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ABSTRACT

We consider a Markovian queueing system with two unreliable heterogeneous servers and one common
queue. The servers serve customers without preemption and fail only if they are busy. Customers are al-
located to one or the other server via a threshold control policy which prescribes using the faster server
whenever it is free and the slower server only when the number of waiting customers exceeds a spec-
ified threshold level that depends on the state of the faster server. This paper focuses on the reliability
analysis of a system with unreliable heterogeneous servers. First, we obtain the stationary state distribu-
tion using a matrix-geometric solution method. Second, we analyse the lifetimes of the servers and of the
system. We provide algorithms for calculating the stationary reliability characteristics, reliability functions
in terms of the Laplace transform and the mean times to the first failure. A new reliability measure is
introduced in the form of the discrete distribution function of the number of failures during a specified
life time that is derived from a probability generating function. The effects of various parameters on these

reliability characteristics are analysed numerically.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

To improve modern communication systems in terms of perfor-
mance and reliability, they can be supplied with controllable het-
erogeneous environment. The heterogeneity in such systems may
be easily explained by virtue of the following examples. The data
centers with a cloud computing paradigm containing the execu-
tion servers of many generations as a consequence of continuous
system updates (Bai, Xi, Zhu, & Huang, 2015). Obviously in this sys-
tem the servers can differ in terms of speed, capacity, availability,
power consumption an so on. Another example is a hybrid wire-
less channel working on the basis of Radio Frequency/Free Space
Optic (RF/FSO) technology (Vishnevskii, Semenova, & Sharov, 2013).
The links of this channel have unequal data throughput, availabil-
ity and reliability characteristics. The capacity of RF link is con-
strained by limits to link throughputs on the order of 10 s of Mbps.
On the contrary, the commercial FSO currently provide through-
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puts of several Gbts but the link availability is limited by adverse
weather conditions like fogs and heavy snowfalls. Therefore, the
hybrid channel combines advantages of both types of links. One
more example is a single cell of a cellular (3GPP LTE) network with
a Licence Shared Access (LSA) technology, for details see Gudkova
et al. (2015), which assumes that the band can be used when the
owner does not need it. In this case heterogeneous environment
consists of the reliable main and unreliable reserve pool of servers
which is used according to a specified hysteretic control policy. The
proposed examples have motivated us to apply the queueing sys-
tem with unreliable heterogeneous servers for modelling the dy-
namic behaviour and analysis the relationships between different
factors influencing on reliability of communication systems with
heterogeneous unreliable environment.

Analyses of multi-server queueing systems generally as-
sume that the servers are homogeneous. Mitrany and Avi-Itzhak
(1967) and Neuts and Lucantoni (1979) studied the M/M/s queue-
ing system with server breakdowns and repairs. Levy and Yechiali
(1976) analysed the M/M/s queue with server vacation. A recent
paper by Efrosinin, Samouylov, and Gudkova (2016) reported on
stationary analysis of the busy period for a multi-server Markovian
queueing system with simultaneous failures of servers. Queues
with heterogeneous unreliable servers have rarely been addressed
by research. A queueing system with two heterogeneous servers
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and multiple vacations was studied by Kumar and Madheswari
(2005), who obtained the stationary queue length distribution by
using a matrix geometric method and provided an analysis of busy
period and waiting time. In Kumar, Madheswari, and Venkatakr-
ishnan (2007), the same authors introduced the M/M/2 queueing
system with heterogeneous servers subject to catastrophes, and
provided a transient solution for the system under study. A het-
erogeneous two-server queueing system with balking and server
breakdowns was studied by Yue, Yue, Yu, and Tian (2009). They
used a matrix-geometric solution method to obtain some mean
performance measures.

In a heterogeneous queueing system with one common queue,
particularly in the case of service without preemption (a customer
can not change the server during a service time) a mechanism that
allocates customers to the servers must be specified. The majority
of heterogeneous systems investigated use heuristic service poli-
cies (e.g. the Fastest Free Server (FFS) or Random Service Selection
(RSS) policies). In fact, these policies are not optimal, if, for in-
stance, the mean response time is to be minimized. As previously
shown (see, e.g. the results of B & Jouini, 2016; Efrosinin, 2008;
Koole, 1995; Lin & Kumar, 1984; Rykov & Efrosinin, 2009), the op-
timal allocation policy for heterogeneous queueing systems is one
of a class of threshold policies where the less effective server is to
be used only if the number of customers in the queue has reached
some pre-specified threshold level. This result was confirmed for
a queueing system with faster unreliable server and absolutely
reliable slower server in Efrosinin (2013), Ozkan and Kharoufeh
(2014) and for two unreliable heterogeneous servers in a system
with constant retrial discipline in Efrosinin and Sztrik (2016). In
the last paper mentioned, it was shown that for a fixed thresh-
old policy the corresponding Markov process is of the QBD (quasi-
birth-and-death) type with a tri-diagonal block infinitesimal matrix
with a large number of bounding states.

While first steps in performance analyses of controllable hetero-
geneous queueing systems with completely reliable servers have
already been published, application to heterogeneous models also
requires a reliability analysis of such queues when servers are
subject to failure. Here we use a forward-elimination-backward-
substitution method expressed in matrix form in terms of the
Laplace-Stiltjes transforms (LST) combined with probability gener-
ating function (PGF) approach to evaluate reliability measures such
as reliability function (i.e., the complementary cumulative distri-
bution function of the lifetime) and mean time to first failure for
each server separately and for the group of servers under the fixed
threshold allocation control policy. The reliability functions are ob-
tained in terms of the Laplace transform (LT), and a numerical in-
version algorithm is used to obtain the time-dependent functions.
Additionally, we introduce a new discrete reliability metric in the
form of the distribution of the number of failures during a certain
lifetime. We expect that our results can be generalized to the case
of an arbitrary controllable unreliable queueing model with a QBD
structure.

The remainder of paper is organized as follows: In Section 2,
we describe the mathematical model and present the stationary
state distribution using a matrix-geometric solution method. In
Section 3, we develop a computational analysis of the station-
ary reliability characteristics, the reliability function and the mean
time to first failure. The number of failures during a certain life
time is investigated in Section 4. In Section 5, numerical examples
are provided to highlight the effect of some parameters on the re-
liability characteristics.

Hereafter, the notations e(n), e;(n), and I, are used respectively
for the column vector consisting of 1’s, the column vector with
1 in the jth (beginning from Oth) position and O elsewhere, and
an identity matrix of the dimension n. When there is no need to
emphasize the dimensions of these vectors, the suffix is omitted
and dimensionality is determined by the context. The expressions
diag(ay, ..., an), diagt(ay, ..., an), and diag—(ay, ..., ay) denote re-
spectively the diagonal matrix, the upper diagonal matrix, and the
lower diagonal matrix with entries aq, ..., an that can be scalars or
matrices.

2. Mathematical model and stationary distribution

In this paper, we address a two-server heterogeneous unreliable
queueing model of the M/M/2 type as illustrated in Fig. 1(a).

Customers arrive according to a Poisson process with arrival
rate A. The service times are exponentially distributed with rates
M1 and w,, where pq>,. We assume that the servers fail re-
spectively at exponential rates «o; and «;. A server can fail only
if it is busy. A failed server is repaired immediately, and the time
required to repair it is exponentially distributed respectively with
rates 81 and f8,. A customer being served at the moment of fail-
ure is left at this server during repair and can be served when the
server becomes operational again. The mechanism of allocation to
the two servers is based on a threshold policy: Depending on the
state of the faster server, the slower is used whenever the number
of customers in the queue exceeds a certain threshold level.

Let Q(t) and D(t) ={D;(t),D,(t)} denote, respectively, the
number of customers in the queue and the vector state of servers
at time t, where service process

0, the server j is idle,
Dj(t)y =41, the server j is busy and operational,
2, the server j has failed.

with transitions as shown in Fig. 1(b). The threshold policy f =
(41, q2) is defined by two threshold levels 1 <q; <q; < oo. Accord-
ing to this policy, server 1 must be used upon new arrival when-
ever it is free and there are customers in the queue, whereas idle
server 2 is ready to serve the arriving customers only if server 1
is in state 1 or 2 and the number of customers in the queue has
reached the corresponding threshold value q; or g,. If server 1 is in
state 1 or 2 upon service completion at server 2 and the number
of customers in the queue is smaller than q; or g, then further
allocation of customers to server 2 is not possible. For the fixed
threshold policy f the process

{X(©)}e=0 = {Q©), D(t)}=0 (1)
is a continuous-time Markov chain with a state space given by
E ={x=(q,di,d2); q € No, (d1,d2) € Ep}, (2)

where Ep is a set of states of servers that is defined as

dj€{0,1,2},je{1,2},g=0,
dief{l,2,d€{0,1,2},1<qg=<qx -1,
(d1.d2);dqy € {1,2},d5 € {0,1,2)}, (d;, dy) # (2,0),
2 <q=<q;—1,
dief{1,2},jef{1,2},q>qu,

Next we partition E into blocks as follows:

Ep =

(07 0) = {(07 01 d2)§ dZ € {0’ 17 2}}7

{(q7170)’( ’ 9
{(g.1.0).(
{(q’1’1)7( ’ 9

(q.1) =

q 2 O)v(q7111)7 (q7271)1 (qvlﬂz)!(q’zyz)}ﬂ OSQSQZ‘L
q.1,1).(q.2,1).(q.1,2), (9, 2, 2)}, G2=q=q—1.
q 2 1),((],1,2),((],2,2)}, QZQ1
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Service o. i
Servers  completion J Failure
Hy (Dl (t))
Arrival Queue Controller [
A > > H; ﬂj Repair
w(D®) ¥
Service
Thresholds ¢ q, completion

Fig. 1. Scheme of the queueing system M/M/2 (a) and transitions of the service process Dj(t) (b).

