1. (3.24)

As P2(0), P3(0), . . . , PN (0) are known,P ∗
2 (0), P ∗

3 (0), . . . , PN−1(0) can be deter-
mined recursively using (3.20) and (3.24) in terms ofP0.

Now the only unknown quantity isP ∗
N (0) which can be obtained from equation

(3.16). To obtain it, differentiate equation (3.16) with respect tos and sets = 0, we
get

P ∗
N (0) = −λP

∗(1)
N−1(0). (3.25)

To getP ∗(1)
N−1(0), differentiate (3.15) and (3.14) with respect tos and sets = 0.

P ∗(1)
r (0) =

1
(N − r)λ

(
(N − r + 1)λP

∗(1)
r−1 (0)

+Pr+1(0)B∗(1)(0) + P ∗
r (0)

)
, 2 ≤ r ≤ N − 1, (3.26)

P
∗(1)
1 (0) =

1
(N − r)λ

(
NλP0B

∗(1)(0) + P2(0)B∗(1)(0) + P ∗
1 (0)

)
. (3.27)

As P
∗(1)
1 (0) is known completely from (3.27),P ∗(1)

r (0), (2 ≤ r ≤ N − 1) can
be determined recursively from (3.26) and henceP ∗

N (0) is known from (3.25). So
P ∗

n(0)(1 ≤ n ≤ N) is known in terms ofP0, which can be determined using the
normalizing condition

P0 +
N∑

n=1

P ∗
n(0) = 1. (3.28)

The steady state probability distribution of the number of down machines at ser-
vice completion or departure epochπn(0 ≤ n ≤ N − 1) can also be obtained from
Pr(0)(1 ≤ r ≤ N) and is given by

πn =
Pn+1(0)∑N
r=1 Pr(0)

, n = 0, 1, . . . , N − 1. (3.29)
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To demonstrate this method we consider a simple example where the repair time
distribution is exponential and number of machines(N) is four, i.e. theM/M/1//4
model. In this case

B∗(s) =
µ

µ + s

From (3.19), we get

P2(0) =
4λ(1 − B∗(3λ))

B∗(3λ)
P0.

Now from (3.21), we have

P3(0) =
1

B∗(2λ)
(P2(0) − 3λP ∗

1 (2λ)),

whereP ∗
1 (2λ) is obtained from (3.22)

P ∗
1 (2λ) =

1
λ

(4λP0{B∗(2λ) − 1} + P2(0)B∗(2λ)).

Now again from (3.21), we have

P4(0) =
1

B∗(λ)
(P3(0) − 2λP ∗

2 (λ)).

whereP ∗
2 (λ) is obtained from (3.23)

P ∗
2 (λ) =

1
λ

(3λP ∗
1 (λ) + P3(0)B∗(λ) − P2(0)).

To knowP ∗
2 (λ) we needP ∗

1 (λ) which can be obtained from (3.22)

P ∗
1 (λ) =

1
2λ

(4λP0{B∗(λ) − 1} + P2(0)B∗(λ)).

From above we get

P2(0) = 12λ2

µ P0,

P ∗
1 (2λ) = 4λ

µ+2λP0, P3(0) = 24λ3

µ2 P0, P ∗
1 (λ) = 4λ

µ+λP0,

P ∗
2 (λ) = 12 λ2

µ(µ+λ)P0, P4(0) = 24λ4

µ3 P0.

Hence from (3.20) and (3.24), we get

P ∗
1 (0) =

1
3λ

P2(0) =
4λ

µ
P0,

P ∗
2 (0) =

1
2λ

P3(0) = 12
λ2

µ2
P0,

P ∗
3 (0) =

1
λ

P4(0) = 24
λ3

µ3
P0.
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Finally to determineP ∗
4 (0) we have from (3.25)

P4(0) = −λP
∗(1)
3 (0),

whereP
∗(1)
3 (0) can be obtained from (3.26)

P
∗(1)
3 (0) =

1
λ

(2λP
∗(1)
2 (0) + P4(0)B∗(1)(0) + P ∗

3 (0)),

againP
∗(1)
2 (0) an be obtained from (3.26)

P
∗(1)
2 (0) =

1
2λ

(3λP
∗(1)
1 (0) + P3(0)B∗(1)(0) + P ∗

2 (0)),

To knowP
∗(1)
2 (0) we needP ∗(1)

1 (0) which can be obtained from (3.27)

P
∗(1)
1 (0) =

1
3λ

(4λP0B
∗(1)(0) + P2(0)B∗(1)(0) + P ∗

1 (0)).