Due to this notation, the infinitesimal generator of the Markov chain {X(t)};~ ¢ has the block-tridiagonal structure,

A =[Ayliyer = diag(Qio, Qi1 .., Q11,Q12,Q13, ..., Q13, Q4. Q5. ... )+

q2—1 q1—q2-1
+ diag* (Qo.1, Qo2 ---. Qo2,Q03, Q4. ..., Qoa, Qos, Qo ... )+
q2—1 q1—q2—1
+diag=(Q2,1,Q22,...,Q22,Q23,Q24,...,Q24,Q25,Q2p, ... ).
q2-1 q1—q2—1

The square matrices Q; ,, 0 <n <5, include the transition rates inside the current block of states for a certain queue length g,

—A 0 0
Qo=(n2 —-(A+az+pu2) oy ,
0 B> —(A+B2)
—()\,+/L1 +O{1) (03] 0 0 0 0
B —(A+B1) 0 0 0 0
Q _ M2 0 _()\-+,U/+Ol) o1 o 0
1 0 M2 Bi —(A+az+ B1+ 12) 0 o ’
0 0 Ba 0 —(A 4o+ B+ 1) a;
0 0 0 B2 Bi -A+8)
Q12 =0Q11+re;(6) ® e;(6),
—(A+p1+aq) 0 0 0 0
M2 -A+u+oa) o a; 0
Q3= 0 B —(A+oy+ B+ u2) 0 o) ,
0 B2 0 —(A+ai+ B+ 1) o
0 0 B2 B (A +B)
Q14=0Q13+ rey(5) ®e€|(5),
A+ p+a) oy oy 0
Qs = B —(A+ox+ B+ u2) 0 o
1> B2 0 —(A+ar+ B+ 1) oy
0 B2 B -(A+B)

The rectangular matrices Qg ,, 1 <n <6, include the transition rates from the block of states with queue length q to the block with queue
length q + 1,

1 0 0 0 0 O
Qi=A{0 0 1 0 0 0], Qs=xr
0000 1 O

oo oo o~
[eN ool NN
[N el o NN
o= OO OO0
- OO O OO

[9)]

Il

>
[N ool )
o= OO0
o= O OO
- O O OO

Qoo=Ms. Qoa=Als, Qog=Aly pt=p1+pup@=a;+az, B=p+p.

The rectangular matrices Q ,, 1 <n <6, include the transition rates from the block of states with queue length q to the block with queue
length q — 1,

w00 w 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Mo 00 oz 0 0

0 i 0 0 0 4y 0 0 0 0 0 4y 0 0 0

Q1= ' . Q= ! . @s3=|l0o 0 0 w o of.
0 0 0 0O 0 0 0 0 0

0 0 0 0 u O

0 0 0 0 0 0 u O PO
0 0 0 0O 0 0 0 0 0
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m 0 o

0 0
0 4 0 0 0 o b w0 0 5 o 0 o
Qs=]| 0 0 w2 0 O0), Q5= , Q=
0 0 0 u O 0 0 o O
0 0 0 wm O 00 0 0 O 0 0 0 O
0 0 0 0 O

Let us denote by = (g, o 1, 71,1, T21. ... ) the stationary probability vector of A which satisfies

TA=0,me=1. 3)
Computation of the stationary state distribution is reduced to solving a block-tridiagonal system. The process {X(t)};~ ¢ is in the format of
a quasi-birth-and-death (QBD) process, which allows a matrix-analytic approach to be applied. Based on (Neuts, 1981, Theorem 3.1.1), the
stationary probability vector st of the QBD process exists if and only if

PQoce(4) < pQrce(4),

where p = (p1, p2, P3, P4) is the invariant probability of the matrix Qg + Q1.5 + Qu.6. This vector can be obtained by solving the system
P(Qo 6+ Q15+ Q6) =0 and pe(4) = 1. After some routine manipulation, we obtain the condition

_ A

T2 Biny
Zj=] aj]‘%»éj

According to the last condition, to guarantee the existence of stationary regime the arrival rate must be less than the sum of efficient

0\ 1
service rates. Here the value ( f Jf ﬂf) represents the mean time a customer spend on server j before it leaves the system.
J J

P < 1. (4)

Theorem 1. The vectors of stationary probabilities 4 ;, >0, can be computed as follows,

q1

To,0 =nq1,1l_[1\/1ql_j, (5)
j=0
q1—q-1
M1 =Tga || Mgy 0<sq=qi—1.
j=0

g1 =7g 1 RT", q>qy,

where the matrices M;, 0 <i<qq, are recursively defined

Mo = —Q21Q1 6 M1 = —Q22(MoQo.1 +Q1.1) ™", (6)
Mg =-Q2(Mg_1Q02+Q11) ", 2<qg=<¢q—1,

My, = —Qa3(Mg,-1Qo2 + Qi.2) ™' Mg 41 = —Qa.4(Mg, Qo3 + Q13) ",

Mg=-Q4(Mg_1Q04+Q13) @2 +2<q=<q—1,

Mg, = —Q25(Mg,_1Qo4 + Q1.4) "

The vector mg, 1 is a unique solution of the system of equations

q1-1q1—q-1
thlj[ l—[ Mg, + (I_R)fl]e(4) =1, (7)
q=-1 j=0

g, 1(Mg, Qo5 + Q15 +RQa6) = 0.

The matrix R is a minimal solution of the matrix quadratic equation,

R?Q26 +RQi 5+ Qo6 = 0. (8)
Proof. The last row of (5) and equation R?>Q, g+ RQ 5+ Qg =0 follow from the properties of the QBD process (Neuts, 1981). If the
stability condition holds, then (3) yields the system,

70,0Q1,0 + 701Q2.1 = 0,

Tq-11Q01 + Mg 1Q1 1+ Tg111Q2=0,2<qg=<q -1,

Tg,-1.1Q02 + g, 1Q12 + g, 111Q23 = 0,

7q,1Q03 + Tgy41,1Q13 + g, 421Q24 =0,

Tg-11Q04 + g 1Q13+ Tg411Q4=0,02+2<qg=<q -1,

7q,-1.1Q0,4 + g, Q1.4 + g, 11Q25 = 0,

g, 1RTT71Qo5 + g, 1RT1Qq 5 + g 1RTTH1Q6=0,9>q1 + 1.

The routine of substitution applied to the previous system leads to recursive relations,

To,0 = 70,1 Mo, 9)
Tg1 =Mgr11Mgr1. 1 2q<q1 -1,

where Mg is defined by (6), which implies the first two rows of (5). Finally, the vector 74, 1 is obviously a unique solution of the system of
Eq. (7), which consists of the normalizing condition and the balance equation for the probability vector g, ; of the boundary states. O
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3. Reliability characteristics of the system and servers

In this section we consider some reliability quantities of the system and servers. Let us denote by
A1 (t) =P[X(t) = (q.d1,da); dy #2 Vv dy #2],
Ay (t) =PIX(t) = (q.d1. d2): dy # 2 ndy # 2],
As(t) =P[X(t) = (q,d1, d2); dy # 2],
As(t) =PIX(t) = (¢, d1, d2); dp # 2],
the pointwise availabilities of the system and servers. The stationary availability in the case n, 1 <n <4, is defined as A; = lim;_, An(t).

Corollary 1. The stationary availability can be computed by

q2—1 qi—1
-1
An=T00Xn1 + ) Tg1Xn2+ Y Tg1Xn3 + g, 1(I—=R)'Xp4, 1 <n <4,
q=0 q=q>

where Ay, = A3 + A4 — A7 and

4 3 2
Xi1=€(3).Xi2=) €(6).Xi3=) e(5).Xi4=)_el4),

k=0 k=0 k=0

1 1 1
Xp1=) €(3), X2 =) ex(6).X23=7) e(5),X 4 =e(4),

k=0 k=0 k=0

2 1 1
X351 =€(3),Xs2=) €y(6),Xs3 =€+ Y ey,1(5),Xsa =) ex(4),

k=0 k=0 k=0
1 3 2 1
Xa1=) €(3).Xs2 =) €(6).Xs3=) €(5).Xaa=y ec(4).
k=0 k=0 k=0 k=0

Corollary 2. The stationary failure frequency of the server {1, 2} can be computed by

-1 q1-1
B = oY1+ Y TgaViz+ Y Tg1¥i3+ Tga(I—R) Y41 <12,
q=0 q=q2

where

2 1 1
Vii=0.Y12=) ey(6).yi3=20(5) + Y €y 1(5.Y1a =) ey(4),
k=0 k=0 k=0

3 2 1
V21=€1(3).22=> €(6).¥23=> €(5).V24= ) e4).

k=2 k=1 k=0

Let us denote by Ty, 1 <n <4, the respective random times to first failure of the system (failure of both servers), or of one server (either
server 1 or server 2). The corresponding reliability function, which is the same as the complementary cumulative distribution function of
the lifetime Ty, is then defined as

R.(t) =P[T, > t],1 <n<4.

In this section, we obtain these functions in terms of the Laplace transform R,(s) = Joo R(t)e~stdt, Re[s] > 0. To this end, we let the
corresponding failure states be absorbing states. We thus obtain new processes that can be modelled by auxiliary continuous-time absorb-
ing Markov chains {Xm(t)};~o with state spaces En,1<n <4, where E; =E\ {x=(q,2,2);q e No},E; =E\ {x=(q.d,d3); q € No, dy =
2vdy =2}, E3=E\{x=1(q,2,dy);qeNg,dy €{0,1,2}} and E, =E \ {x=(q,dy,2): q € Ng,d; € {0,1,2}}. Two approaches can be used to
obtain the function R, (s): (i) a classical method based on transient solution of the auxiliary absorbing Markov chain and (ii) an alternative
method which calculates the distribution of the first passage time to the absorbing state using the conditional remaining life time dis-
tributions. These methods contain two main steps including evaluation of the Laplace-Stiltjes transforms of the state probabilities of the
absorbing Markov chain or of the remaining life time given initial state and subsequent derivation of generating functions of the corre-
sponding transforms. Additionally to the reliability function we will analyse in the paper the discrete counterpart in form of distribution
of the number of failures during a life time. Therefore, the second method seems to be more preferable and logically suitable for the
proposed reliability analysis framework. The description of the first method is given only for the function R,(s) (see below), while the
second one is implemented for all functions.

Theorem 2. The Laplace transform of Ry(t) is given by
Ry(s) =Pro(s. 1) + P 1(s.1) + Py 2(s. 1), (10)
where

14 017 (0,0,0)(S) — AT (g,-1,1,0)(S) + Mzﬁm (s, 1)

Pio(s. 1) = T
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170,01y (S) + A(F(q-1.1.00(8) — T(g-1,1,1)(S)) + UTE (g,.1,1)(S)

Pi(s.1) =
b S+ + U
PiaGs, 1) = ATt g-1.1,1)(S) — Mﬁ(m‘])(s)’
St+o
the functions 7ix(s) are of the form,
~ Az(s)Lq, (s)e1 (2
Fgin(®) = — 2@ (12)
1= Az(s)My, (s)e1 (2)
(Fg-1.1.0)(8): Figi-1.1.0(8) = 7-~[(£11,1,1)(5)1\71q1 (s) + Zq1 (s), (13)
q1 N ' ~ @ i
(F(000)(5): F(00.1)(8)) = Tg,.1.1) () [ [Mg,i€5) + D Loy i65) [T Mg, 65). (14)
=0 i=0 j=i+1

the matrices M;(s) and Li(s) are evaluated recursively,

Mo(s) = p1lNo(s). Lo (s) = €4 (2)No(s). No(s) = —(Q1.0 —sk) ™", (15)
Mq(s) = p1Ng(s), Lg(s) = ALg1(9)Ng(5), Ng(s) = —(Qu1 — s + AMg_1(5)) 'g=T,q1 — 1,

My, (s) = —pey ()N, (5). Ly, (5) = —ALg,—1Nq, (5). Ny, (5) = (Q1.2 — sk + AMg, _1(5)) ™",

the matrices Qq o, Q1 1 and Q; 5 are of the form

60— X 0 6, — —(A+ag+ ) 0 6., — —(A+aqg+ 1) A
0™\ s —(top+pp) ) T 2 ~Ata+p) )27 2 —A+a+p))

and the function z(s) is defined as

2
Z(S):s+a+k+u_\/<s+a+k+u> n (16)

2 2) A

Proof. The absorbing states of the process {X,(t)} are x = (¢.2,d5), d, € {0,1,2} and x = (g, d;. 2). d; € {0, 1, 2}. Using the same notations
as in the previous section, we obtain the following set of Kolmogorov differential equations:

T(0.0.0)(8) = =AT(0,0,0)(€) + U170 (0.1,0) (£) + 27T (0,0.1) (E), (17)
Tig1.0)(8) = = (1 + A+ L) T g1,0) + AT (g-1,1.0)(8) + 17T (gs1.1,0) () + U2TT(q1.1)(£), 0 < g < g1 — 2,

T -1.1.0)(8) = —(01 + A + 1) (g, _1.1.0) + AT (g, -2,1.0) () + R2TT(g,-1.1.1)

.01y (6) = =(02 + A + [42)T0(0,0.1) (£) + 17T (0.1.1) (D),

Tloa.1y(8) = (02 + A + 12)7(0,0,1) () + AT (0,0.1) () + U177 0,11y (£),

Tig11) (O == (@ + A+ )7(q11) () + AT go1.1.1) (O + 1T g1 (), 1 =g < q1 =2,

T 110y = = (@ + A+ )T (g, _1.1.1) () + AT (g, 1.1.0)(8) + AT (g, —2.1.1) () + AT (g,.1.1) ()

with initial conditions 7 0)(0) =1 and 7x(0) =0,xe€ E,. By taking Laplace transforms of these equations, where 7iy(s) =
Jo© mx(t)eStdt, Re[s] > 0, and then using their partial generating functions,

Q-1 qi-1
Pyo(s.2) = T(0,0,0)() + Z 7 (9.1,0) ()2, Py 1(s.2) =T (0,01)(S) + Z ﬁ(q,1,1)(5)21+1s
q=0 q=0

o0
Pia(s,z) = Z g ()21
q=q1

for |z| <1, the system (17) is transformed after some manipulation into a set of equations for the double transforms introduced above:

Z+ 0,00 () (U1 (Z = 1) + a12) — Az1+27 (g 11.0)(S) + p2zP1 1 (5, 2)

IS $,2) = ’
o —AZ2+ (St + A+ 1)z — i

Pia(s,2) = 0.00)(8)@(@1 + 141) — 1) + A(Fq-11.0)(8) = 21 7 (g,-1.1.1) () + U g,.1.1) (5)
o A2+ (S o+ A+ W)z — [ ,
Piy(s.2) = 20 (A2t g, -11.1) () = W (g,.1.1)(5))

“AZZ+ (SH+a+A+pu)z—p
Let us denote by F(s,z) = —Az2 + (s+ & + A + )z — u the auxiliary function for the denominator of P; (s, z). It is easy to see that

F(5,0)=—-u <0, F(s,1)=s+a>0.
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Thus, for any s> 0 the square equation F(s,z) =0 has two roots and their minimum takes the value in the interval [0,1]. This root we

denote as

2
Z(S):s+a+k+u_\/(s+a+k+,u) %

2\ 2 A
Since the function P, 5 (s, z) is analytical, its numerator must also be zero at point z = z(s):

AZ($)TE (q,-1,1,1)(S) — UTT(g,.1,1(S) = 0.

In order to obtain a second equation for the boundary transforms 7, _1 11)(s) and %, 1,1)(s), let us denote by

780.0(8) = (F(0,0,0)(5): F(0,0.1)(8)), Tg1(8) = (F(g.1,0() Fg1.n()). 1 <q=q1 - 1.

For the system of the Laplace transforms 77x(s) obtained from (17), we can use the following relations in matrix form:

00(s) = —p170.1(5)(Q1.0 — sh) ™" — €5(2)(Q10 — sh) ™ = 0.1 (s)Mo(s) + Lo (s).

Substituting the last expression into the matrix relation for 7y 1 (s) yields

o01(5) = —pat11(5) Q1 — Sk + AMo(s)) ™! = ALo(s) (Qu 1 — S + AMo(s)) ™" = 7811 (S)M; () + L1 (5).

Sequential application of this forward-elimination-backward-substitution method leads to the following recursive relations:

Hq-11(5) = 1 ($)Mg(s) + Lg(s). 1 <q < q1 -2,
g-1,1(8) = ﬁ'(qu,n(s)Mql (s) + iql (s),
where 1\7Iq (s) and fq (s) can be calculated by (15). By combining the relation

Fgr-11.1)(8) = (g, 1.1(5)My, (5) + Lg, (5))e1 (2)

(18)

and (18), we can express 74, 1,1)(s) in the form (12). The transforms for the remaining boundary states can thus be evaluated as functions

of 7~T(q171,1,1)(5)~ Finally, the double transforms are calculated at point z = 1 and substituted into (10). O

For evaluating the reliability function, the next four statements use the second approach based on calculating the LSTs of the probability

density function of the remaining life time.

Theorem 3. The Laplace transform of R;(t) is given by

Q1 G i-1
Ri(s) = :[1 — ey (3) [[M;()Fg 1 (5) — €(3) Zﬂ%(s)ii(s)],

j=0 i=1 j=0

where M;(s),0 < i< qq, and Li(s). 1 <i < qy, are evaluated recursively,

Mo(s) = No(s)Qo,1. No(s) = —(Q1.0 - sI5) 7",

My (s) = ANy (5). L1 (5) = Ny () (@r1€4(5) + 02€5(5)). Ny (s) = —(Q1.1 — 515 + Q2.1Mo (5)) ",
My(s) = ANg(s), Lg(s) = Ng(5)(Qa2Lg-1(5) + 1€4(5) + 22€3(5)),2 < q < g2 — 1,
Ny(s) = =(Q11 —sIs + Q22My_1(s)) 1,2 <q<gqa—1,

Ma, (5) = Ng, (5)Qo.2. Lg, (5) = No,-1(5)(Qa2lg, -1 (5) + 1€4(5) + vze3(5)).

Ny, (s) = —(Q1.2 = sl5 + Q2.2Mg,_1(s)) 7",

Mg, 41(5) = ANg,1(5). Lg, 11 () = Ng,11(5) (Qa3Lg, (5) + 1€3(4) + a€3(4)),
Ng,+1(5) = —=(Q1.3 — sl + Q2.3M, (5)) 7",

My (s) = ANg(5). Lg(5) = No(5)(Q2aLy1(5) + ct1€5(4) + aze2(4)).