From above we get

P
∗(1)
1 (0) = −4

λ

µ2
P0, P

∗(1)
2 (0) = −12

λ2

µ3
P0, P

∗(1)
3 (0) = −24

λ3

µ4
P0,

and hence

P ∗
4 (0) = 24

λ4

µ4
P0

by usingρ = λ
µ we have

P ∗
1 (0) = 4ρP0, P

∗
2 (0) = 12ρ2P0, P

∗
3 (0) = 24ρ3P0, P

∗
4 (0) = 24ρ4P0.

SinceP0 + P ∗
1 (0) + P ∗

2 (0) + P ∗
3 (0) + P ∗

4 (0) = 1, we get

P0 =
1

1 + 4ρ + 12ρ2 + 24ρ3 + 24ρ4
.

It can be easily seen that this result matches with the expression given in [18] p.
105.

This system has been generalized to�M/�G/1//N/FIFO system which can be
found in [32, 33].
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3.2 Homogeneous finite-source retrial queues with server
subject to breakdowns and repairs

Retrial queues have been widely used to model many problems arising in telecommu-
nication networks, computer networks and computer systems, etc. For a systematic
account of the fundamental methods and results, and for an accessible classified bibli-
ography on this topic the interested reader is referred to [5], [13], [14], and references
therein.

In many practical situations it is important to take into account the fact that the
rate of generation of new primary calls decreases as the number of customers in the
system increases. This can be done with the help of finite-source, or quasi-random
input models. A complete survey on related results can be found in Artalejo [5] for
systems of typeM/G/1//K andM/M/c//K.

In this section finite-source systems with the following assumptions are investi-
gated. Following the widely accepted notation of papers dealing with finite-source
retrial queues, we use a different notation as we did in the previous chapters. Consider
a single server system, where the primary calls are generated byK, 1 < K < ∞
homogeneous sources. The server can be in three states: idle, busy and failed. If the
server is idle, it can serve the calls of the sources. Each of the sources can be in three
states: free, sending repeated calls and under service. If a source is free at timet it can
generate a primary call during interval(t, t + dt) with probabilityλdt + o(dt). If the
server is free at the time of arrival of a call then the call starts to be served immediately,
the source moves into the under service state and the server moves into busy state. The
service finishes during the interval(t, t + dt) with probabilityµdt + o(dt) if the server
is available. If the server is busy, then the source starts generation of a Poisson flow
of repeated calls with rateν until it finds the server free. After service the source be-
comes free, and it can generate a new primary call, and the server becomes idle so it
can serve a new call. The server can fail during the interval(t, t + dt) with probability
δdt + o(dt) if it is idle, and with probabilityγdt + o(dt) if it is busy. If δ = 0, γ > 0
or δ = γ > 0 active or independent breakdowns can be discussed, respectively. If the
server fails in busy state, it eithercontinues servicing the interrupted call after it has
been repaired or the interrupted requestreturns to the orbit. The repair time is expo-
nentially distributed with a finite mean1/τ . If the server is failed two different cases
can be treated. Namely,blocked sources case when all the operations are stopped, that
is no new primary and repeated calls are generated. In theunblocked ( intelligent )
sources case only service is interrupted but all the other operations are continued ( new
and repeated calls can be generated ). All the random times involved in the model are
assumed to be mutually independent of each other.
As it can be seen this systems is rather complicated since it involves two types of fail-
ures, continued or repeated service and blocked or unblocked operations during break-
downs.

Our objective is to give the main usual stationary performance and reliability mea-
sures of the system and to display the effect of different parameters on them. To achieve
this goal a tool called MOSEL ( Modeling, Specification and Evaluation Language )
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developed at the University of Erlangen, Germany, see [6], is used to formulate and
solve the problem. We show how this system can be modelled, and how easily per-
formance measures can be represented graphically using IGL ( Intermediate Graphical
Language ). For more detailed information on this topic please read [2].