Ny(s) = =(Q13 —sla+ QaMy 1) ', 2 +2<q<q1 -1,

Ma, (5) = Ng, (5)Qu3. Lg, () = N, (5)(Qzaly,-1(5) + crres(4) + cze2(4)),

No, () = =(Q1.4 = sla + Q2.aMg, 1 ()"

The matrices QL,-, 0<i<4, QO, 1<i<3, and Qz: 1 <i <4, are of the form

—A 0 0
Q1,0=<M2 —(o2 4+ A+ 12) o) )
0 B2 —(Br+ 1)
—(o1+ A+ ) oy 0 0 0
. Bi (B +2) 0 0 0
Q1= Ha 0 —(x+A4+pn) o1 o
0 2 Bi —(az+ B1+ A+ 12) 0

0 0 B2 0 —(o+ B2+ A+ )

(19)
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—(o + A+ 1) 0 0 0
5. _4 1 (5). O a — K2 —(@+Ar+p) o o
Q2=0Q11+2e;(5)®e3(5),0Q13= 0 B (a2 + Pr A+ h2) 0 ;
0 B2 0 —(o+ B2+ A+ )
1 0 0 o0
) A A 1 0 0 0 0y 0 0 0 0} ? 8 8
Qa=Qs+reo@ee4),Qi=2(0 0 1 0 0)Go=2[0 1 0 0fds=2[, ; o]
0O 0 0 0 1 0 0 1 O 0 0 1
0 0 0 1
U1 0 0 mwy 0 0 0 O w 0 0 o 0 h 0 o 0
A 0 0 0 A 0 0 0 0 0 A 0 0 u 0 0 R 0 1 0 0
Gi=|0 wm 0] Ga=[0 0 w 0 0[Gs= 1 Q= 1
0 0 0 wu O 0 0 wuy O
0 0 0 0O 0 O o0 O 0 0 0 0 0 0 0
0 0 0 0 0 0 u #1 H
The column vector T4, 1(s) = (F(ql_m)(s), F(q1‘2,1)(5)~ f(qulyz)(s))/ is a solution of the system
Fg,_1.1(5) = Mg, ()Fq, 1(s) + Lg, (5).
X3(2)Xa(2)Y1(5,2) + X3(2)Z1 (5. 2)[X4(2) + Ya (5, 2)] + Y1 (5, 2)[X2 (S, 2)Z1 (5, 2) + X4(2) 22 (5, 2)] =0,
z=z(s)

X3(2D)X4(2)Y3(2) + X1(5.2)Z1 (5, 2)[Xa(2) + Y2 (5. 2)] + Y3(2)[X2 (5. 2)Z1 (5. 2) + X4(2)Z2(5. 2)]

- X4(2)Z3(2)[X4(2) + Ya(s,2)]

:0,

z=2(5)

X2(8,2)Y1(5,2)Z3(2) + [X3(2) + Z2(s, 2)|[X1 (5. 2)Y1 (5. 2) — X3(2)Y3(2)]

+ X3(2)Z3(2)[X4(2) + Y2 (s, 2)] =0,

z=2(5)

where

Xi1(5,2) = (s+a+A+pn)z—r— uz?,

Y1(5.2) = (1 = 2)[(s+ a2+ B+ A+ )z — Ak — j122°],

Z1(5.2) = (1=2)[(s+ar + o+ A+ 1)z — A — s 2],

X2(8.2) = zf(g,-11,1)(S) — AF(g, 1.,1(S).

Y2(5,2) = p2z(1 = 2)F(g,-12.1)(S) = A(1 = 2)F(q, 2.1) ().

Zy(8,2) = 1z(1 = 2)F(q,_1,1,2)(8) = A(1 = 2)F(g, 1,2)(5).

X3(2) = 012, X4(2) = 022, Y3(2) = p1z(1 - 2), Z3(2) = Brz(1 - 2),

and the function z(s) is a minimal solution in the interval [0,1] of the equation
X1 (s, 2)Y1(5,2)Z1 (s, 2) — X3(2)Y3(2)Z1 (5, 2) — X4(2)Y1(5,2)Z3(2) = 0.

Proof. First we introduce some notation:
Ty - the first passage time to the absorbing state of the process {X; (t)} given that the initial state is x € E;
x(t) = %IP’[T,< € [x,x + dx)] - the probability density function (PDF) of Ty;
x(s) = fo~ rx(t)e~s'dt, Re[s] > O - the Laplace-Stiltjes transform (LST) of rx(t).
According to the first-step analysis, the LSTs 7y (s) satisfy

- Ay - .
e (s) :Zs ";\ Fy(s),x € Eq,
pro + Ax

where Ay = 3", Axy. Consider now the states x with a queue length q>q;. We employ first-step analysis to obtain the system

—(S+a+ A+ wFgr1(S) +aifg21)(S) + aafg12)(S) + AFgi1.1.1)(S) + UFg_1.1.1)(s) =0,
— (S a2+ P14+ A+ u2)fg21)(S) =02+ Bifq1.1)(S) + AF(ge1.2.1)(S) + Uafg_1.21)(s) =0,
— (St o+ B+ A+ w1)fg12)(S) =01+ Bafq1.1)(S) + Af(gi1.1.2)(S) + H1Fg_1.1.2)(s) = 0.

Let us define the following partial generating functions:

o0 o0 [o¢]
Pii(s,2) = Z P19z, Py 1(s,2) = Z Fg21)(8)ZT T P 5(s,2) = Z Fg12(®)z70, |z] < 1.
q=a01 q=aq1 q=a1

941

(21)

(22)

(24)

(25)

(28)
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Multiplying Eq. (28) by z% and summing over g, we obtain the following equations after some algebraic manipulation:
X3(2)X4(2)Y1(5,2) + X3(2)Z1 (5, 2)[X4(2) + Ya (s, 2)] + Y1 (5, 2)[Xa (5, 2)Z1 (5, 2) + X4(2)Z2 (5, 2)]

PaGs.2) = X1(8,2)Y1(5,2)Z1(8, 2) — X3(2)Y3(2)Z1 (S, 2) — Xa(2)Y1(S,2)Z3(2) ’ .
B (s.2) = B@OX@B@) + X165 D215, D)[Xa(2) + ¥2.(5.2)] + Vs @)X, )21 (5. 2) + Xa @255, 2) |- (31)
2 E= X1(5.2)Y1(5,2)Z1(5.2) — X3 (2)Y3(2)Z1 (5. 2) — X4 (2)Y: (5. 2)Z5(2)
—X4(2)Z3(2)[X4(2) + Ya (s, 2)]
B y(s.2) Xa (s, 2)Y1(s,2)Z3(2) + [X3(2) + 22 (5, D)X (5, 2)Yi (5, 2) = X3(2)Y3(2) ]+ (32)

X1(5.2)Y1(5.2)Z1 (s, 2) — X3(2)Y3(2)Z; (5. 2) — X4(2)Y1(5,2)Z3(2)
+X3(2)Z3(2)[X4(2) + Y2 (5. 2)]

where the involved functions X;(s, z), Yi(s, z), Zi(s, z), 1 <i <3, X3(2), Y3(2), Z3(z) and X4(z) are defined as in (25). Consider the denominator
F(s,2) = X1(5,2)Y1(5,2)Z1(5,2) — X3(2)Y3(2)Z1 (S, 2) — X4(2)Y1(S,2)Z3(2). It is clear that

F(5,0) = —A3 <0,F(s,1) =i (s + 02) +S(s + 02 + B1)(S+ a + B2) + 21 (S + 02) 25 + a2 + B) = 0.

Thus, F(s, z) for any s has at least one root z(s) in the interval [0,1]. Since the functions 131,1 (s,2), P 1(s,z) and 1321 (s, z) are analytical, the
numerators in (30)-(32) must also be zero at point z(s). This leads to the system with three Eqs. (22)-(24) with six unknown boundary
functions (g 1,1)(5), Fq.2,1)(s) and Fg12)(s) for g € {q; —1,¢,}. To obtain another three equations for the specified boundary functions,

consider the states of {X; (t)}t=0 below threshold level g; and define the following vectors, which comprise the LSTs #(s):

Foo(s) = (F(O.O,O) (s). 7(0.0,1) (s). 7(0,0,2) (s)), (33)
(F(q,],O)(s)v F(q,Z.O)(s)s F(q,m)(s)» F(q,2,1)(5)7 F(q,l,Z)(s))/a 0<q=<q-1,

Fg1(s) = (Fiq.1,00(8). Fq.1,1)(8): Tg2,1) (5). F(q,],Z)(S))/s G=<q=q -1,
(Fig.1,1)(8): Fg.2.1)(8), Fg1,2)(5)), q=q.

Further, we have 7, 5)(s) = 1 for any q € Nq. By expressing Eq. (27) in matrix form and solving this system using the forward-elimination-
backward-substitution method we obtain the following recursive relations,

fo.0 = Mo (s)Fo.1 (5). (34)
o1 =Mg1 ()Fge11(8) + L1 (5).0< g < g1 - 1,

where M;(s),0 <i < qq, and L;(s), 1 <i < g, can be calculated by (20). Particularly, we obtain the expression

Tg, 1.1 = Mg, (5)Fq, 1(5) + Lg, (5),

which gives us the missing three equations for the boundary functions. Hence, we have the system (21)-(24) of six equations with six
unknowns, which can be solved. Note that the Laplace transform Ry (s) can be represented as a function of 7 ¢ g)(s) as

~ 1 <
Ri5) = £ [1-Foon®) (35)
Finally, the recursive substitution in (34) gives the relation
a q1 i-1 5 -
Foo(s) = l_[Mj(S)F(ql.l,l)(S) + ZHMj(S)Li(S)» (36)
j=0 i=1 j=0

which together with g ¢ o) (s) = e6 (3)fpo(s) and (35) completes the proof. O

Remark 1. Solving the sextic Eq. (26) in symbolic form is difficult. However, a solution may be found by approximating the infinite buffer
model using a finite buffer with a sufficiently large buffer truncation parameter B. In this case, (19) can be rewritten in the form

Bi1i-1
Ra(s) ~ l[l —e3) Zl‘[mj(sﬂi(s)]
i=1 j=0
where
Mg, +1(5) = ANg, 11(5), Lg, +1(5) = Ny, 11 (5) (Qa.5Lg, (5) + 1€2(3) + 21 (3)),
Noy+1(8) = (Qus = sl3 + Qa5Mq, ()
Mqy(s) = ANg,+1(5). Lg(s) = Ng(s) (Qa6Lq-1(5) + 1€2(3) + 2€1(3)). 1 +2 < g <B—1,
Nq(s) = (Qi5 — sl + Q26Mg_1(s)) ', q1 +2<q<B-1,
Ls(s) = Ny () (QsL5-1(5) + ct1€2(3) + 21 (3)). N(s) = (Q1.6 — I + Qa.6Mp-1(5)) ™!
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and

. —(x+A+p) o o . .

Q5= B —(a2 + P14+ A+ u2) 0 ,Q16=0Q15+ Ak,
B2 0 —(a1+ B2+ A+ 1)

R 0O n O 0 A mw 0 0
Qs=(0 0 w2 0 ),Qe=(0 wun 0.
0 O 0 0 0

Theorem 4. The Laplace transform of Ry(t) is given by

1 | i
Ry(s) = % |:1 — Fig1.1)(5)€5(2) lq_[ M;(s) — e5(2) i [ ™ (S)Zi(s):|, (37)
j=0 i=0 j=0

where Mj (s),0<i<gqq, and I:,v (s),1 <i<qq, are evaluated recursively,

Mo(s) = ANo(s). Lo(s) = aaNo(s)e1(2). No(s) = —(Q1.0 — sh) ™" (38)
Mq(s) = ANg(s), Lg(s) = Ng(s) (i1Lg-1(s) + 1€(2) + 2201 (2)), 1 < q < 1 — 1,

No(s) = —=(Q1.1 —sh + wiMg_1(s)) " 1<q<qi -1,

Mg, () = ANg, (), L, (5) = Ng, (5) (i1 Lg, -1 () + 1€(2) + o121 (2)),

Ng, () = —(Q1.2 — sI + 11 Mg, 1 (s)) .

The matrices Q; ;,0 <i < 2 are of the form

N 0 s (a1 + A+ u) 0 s s ,
Ql,o—(M2 —(a2+k+uz)>’Q“ —( it —(OH-)L—H/,))’Q]‘Z_Q1*1+Ae0(2)®e1(2)'

The LST 74, 1)(s) can be calculated by the formula

2(s)((1 = z(s)) e} (2)Lg, (5) + @)

T = = , 39
"0 = G600 2 e @)y ) 9
and the function z(s) is defined as

CSHa+A4+p [rsta+Ai+puN? A
z(s) = o \/< o ) = (40)

Proof. Similarly we define the LSTs 7(s) for the PDF of first passage time Ty to the absorbing states of the process {XZ(t)}tzo given the
initial state is x € E,. Consider now the states x with a queue length q> q;. We again employ first-step analysis to obtain the system

—(S+a+r+wFg11)(S) + AFgr11.0(8) + UFg_11.1)(S) +a = 0. (41)

Now we rewrite system (41) in terms of the partial generating function 131,1(5,2) defined in the same way as in (29). This yields the

following equation:

(1 =2)(zpuf g,—1,1,1)(S) — A, 1.1)(8)) + 2z
A-2)(—puz2+ S+ +rA+pw)z—»r)

Pii(s.2) = (42)

The denominator in (42) is equal to zero if z=1 or if F(s,z) = -z + (s+« + A + )z — A = 0. Note that F(s,0) = —A <0 and F(s,1) =
s+a > 0. Hence this for any s> 0 there is a minimal root z = z(s) € [0, 1] for the equation F(s,z) = 0 which can be calculated by (40).
This implies that the numerator of P; 1 (s, z) at point z(s) must also be zero and

(1 —2(s)) (Z(s) T (g, -1,1.1) () — AF(g,.1.1)(8)) + z(s)a = 0. (43)

To obtain the second equation for the boundary transforms (4, _1,1,1)(s) and Fg, 1,1)(s), we use the same procedure as in the previous
proof. To this end, define the column vectors of the LSTs 7 (s) for the states with a queue length q < q; — 1:

F0,0(5) = (F(0,0.0)(5). F(0.0,1) (), Fq.1(5) = (Fig1.0)(5). Fg1.1)(8)) . 1 <q=¢qy — 1.

Applying first-step analysis to (27) yields the following recurrent relations:

F0.0(s) = Mo(s)Fo.1(5) + Lo(s). (44)
F.1(5) = Mgi1(5)Fqi1.1(5) + Lg11(5), 0= g = 1 - 2,

Fq,11(8) = Mql ($)Fg,1,1(8) + qu (s),

where M;(s) and L;(s).0 < i < q;, can be calculated by (38). Combining the last equation in (44),

Fgi11.1)(5) = €1 (2)Tg,-1.1(5) = €] (2)Mg, (5)F(g,.1.1)(5) + €1 (2)L, ().
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with (43), we obtain an explicit expression for the boundary transform 7, 1,1)(s) of the form (39). Further recursive substitution in
(44) yields the relation

q1 q i-1
Fo0(5) = [ [V;5)igan ) + S [ G)L(s). (45)
j=0 i=0 j=0

which, together with (35) and 7 ¢ g)(s) = €;(2)¥p,0(s), completes the proof. O

Theorem 5. The Laplace transform of R3(t) is given by

Q1 G i-1
Rs(s) = :[1 — ey () [[M;()ig 1 (5) — €5(3) Zﬂ%(s)ii(s)], (46)

=0 i=1 j=0
where M;(s),0 < i <qq, and L;(s), 1 <i < qy, are evaluated recursively,

Mo(s) = ANo(s). No(s) = —(Q10 —sB5) 7", (47)
Mi(s) = AN1(s). L1 () = a1N1e(3). Ny = —(Qu.1 — sl + p1Mo(s)) ™",

Mq(s) = ANg(s), Lg(5) = No(s) (i1Lg 1 (5) + 1€(3)),2 < q < q1 — 1,

Ny(s) = —(Q1.1 —sls + 1My _1(5)) 1,2 <q<q1 — 1,

My, (5) = N, (5)Q0.1, Lg, (5) = Ny, (5) (salg, 1 (5) + re(3)),

Ny, (s) = —(Q1.2 — sk + 1M, 1 (s) "

The matrices Q; ;,0 <i <2 and Qg1 are of the form

X —A 0 0 R —(a1 + A+ 1) 0 0
Ql,O:<V«2 —(a2 + A+ p2) o ),Qm:( Ha2 —(@+Ar+up) o )
0 B2 —(B2+ 1) 0 B2 —(a1+ B2+ A+ 1)
0 O
Qi2=011+2e0(3)®€;(3), Q01 = A(1 0>,
0 1
The column vector T, 1(s) = (Figy.1.1) (9, F(ql,m)(s))’ is a solution of the system
Fg,_1.1(5) = Mg, ()Fq, 1(5) + Lg, (5). (48)
X3(2)[Xa(2) +Y2(s,2)[ + Y1 (5, 2)[Xa (5, 2) + Xa(2)] o 0, (49)
X1(5,2)[Xa(2) + Y2 (s,2)| + Y3(2)[X2 (5, 2) + X4(2)] o 0, (50)
where
Xi1(5.2) = (1=2D[(s+a+r+pu)z—r—uz], (51)

Yi(s.2) = (1 =2)[(s+ o1+ Br+ A+ 1)z — A — 12°],

X3(s.2) = uz(1 = 2)f(g,11.1)(s) = A(1 = 2)F(g, 1.1) ().

Y2(5,2) = 1z(1 = 2)F(g,-1.1.2) () = A(1 = 2)F (g, 12)(5).