3.2.1 The underlying Markov chain

The system state at timet can be described with the processX(t) = (Y (t);C(t);N(t)),
whereY (t) = 0 if the server is up,Y (t) = 1 if the server is failed,C(t) = 0 if the
server is idle,C(t) = 1 if the server is busy,N(t) is the number of sources with
repeated calls at timet. Because of the exponentiality of the involved random vari-
ables this process is a Markov–chain with finite state spaceS = {0, 1} × {0, 1} ×
{0, 1, ...,K − 1}. Since the state space of the process(X(t), t ≥ 0) is finite, the
process is ergodic for all values of the rate of generation of primary calls, and from
now on we will assume that the system is in the steady state.

We define the stationary probabilities:

P (q; r; j) = lim
t→∞P (Y (t) = q, C(t) = r,N(t) = j),

q = 0, 1, r = 0, 1, j = 0, ...,K − 1.

Knowing these quantities themain performance measures can be obtained as follows:

• Utilization of the server

US =
K−1∑
j=0

P (0, 1, j)

• Utilization of the repairman

UR =
1∑

q=0

K−1∑
j=0

P (1, q, j),

• Availability of the server

AS =
1∑

q=0

K−1∑
j=0

P (0, q, j) = 1 − UR,

• The mean number of sources of repeated calls

N = E[N(t)] =
1∑

q=0

1∑
r=0

K−1∑
j=0

jP (q, r, j),



3.2. HOMOGENEOUS FINITE-SOURCE RETRIAL QUEUES WITH SERVER SUBJECT TO BREAKDOWNS AND REPAI

• The mean number of calls staying in the orbit or in service

M = E[C(t) + N(t)] =
1∑

q=0

1∑
r=0

K−1∑
j=0

(r + j)P (q, r, j),

• The mean rate of generation of primary calls

λ =

{
λE[K − C(t) − N(t);Y (t) = 0] for blocked case,

λE[K − C(t) − N(t)] for unblocked case,

• The mean response time

E[T ] = M/λ,

• The mean waiting time

E[W ] = N/λ,

• The blocking probability of a primary call

B =




λE[K−C(t)−N(t);Y (t)=0;C(t)=1]

λ
for blocked case,

λE[K−C(t)−N(t);C(t)=1]

λ
for unblocked case.

We used the software tool MOSEL to formulate the model and to calculate the main
performance measures. The figures in the next section are automatically generated by
the tool.

3.2.2 Numerical examples

In this section we consider some sample numerical results to illustrate the influence of
the non–reliable server on the mean response timeE[T ]. The results in the reliable
case were validated by the Pascal program given in [14], too.

Input parameters
As it can be seen in the first 3 cases the independent breakdowns are treated, then

the state dependent and independent ones are considered. In each case different com-
parisons are made according to the breakdowns( dependent, independent ), service
continuation( continued ) and system operations( blocked, unblocked ).

• In Figures 3.1–3.3 we can see the mean response timeE[T ] for the reliable and
the non–reliable retrial system with continuous, non-continuous service after
repair, with blocked and unblocked operations during service failure when the
primary request generation rate, retrial rate and service rate increase. In these
cases, the server’s failure rate is independent of the state of the server ( busy or
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NT λ µ ν δ γ τ
Figure 1 6 x axis 4 0.4 0.05 0.05 0.1
Figure 2 6 5 10 x axis 0.05 0.05 0.1
Figure 3 6 0.1 x axis 0.4 0.05 0.05 0.1
Figure 4 6 x axis 4 0.4 0.005(0.05) 0.05 0.1
Figure 5 6 5 10 x axis 0.005(0.05) 0.05 0.1
Figure 6 6 0.1 x axis 0.4 0.005(0.05) 0.05 0.1

Table 3.1: Input parameters

idle ). Figure 3.1 demonstrates a surprising phenomenon of retrial queues hav-
ing a maximum ofE[T ] which was noticed in [15], too. The difference between
continuous, non-continuous service, moreover blocked, unblocked ( intelligent
) systems’s operations is clearly shown. However, if the retrial or service rate
increases the continuous and non-continuous service result in the same measure,
as it was expected, see Figure 3.2, 3.3.