X3(2) = 2z(1 = 2), X4(2) = 12, Y3(2) = Poz(1 - 2),

and the function z(s) is a minimal solution in the interval [0,1] of the equation

X1(5,2)Y1(5,2) = X3(2)Y3(2) = 0. (52)

Proof. Let us denote by Ty the first passage time to absorbing states of the process {X3 (t)}t=0 given that the initial state is x € E5 by (s)
the LST of the corresponding PDF function. For the states x with a queue length above threshold level g > q; using (27) we obtain
—(S+a+ A+ w)igrn(S) + o +aafg1,2)(S) + Afgr1.1,1)(S) + UFg_1,1,1)(s) =0, (53)
— (a1 + B+ A+ w1)Fg12)(S) = a1+ Bafg1,1)(S) + AFgi1,12)(S) + m1fg_1,1,2)(s) = 0.
In terms of the double transforms P ; (s, z) and 131’2(5, z) defined in (29) the last system (53) can be rewritten in the form
X3(2)[X4(2) +Y2(5.2)] + Y1 (5. 2)[Xz(5. 2) + X4(2)]

X1 (s, 2)Y1(5,2) — X3(2)Y3(2) ’
X1 (5. 2)[X4(2) +Y2(5.2)| + Y3(2)[X2 (5. 2) + X4(2)]

Xi(s,2)Y1(5,2) = X3(2)Y3(2) ’

where X;(s, z), Yi(s, z), ie{1, 2}, X3(z), Y3(z) and X4(z) are defined in (51). For the denominator F(s,z) = X;(s,2)Y;(s,z) — X3(2)Y3(z) the
equation F(s,z) =0 has for any s>0 at least one root z(s) in the interval [0, min{z;(s), z(s)}], since F(s,0) = A2 > 0 and F(s,z(s)) =

13141(5,2) = (54)

151,2(5,2) =
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fozzﬂzziz (s) <0, where z1(s)€[0, 1] and z,(s) € [0, 1] are the roots of the polynomial equations X (s,z) = 0 and Y; (s, z) = 0. Hence, at point
z =z(s) the numerators of 131,1(3, z) and 131,2(5, z) must also be equal to zero, and thus we obtain the two Eqgs. (49) and (50) with four
unknown boundary transforms 7, 1 1y and (g 12)(s) for q € {q; — 1, q1}. To arrive at another two equations for these boundary transforms
consider the states with a queue length below threshold level g, that is, for g < q;. Define the following column vectors of LSTs 7x(s):

F0,0(5) = (F0,0.0)(5). F0.0.1)(5). F0.0.2)(5))’, (55)
- (Fg1,008): Tg1.1)(8). Fg1.2)), 0<q=q1—1,
Fa(s) =1 . N /
(Fig.1,1)(8): Tig1,2(8)), q=q.
As before, these vectors can be represented in recursive form by means of the forward-elimination-backward-substitution method:
oo = MO(S)T‘OJ (s), (56)

o1 = Mgt ($)Fqa1.1() +Lg1(s).0<q<q — 1,
where M;(s),0 <i<gqy, and L;(s),1 <i < qq. can be calculated by (47). From (56) it follows that
Fg_11(8) = Mq] (8)Eq, 1(s) + qu (s).

Thus, we obtain the two missing equations for the boundary transforms. Finally, the main result (46) of the present statement follows
from the same arguments as used in previous proofs. [

Theorem 6. The Laplace transform of Ry(t) is given by

q1 qr i-1
Ra(s) = % [1 —ep(2) [[M;($)Fg,1(5) —e5(2) ) ]_[1\711-(5)&(5)} (57)

=0 iZ0 j=0
where M;(s),0 < i < qq, and L;(s),0 <i < qy, are evaluated recursively,

Mo(s) = No(s)Qo.1. Lo(s) = caNo(s)e; (2). No(s) = —(Qy.0 — sh)~". (58)
Mi(s) = ANy (), L1 (5) = Ny (Q21Lo(s) + @2 (€2(4) + €3(4))), Ny = —(Q1.1 = sla + Q1Mo (5)) ",

Mq(s) = ANg(5). Lg(5) = Ng(5)(Qa2lq-1(5) + a2(e2(4) +€3(4))). 2 <q =gz - 1.

Ng(s) = —(Qu1 —sla+ Qa2oMy_1(s) .2 <q=<qa— 1,

Mg, (s) = Ng, (5)Qo.2. Lg, () = Ng, (5) (QaaLg, -1 (5) + 2 (€2(4) + 3(4))).

Ny, (s) = =(Q12 — sla + Q22Mg, 1(5)) 1,

Mg, 1(5) = ANg,1(5), L, 1(5) = Noy41 () (Q2.3Lg, (5) + 22 (1 (3) + €2(3))),

Ng+1(s) = —(Q13 — sl + Q2,3Mg, ()71,

Mq(s) = ANg(s), Lg(s) = Ng(s)(Qa.alg-1(5) + z(€1(3) + €2(3))). qa +2 < g <1 — 1,

Ng(s) = Q13— s+ QoaMy_1 ()" 2 +2 <q<q1 - 1,

My, (5) = N, (5)Q0.3, Lg, (5) = Ny, (5)(Q2.4Lg, 1 (5) + 22 (€1 (3) + €2(3))),

Ny, (s) = =(Q1.4 — sl + Q2.aMy, 1(5)) .

The matrices Q;;,0 <i<4,Qp;,1<i<3, and Qy;,1 <i <4, are of the form

—(o1 + A+ 1) o 0 0
N —A 0 A B —(B1+A) 0 0
Qo= ,Q11 = ,
M2 —(A+ax+ ) W2 0 —(a+A+p) o
0 j7%) Bi —(a2+ P14+ A+ u2)
—(o1 + A+ 1) 0 0
Qi2=011+1re;(4)®e€;(4),Qr 5= a2 —(x+A+4+pn) o ,
0 Bi —(oy + B+ A+ o)
1 0 O
0 O
G1a=0135+re0(3) ®€,(3). 091 =7 1o 0o Qps= A 0 00 Gos=2[1 0
14=0Q3 0 13 Qi=rg o o) Q2=r, | ] Q3= .
0 1
0 0 1
M1 0 mwi 0 0 O
0 0 0
. o o] . o o o of. M “ary M “
Q1= , Q22 = Q3= 0 0 wu; 0 ].Qs={0 u O
0 0 0 m 0 0 0 o0 0 o0
0o o0 0O 0 0 O M2 M2
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The column vector Ty, 1(s)
tion of the system

= (F(ql,m)(s),F(q%z,])(s))’ is a solu-

Fg,-1,1(5) = Mg, (5)¥q,.1(5) + Lg, (). (59)
X3(2)[X4(2) 4+ Y2(s. 2)] + Y1 (5. 2)[X2(5. 2) + X4(2)] o =0, (60)
X1 (5. 2)[X4(2) 4+ Y2(5. 2)] + Y3(2)[X2 (5. 2) + X4(2)] o =0, (61)
where

X15.2)=(1-2[(s+a+A+pn)z—r— uz?l, (62)
Y1(5.2) = (1 = 2D)[(s + a2 + B1 + A+ 12)z — & — 122°],

X2(8.2) = nz(1 - Z)F(q171,1.1)(5) -A(1- Z)F(q1,1,1)(5)9

Y2(s,2) = paz(1 7Z)F(q1—1.2,1)(5) -1(1 *Z)F(ql,z.n(s)v

X3(2) = a1z(1 — 2), X4(2) = a2, Y3(2) = B12(1 — 2),

and the function z(s) is a minimal solution in the interval [0,1] of the
equation

Xi1(s,2)Y1(s,2) = X3(2)Y3(2) = 0. (63)

Proof. Let us denote by Tx the first passage time to absorbing
states of the process {X, (t)}e=0 given that the initial state is x € E4
and by 7x(s) the LST of the corresponding PDF function. As before,
the transforms 7 (s) for the states with q> g, satisfy the system,

—S+a+ A+ p)Fgr1(S) +aifgary + o2+ Afgi11.1)(S)
+ Ufg-11,1() =0
—(S+ax+ B+ A+ u2)fg21)(S) =z + Bif(g1,1)(S)
+ AF(gi1.21)(S) + U2fg_121)(s) =0
In terms of the double transforms Pj ; (s, z) and 152,1 (s, z) defined in
(29), the last system (64) can be rewritten in the form
B i(s.2) = X3(2)[X4(2) 4 Ya (s, 2)] + Y1 (s, 2)[Xa (s, 2) + X4(2)]
o Xi(s,2)Y1(s5,2) — X3(2)Y3(2) ’
(65)
X1(5,2)[X4(2) + Ya (s, )| + 3(D)[Xa (5, 2) + X4 (2)]
Xi(s,2)Y1(5,2) = X3(2)Y3(2) ’
where Xi(s, z), Yi(s, z), ie{1, 2}, X3(2), Y3(2z) and X,4(z) are defined
n (62). For the same reasons as in the previous proof, it can be
shown, that for any s there is a value z(s) € [0, 1] where the denom-
inator F(s,z) = X;(s,2)Y1(s,z) — X3(2)Y3(z) is equal to zero. Hence,
we obtain two relations (60) and (61) for four unknown bound-
ary transforms (41 1y and 5 1)(s) for q € {q1 —1,q1}. To arrive

at two more equations for the boundary transforms, the following
column vectors of LSTs 7(s) are introduced:

Pi(s.2) =

T0.0(5) = (F0,0.0)(5). F0.0.1)(5))". (66)
(Fg.1.0)(8), Fig2.0)(5),
P (s)= ~r(q,1,l)(S)Lr(q,Z,l)(S)z/s 0<q=<qy-1,
ol (Fig 1,009 Tg1, (), Tg2n(8)), @=<qg=<q -1,
(Fg1.1)(8). Tg2.1)(5)), q=q.
(66)

As previously, these vectors can be represented in the following
recursive form:

fo.0 = Mo(5)Fo,1(s) + Lo (s), (67)
Fg1= Mqﬂ ($)Tqs1.1(5) +Zq+1 (5),0<q=q -1,

where M;(s) and L;(s),0 <i < qq, are given by (58). From (67) it
follows that

fg,-11(5) = Mg, (5)Tg, 1(5) + Lg, (5).

Thus, we obtain the two missing equations for the boundary trans-
forms. Finally, the main result (57) of the present statement fol-
lows from the same arguments as used before. O

Remark 2. The mean time to failure E[T,] can be evaluated by
E[Tp] = limy_ o R (s), 1 <n < 4. The algorithms for evaluating the
LST 7x(s) proposed above can be modified to calculate the corre-
sponding moments iy using the system

i = l(1 + Zxxymy),x cE,.
Ax y#x

For example, the mean time to first failure E[T;] satisfies

qp i-1

E[T] = e((3) []‘[M (O)mg, 1 + > [ M;(0); (0)} (68)
i=0 j=0

where

Mo (0) = No(0)Qo.1. Lo (0) = No(0)e(3). N (0) = —Q; ¢, (69)

and the remaining matrices M;(0) and [;(0),1<i<gq;, are
defined by (20) at point s=0, but the sum of vectors
with factors «; replaced by e. The column vector mg ;=
(Mg,.1.1)> Mgy .2,1)> Mgy 1 2)) is a solution of the system

my _q1= Mq1 (0)ymyg, 1 + qu (0). (70)
Z1(2)[X3(2) (Y2(2) +2) + Y1(2) (X2 (2) +2)]
+ X412, +2]] =0,

z=7

Z1D[X1 (@) (Y2(2) + 2) + Y3(2) (X2 (2) + 2)]

+X4(2)Y3 (D22 + 2] - X4 (D) Z3(D)[Y> + 2] = 0,
X1 (@Y1 (D[22 + 2] - X3(2)Y3(2)[Z2(2) + 2]
-0,
where )
Xi@) =1 -D[(@+t+pm)z—r—puz’] (71)
Y1(2) = (1 —2)[(02 + B1 + A+ [2)z — A — paZ?],

Z1(2) = (1 =2D)[(o1 + B2 + A+ u1)z — A — 1 2%],

X2(2) = nz(1 = 2)mg,_1,1.1) — A1 = 2)Mg, 1.1y,
Y2(2) = uaz(1 = 2)Mg,_121) — A(1 =2)Mq, 2.1),
Z(2) = 1z(1 = 2)Mg,_1,1,2) — A(1 = 2)M g, 1.2y

X3(2) = a12(1 - 2), X4 (2) = a2z(1 - 2),

Y3(2) = f1z(1 - 2).Z3(2) = Brz(1 - 2),

and the function Z’ is a minimal solution in the interval [0,1] of the
equation

X1 (DY1(2)Z1(2) — X3(2)Y3(2)Z1(2) — Xa(2)Y1(2)Z3(2) = 0. (72)

Similarly, we obtain expressions for the means E[T,],2 <n <4.

4. The number of failures (repairs) during a life time

In this section, we study the number of failures (repairs) during
life times Ty, T3 and T4. This complements the reliability analysis
and provides a type of a discrete counterpart of the length of life
time. The methodology is similar to that employed in the previous
section, and hence we omit some repetitive details.

Theorem 7. The generating function 1/71‘1(2) of the number of fail-
ures of server 1 during T, is calculated by

qp i-1

J11(2) = e0<3){HM @DV @+ Y. 1ML (z)} (73)

i=1 j=0
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where M;(z),0 <i<qq, and L;(z),1 <i < qy, satisfy the same recur-
sive relations (20) at point s =0 with the failure rate «q replaced
by o1z. The matrices Qy;,0 <i <4 and Qy;,1= 3,4, are substituted
respectively with Q“(z) and Qz_i(z), where the rates oy (with the
exception of the main diagonals in matrices QU» ) are replaced by a1z

The column vector thﬂ(z) = (lﬁ(ql_1_])(z), ﬁ(ql_zvl)(z), ﬁ(q]'u)(z))’
is a solution of the system

Vo 11@) =My, @V, 1(2) + L4, 2). (74)

X3(z,21)X4(21)Y1(21) + X3(2, 21)Z1 (21)[Xa(z1) + Y2(2. 21)]

+Y1(21)[X2(2. 21)Z1(21) + Xa(21)Z2(2. 21)] =0, (75)

21=21(2)

X3(z,21)X4(21)Y3(21) + X1(21)Z1(21)[Xa(21) + Y2(2. 21)]
+Y3(21)[X2(2. 21)Z1(z1) + Xa(21)Z2(2, 21)]

—X4(21)Z3(21)[Xa(21) + Y2(z, 21)] =0, (76)

21=21(2)

X2(z,21)Y1(21)Z3(21)
+[X3(z.21) + Z2(z. 21) ][ X1 (21)Y1(21) — X3(2. 21)Y3(21)]

+X3(2.21)23(21)[Xa(z1) + Y2(2. 21)] =0, (77)
21=21(2)
where
Xi(z1) = (@ + A+ )z — A — uzi, (78)

Yi(z1) = (1 = z)[(02 + B1 + A + (2)zy — A — [127i].

Zy(z1) = (1 —z)[ (o1 + Bo + A+ 1)z — A — pa 23],
X2(z.21) = 21V, -11.1)@) — AMg11) (@),

Y2(2.21) = pozi (1 = 2% (g, -12.1)@) = A(1 = 20) Vg, 2.1) (@),

Z(z,21) = m1z1 (1 —21)1/;(q171.1,2) (2)-Ar(1 _Zl)&(ql,ll)(z)v
X3(z,21) = 1221, X4(21) = 224,

Y3(z1) = Brz21(1 = 21). Z3(21) = Brzi (1 — 21),

and the function z,(z) is a minimal solution in the interval [0,1] of the
equation

X1(z2)Y1(21)Z1(21) — X3(2, 21)Y3(21)Z1(21)
—X4(21)Y1(21)Z3(21) = 0. (79)

Proof. First we introduce some notation:

W, — the number of failures of server 1 up to the end of the life
time Ty of the process {X;(t)} given that the initial state is x € £;;

Yx(k) = P[Wy = k] - the probability density function (PDF) of
Wy,

Yx(z) = e Yk (t)z¥, |z| <1 - the probability generating func-
tion (PGF) of yrx(t).

According to the law of the total probability, the density v (t)
satisfies the following system:

Ay by A

Y (k) = %wy/(k— D+ > %t/ly(k),x e k.
X yrry X

The first term on the right-hand side stands for the transition to
the state y’, which we count (i.e., failures of server 1), while the
second term includes other possible transitions. In terms of the
PGF, the last system can be rewritten as follows:
~ Zhsy ~ Ay ~ N
Un(@) = =Ly (@) + Y S2Yy(2),x e By (80)
X yExy X
Note that the system is the same as (27) for s = 0 but with o re-
placed by «qz. Employing the same steps as presented in the proof

of Theorem 3, we obtain the corresponding result for the function

Vi1(2). O

Similarly, we obtain the result for server 2. In this case, the sys-
tem for the PGFs has the form (27) for s = 0, but the failure rates
o, are replaced by «yz. The corresponding result is summarized
below.

Theorem 8. The generating function 1}1‘2(2) of the number of fail-
ures of server 2 during T, is calculated by

a1 N q -1 B
&u@=m%ﬁWﬂWW@+ZH%®Mﬂ,(&)
=0 i—1 j=0

where 1\71,-(2), 0<i<q, and Z,-(z), 1 <i<q, satisfy the same recur-
sive relations (20) at point s = 0 with the failure rate o, replaced by
o,z The matrices Oy ;, 0 < i < 4, are substituted by Qy ;(z), where the
rate a, (with the exception of the main diagonals) is replaced by o,z

The column vector ¥y 1(2) = (lﬁ(ql,l.l)(z), 1ﬁ(ql.z.l)(z), &(ql.m)(l))’
is a solution of the system

Vo112 =My, @DV, 1(2) + L, (D). (82)
X3(21)X4(z. 21)Y1(21) + X3(21)Z1(21)[X4 (2, 21) + Y2(2. 21)]

+Y1(21)[X2(2. 21)Z1(21) + Xa(2, 21) 23 (2, 1) ] =0,

21=21(2)
X3(21)X4(z,21)Y3(21) + X1(21)Z1(21)[X4(21) + Y2 (2. 21)]
+Y3(21)[X2(2, 21)Z1(z1) + X4(2, 21)Z2(2, 1) ]

—X4(2,21)23(21)[X4(2, 1) + Y2(2. 21)] =0,

21=21(2)

X2(z,21)Y1(21)Z3(21)
+ [X3(z1) + Z2(z, ) [ X1 (z1)Y1(21) — X3(21)Y3(21)]

=0,
21=21(2)

where X((z1), Y1(z1), Z1(z1), Xa(2, 1), Ya(2, 21), Z5(2, 21), Y3(z1) and
Z3(zq) are defined by (78), and X3(z1) = 0121, X4(2,21) = apzz1. The
function z1(z) is a minimal solution in the interval [0,1] of the equa-
tion

X1 @)1 (21)Z1(21)—X3(21)Y3(21)Z1 (21)—Xa(2, 21 )Y1 (21) Z3 (24 )(=0)-
83

Similarly, we obtain the corresponding PGFs for the number of
failures of server 2 during the life time T3 and of server 1 during
the life time T4. The results are summarized in the following two
theorems:

+X3(21)Z3(21)[X4(2. 21) + Y2 (2. 21)]

Theorem 9. The generating function 1ﬁ3 (z) of the number of failures
of server 2 during T is calculated by

N a N G i-1 5 .
%w=%e{nmwmmm+ZHMﬂmm} (84)
j=0 i=1 j=0

where M;(z).0 <i<gqq, and L;j(z).1<i<qq, satisfy the same re-
cursive relations (47) at point s = 0. The matrices Ql_l-, 0<i<4, are
substituted by Ql,,-(z), where the rate o, (with the exception of the
main diagonals) is replaced by «,z. The column vector '7’q1,1(7-) =

(Wg,1.1) @ ¥(g,.1.2(2)) is a solution of the system

Vo112 =My, @V, 1(2) + L, (2. (85)
X3(z,21)[X4(21)+Y2 (2, 21) ]+Y1 (21)[X2 (2. 21)+X4(21) ] o =0,
X1@)[Xa(21) + Y2 (2, 20) ] + Y3(21)[X2 (2. 21) + X4(21)] =0,

21=21(2)
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where

Xi(z1) = (1 = z0)[(@ + A+ p)z1 — & - pz, (86)
Yi(z1) = (1 —z)[(a1 + B2+ A+ 1)z — A — uazi],

X(z.21) = uz1 (1 = 2) V(g 1.1.1y@) — A1 —2) Vg, 1.1) (@),

Y2(z.21) = miz1 (1 —Z1)E5(q1_1,1.2) (2)-21(1 —21)1ﬁ(q1,1,2)(l)’
X3(z.21) = 221(1 — 21), Xa(21) = 121, Y3(21) = Bazi (1 — 29).