• In Figures 3.4–3.6 the mean response timeE[T ] is displayed with continuous
service after repair but the server’s failure rate depends on its state. The system
operation is either blocked or unblocked. In Figure 3.4 we can see that the curves
of independent failure with blocked operations and dependent failures with un-
blocked operations intersect each other. In each case the difference between the
independent and dependent failures is clearly demonstrated.
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Figure 3.1:E[T ] versus primary request generation rate

Figure 3.2:E[T ] versus retrial rate
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Figure 3.3:E[T ] versus service rate

Figure 3.4:E[T ] versus primary request generation rate
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Figure 3.5:E[T ] versus retrial rate

Figure 3.6:E[T ] versus service rate
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Chapter 4

Asymptotic Methods

4.1 Preliminary results

In this section we give a brief survey of the most related theoretical results due to
Anisimov [3, 4], to be applied later on.

Let (Xε(k), k ≥ 0) be a Markov chain with state space

m+1⋃
q=0

Xq, Xi ∩ Xj = 0, i 	= j, , i, j = 1, ...,m + 1,

defined by its transition matrices satisfying the following conditions:

1. pε(i(0), j(0)) → p0(i(0), j(0)), asε → 0,i(0), j(0) ∈ X0,
andP0 =

∥∥p0(i(0), j(0))
∥∥ is irreducible;

2. pε(i(q), j(q+1)) = εα(q)(i(q), j(q+1) + o(ε), i(q) ∈ Xq, j(q+1) ∈ Xq+1

3. pε(i(q), f (q)) → 0, asε → 0, i(q), f (q) ∈ Xq, q ≥ 1;

4. pε(i(q), f (z)) ≡ 0, i(q) ∈ Xq, f
(x) ∈ Xz, z − q ≥ 2

In the sequel the set of statesXq is called theq-th level of the chain,q = 1, . . . ,m+1.
Let us single out the subset of states

〈αm〉 =
m⋃

q=0

Xq

Denote by
piε(i(q), i(q) ∈ Xq q = 1, ...,m the stationary distribution of a chain with tran-
sition matrix

∥∥ pε(i(q), j(z))
1 − ∑

k(m+1)∈Xm+1
pε(i(q), k(m+1))

∥∥, i(q) ∈ Xq, j
(z) ∈ Xz, q, z ≤ m,

45
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Furthermore denote bygε(〈αm〉) the steady state probability of exit from〈αm〉, that is

gε(〈αm〉) =
∑

i(m)∈Xm

πε(i(m))
∑

j(m+1)∈Xm+1

pε(i(m), j(m+1))).

Denote by
pi0(i(0) i(0) ∈ X0} the stationary distribution corresponding toP0 and let

π0 = {π0(i(0)) i(0) ∈ X0}, πε
(q) = {πε(i(q)), i(q) ∈ Xq}

be row vectors. Finally, let the matrix

A(q) =
∥∥α(q)(i(q), j(q+1))

∥∥, i(q) ∈ Xq, j(q+1) ∈ Xq+1, q = 0, . . . , m

defined by Condition 2.
Conditions (1)-(4) enables us to compute the main terms of the asymptotic expres-

sion forπε
(q) andgε(〈αm〉). Namely, we obtain

πε
(q) = εqπ0A

(0)A(1) . . . A(q−1) + o(εq) q = 1, . . . ,m,

gε(〈αm〉) = εm+1π0A
(0)A(1) . . . A(m)1 + o(εm+1), (4.1)

where1 = (1, ..., 1)∗ is a column vector, see Anisimovet al. [4] pp. 141-153.

Let (ηε(t), t ≥ 0) be a Semi-Markov Process (SMP) given by the embedded Markov
chain(Xε(k), k ≥ 0) satisfying conditions (1)-(4). Let the timesτε(j(s), k(z)) – tran-
sition times from statej(s) to statek(z) – fulfill the condition

E exp{iΘβετε(j(s), k(z))} = 1 + ajk(s, z,Θ)εm+1 + o(εm+1), (i2 = −1)

whereβε is some normalizing factor.

Denote byΩε(m) the instant at which the SMP reaches the(m + 1)-th level for the
first time, exit time from〈αm〉 providedηε(0) ∈ 〈αm〉. Then we have:

Theorem 4.1.1. [cf. [4] pp. 153] If the above conditions are satisfied then

lim
ε→0

E exp{iΘβεΩε(m)} = (1 − A(Θ))−1,

where

A(Θ) =

∑
j(0),k(0)∈X0

π0(j(0))p0(j(0), k(0))ajk(0, 0,Θ)

π0A(0)A(1) . . . A(m)1
.

Corollary 4.1.1. In particular, if αjk(s, z,Θ) = iΘmjk(s, z) then the limit is an
exponentially distributed random variable with mean∑

j(0),k(0)∈X0

π0(j(0))p0(j(0), k(0))mjk(0, 0)

π0A(0)A(1) . . . A(m)1
.
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4.2 Machine interference problem with a random envi-
ronment

This section is concerned with a queueing model to analyse the asymptotic behavior of
the machine interference problem withN machines and a single operative. The running
and repair times of each machine are supposed to be exponentially distributed random
variables with parameter depending on the state of a varying environment. Assuming
that the repair rate is much greater than the failure rate ( ”fast” service ), it is shown that
the time until the number of stopped machines first reaches a certain level converges
weakly, under appropriate norming, to an exponentially distributed random variable.

4.2.1 The queuing model

Let us consider the machine interference problem with the following assumptions.
There areN machines which are looked after by an operative. The system is supposed
to operate in a random environment governed by an ergodic Markov chain(ξ(t), t ≥ 0)
with state space(1, . . . , r) and with transition rate matrix(aij , i, j = 1, . . . , r, qi =
−aii =

∑
j �=i ajj .

Whenever the environmental process is in statei, the probability that an operating
machine breaks down in the time interval(t, t+h) is λ(i)h+o(h). A stopped machine
is immediately repaired unless the operative is busy, otherwise it joins the queue of
failed machines. Whenever the environmental process is in statei, the probability that
the repairman completes the service in the time interval(t, t + h) is µ(i, ε)h + o(h).
All random variables involved here and the random environment are supposed to be
independent of each other.
Let us consider the system under the assumption of ’fast’ repair, that is,µ(i, ε) → ∞
asε → 0. For simplicity letµ(i, ε) = µ(i)/ε.

Denote byYε(t) the number of stopped machines at timet, and let

Ωε(m) = inf{t : t > 0, Yε(t) = m + 1|Yε(0) ≤ m},

that is, the instant at which the number of failed machines reaches the(m + 1)-th
level for the first time, provided that at the beginning their number is not greater than
m;m = 1, . . . , N − 1.
Denote by(πk, k = 1, . . . , r) the steady-state distribution of the governing Markov
chain(ξ(t), t ≥ 0). Now we have:

Theorem 4.2.1. For the system in question under the above assumptions, indepen-
dently of the initial state, the distribution of the normalized random variable εmΩε(m)
converges weakly to an exponentially distributed random variable with parameter

Λ = (m + 1)!
(

N

m + 1

) r∑
i=1

πi
λ(i)m+1

µ(i)m
.
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Proof. It is easy to see that the processZε(t) = (ξ(t), Yε(t)) is a two-dimensional
Markov chain with state spaceE = ((i, s), i = 1, . . . , r, s = 0, . . . , N). Furthermore
let

〈αm〉 = ((i, s), i = 1, . . . , r, s = 0, . . . , m).

Hence our aim is to determine the distribution of the first exit time ofZε(t) from
〈αm〉, provided thatZε(0) ∈ 〈αm〉. It can easily be verified that the transition proba-
bilities in any time interval(t, t + h) are the following:

(i, s) −→h




(j, s) aijh + o(h), i 	= j
(i, s + 1) (N − s)λ(i)h + o(h), s = 0, . . . , N − 1
(i, s − 1) (µ(i)/ε)h + o(h), s = 1, . . . , N.

In addition, the sojourn timeτε(i, s) of Zε(t) in state(i, s) is exponentially distributed
with parameteraii + (N − s)λ(i) + µ(i)/ε. Thus, the transition probabilities for the
embedded Markov chain are

pε[(i, 0), (j, 0)] =
aij

qi + Nλ(i)
,

pε[(i, s), (j, s)] =
aij

qi + (N − s)λ(i) + µ(i)/ε
, s = 1, . . . , N,

pε[(i, 0), (i, 1)] =
Nλ(i)

qi + Nλ(i)
,

pε[(i, s), (i, s + 1)] =
(N − s)λ(i)

qi + (N − s)λ(i) + µ(i)/ε
, s = 0, . . . , N − 1

pε[(i, s), (i, s − 1)] =
µ(i)/ε

qi + (N − s)λ(i) + µ(i)/ε
, s = 1, . . . , N.

As ε → 0 this implies

pε[(i, 0), (j, 0)] =
aij

qi + Nλ(i)
,

pε[(i, s), (j, s)] = o(1), s = 1, . . . , N,

pε[(i, 0), (i, 1)] =
Nλ(i)

qi + Nλ(i)
,

pε[(i, s), (i, s + 1)] =
(N − s)λ(i)ε

µ(i)
(1 + o(ε)), s = 1, . . . , N − 1,

pε[(i, s), (i, s − 1)] → 1, s = 1, . . . , N.

This agrees with the conditions (1)-(4), but here the zero level is the set((i, 0), (i, 1), i =
1, . . . , r) while theq-th level is((i, q + 1), i = 1, . . . , r). Since the level 0 in the limit
forms an essential class, the probabilitiesπ0(i, 0), π0(i, 1), i = 1, . . . , r, satisfy the
following system of equations

π0(j, 0) =

∑
i�=j π0(i, 0)aij

qi + Nλ(i)
+ π0(j, 1), (4.2)
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π0(j, 1) =
π0(j, 0)Nλ(j)
ajj + Nλ(j)

. (4.3)

By substituting (4.3) to (4.2) we get

π0(j, 0)ajj

ajj + Nλ(j)
=

∑
i�=j π0(i, 0)aij

qi + Nλ(i)
. (4.4)

Sinceπjajj =
∑

i�=j πiaij , from (4.3) and (4.4) we have

π0(i, 0) = Bπi(qi + Nλ(i)), π0(i, 1) = BπiNλ(i)

whereB is the normalizing constant, i.e.1/B =
∑r

i=1 πi[qi + 2Nλ(i)].
Then it is easy to see that the probability of exit from〈αm〉 is

gε(〈α〉) = εmNB

r∑
i=1

πiλ(i)
m∏

s=1

(N − s)λ(i)
µ(i)

(1 + o(1))

= εmB(m + 1)!
(

N

m + 1

) r∑
i=1

πi
λ(i)m+1

µ(i)m
(1 + o(1)). (4.5)

Taking into account the exponentiality ofτε(j, s) for fixedΘ,we have

E exp{iεmΘτε(j, 0)} = 1 + εm iΘ
ajj + Nλ(j)

(1 + o(1))

E exp{iεmΘτε(j, s)} = 1 + o(εm), s > 0.

Notice thatβε = εm and therefore from Corollary 1 we immediately get the statement
thatεmΩε(m) converges weakly to an exponentially distributed random variable with
parameter

Λ = (m + 1)
(

N

m = 1

) r∑
i=1

πi
λ(i)m+1

µ(i)m
,

which completes the proof.�

Consequently, the asymptotic distribution ofΩε(m) can be determined as follows:

P (Ωε(m) > t) = P (εmΩε(m) > εmt) ≈ exp(−εmΛt),

that is,Ωε(m) is asymptotically an exponentially distributed random variable with pa-
rameter

εm(m + 1)!
(

N

m + 1

) r∑
i=1

πi
λ(i)m+1

µ(i)m
= (m + 1)!

(
N

m + 1

) r∑
i=1

πi
λ(i)m+1

(µ(i)/ε)m
.

In particular, form = N − 1, that is, when all machines are stopped we have

εN−1Λ = N !
r∑

i=1

πi
λ(i)N

(µ(i)ε)N−1
. (4.6)
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Hence the steady-state probabilityQW that at least one machine works is

QW =
1

εN−1Λ
1

εN−1Λ
+

∑r
i=1 πi

1
µ(i)/ε

=
1

1 + N !

( ∑r
i=1 πi

λ(i)N

µ(i)N−1

)(∑r
i=1 πi

1
µ(i)/ε

)
(4.7)

In the case when there is no random environment we get

QW =
1

1 + N !
(

λ
µ/ε

)N
. (4.8)

As a conclusion we can see how simple formulas can be obtained in the case of ”fast re-
pair”. The advantage of this approach is that even very large state space the asymptotic
parameter can be obtained thus the explosion problem can be avoided.
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