The function z,(z) is a minimal solution in the interval [0,1] of the
equation

X1(z1)Y1(z1) — X3(2.21)Y3(z1) = 0. (87)

Theorem 10. The generating function V4 (z) of the number of failures
of server 1 during T4 is calculated by

q1 N Q1 i-1 5 -
Ja(2) = €4(2) []‘[ W@ ¥, @ + > [V (z)h(z)], (88)
j=0 i=0 j=0

where M;(z) and L;(z),0 <i<q, ,Asatisfy the same regursive relations
(58) at point s = 0. The matrices Q;;,0 <i <4, and Qy;,i= 3,4, are
substituted by Qy;(z) and Q,;(z), where the rate oy (with the ex-
ception of the main diagonals) is replaced by «1z. The column vector
V1@ = (Ug,1.1)@). Vg, 21)(2)) is a solution of the system

Vi 11@) =My, @V, 1) + 14, (2). (89)

X3(z,21)[X4(21) + Y2 (2, 2) [+Y1(21)[X2 (2. 1) +Xa(21) ]

:O,

21=21(2)

X1(21)[Xa(21) + Ya(z, 20) ] + Y3(21)[X2(2. 21) + Xa(21)] =0,

21=21(2)

where

Xi(z1) = (1 —z)[(@ + A+ )z — A — uz3), (90)
Yi(z1) = (1 —z)[(@2 + Br + A + (2)zs — A — pazi],

X2(z,21) = pz1 (1 = 20) Y g, -11.1) @) — (1 = 20) V(g 1) (@),

Y2(z,21) = pozi (1 = 20) Vg, 1210 (@) = A(1 = 2) Vg, 2.1 (@),
X3(z,z1) = 1zz1(1 — 1), X4(21) = 0221, Y3(z21) = B1z1(1 — 79),

and the function z,(z) is a minimal solution in the interval [0,1] of the
equation

X1(z1)Y1(z1) — X3(2,21)Y3(z1) = 0. (91)
(a)
1.0 ~
\\_ \\.
0.6 '\.\V\4
= \-\’\0\‘
04| \\
- - A I
0.2- - AZ 1
L <+ A
i A
ool t v o 4w b VT
0.2 0.4 0.6 0.8 1.0 12 1.4
2

Remark 3. The mean number of failures E[Wq 1], E[Wq 2], E[W3]

and E[Wy] can be evaluated by E[W;4]= % , E[W,] =
=1

dy ai -

b = E[W;] = 952 . and E[Wy] = ¥4 R The algo-

rithms for evaluating PGFs &x(z) proposed above can be modified
to calculate the corresponding moments 1, using the system

- 1 ) X
Yy = A‘—<)hxy/ +Z)\.xy'¢/y>,x ek, 1<n<4.
* Y#X

5. Numerical results

In this section, we present some numerical examples to study
the effect of system parameters on the proposed reliability mea-
sures. First, we fix the system parameters at values

A= 17, H1 = 24, M2 = 04, o] = O], o) = 02, ﬂ] = 03,
B=03,0=083,q;=9,q, =6.

In all cases presented below the parametric values are chosen such
that the ergodicity condition holds.

In Figs. 2a, 2b, 3a and 3b, the stationary availabilities A;,
1 <i<4, are plotted against the arrival rate A for failure rates o,
o and repair rates 81, 5. As expected, A; decreases with increas-
ing A. The figures reflect dependences of availabilities A; on fail-
ure and repair rates. The upper curves correspond to lower val-
ues of o7 and &, and to higher values of 8iand B,. We notice
that descriptor A3, which specifies the stationary availability of the
first server, changes with varying «; and B4, but it is insensi-
tive to reliability characteristics @, and B, of the second server.
This is caused by a threshold policy which prescribes to use the
faster server whenever it is free and therefore the time to failure of
this server is independent of the reliability attributes of the slower
server.

In Figs. 4a, 4b, 5a and 5b, we plot the failure frequencies B,
for ¢y =0.1,0.2,0.3 and 8, =0.2,0.3,0.4,] = 1, 2. These character-
istics increase monotonically with increasing A. Further, we notice
that B; > B,, because the probability to be in state x with d;(x) =1
is higher than the probability for d,(x) = 1, since server 2 is used
according to the threshold control policy. We observe that func-
tion By is insensitive to changes in «;, 81 and f3,, and function B,
is almost insensitive to changes in S5.

In Figs. 6a, 6b, 7a and 7b, we analyse the effect of the ar-
rival rate A on the reliability functions R(t), Ry(t), R3(t) and R4(t),

(b)
1.0
o8 \'\-'\.t
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Fig. 2. The availability A;, 1 <i<4, for @y =0.1,0.3 (a) and o =0.1,0.3 (b).
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Table 1
The first moment of the life times and number of failures.
A E[Ti] E[T;] E[B] E[L]  E[Wa]  E[Wh2]  E[W3]  E[W]
05 19594 4281 5175 9239 374 2.94 013 1.75
0.8 96.81 23.51 33.38 39.78 2.81 2.96 0.29 113
12 56.45 13.81 23.26 20.63 2.29 2.84 0.53 0.81
17 3835 9.03 17.47 1284  2.02 2.57 0.78 0.64
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Fig. 10. The function Ry(t) for oy (a) and «y (b).

respectively. To evaluate these functions, we used a numerical in-
version algorithm for the corresponding Laplace transforms Ry (s),
which must be calculated in symbolic form. For the calculations we
employed Mathematica software package from Wolfram Research.
This program has some limitations regarding the volume of sym-
bolic representations. For this reason, and in order to reduce the
algorithm’s evaluation time, we had to restrict the number of items
of the sums in (19), (37), (46) and (57) by assuming that qg; = 2 and
g = 1. As can be seen, for higher values of A the functions exhibit
heavier tails. Function R;(t) has the heaviest tail of all reliability
functions evaluated. In Figs. 7a and 7b, it can be seen that, depend-
ing on the arrival rate, server 1 or server 2 may be the more reli-
able server at any one time. This can be explained by the threshold
control policy, which regulates use of server 2. With increasing ar-
rival rate it becomes more likely that the slower server is busy and
consequently in a failed state.

In Figs. 8a, 8b, 9a and 9b, we plot the discrete probability den-
sity functions ¥(g ¢ )(k) = P[W (g 0,0y = k] for the numbers of fail-
ures of server 1 and server 2 during the life time Ty, for the num-
ber of failures of server 2 during the life time T3 and for the num-
ber of failures of server 1 during the life time T4, respectively. The
first two functions are defined on a set N, while the other two
are defined on a set Ny. To obtain these functions, we used a nu-
merical inversion algorithm for the corresponding PGFs. Note that,
for increasing A the probability ¥ (g ¢, g)(1) of only one failure dur-
ing T, increases for server 1 when A increase but decreases for
server 2. The reason for this is again the threshold control policy.
The same can be seen in Figs. 9a and 9b, where we observe that
the probability v ¢, 0)(0) of no failure of server 2 during the time
T3 decreases, while that of server 1 during the time T4 increases.

In Table 1, we list the moments of the life times E[T;],1 <
n <4 and the number of failures E[W 1], E[W ], E[Wn], n=3,4,
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during the corresponding lifetimes. As expected, the first measure
is decreasing function in A. The second measure can be different
dependent on the type of the lifetime.

In Figs. 10a, 10b, 11a and 11b, we show respectively the in-
fluences of oy, &y, @1 and u, on the reliability function Ry(t).
We observe that with decreasing of «; and o, the system be-
comes more reliable and the corresponding distribution functions
Fr, (t) =1 —Ry(t) of the life time T, exhibit heavier tails. It can be
also noticed that the system becomes more reliable for higher val-
ues of service rates pq and w, due to the fact that in this case
the probability for empty servers increases that in turn extends the
system’s life time. In this example the system is most reliable for
parameters oy = 0.01, 5 = 0.01, 1 = 4.8, up = 1.2.

6. Conclusion

We have provided a reliability analysis of a two-server hetero-
geneous unreliable queueing system with a threshold control pol-
icy for allocating customers to the servers. Our results complement
the classical performance analysis of unreliable queueing models
that can be described by quasi-birth-and-death processes. We used
a matrix-geometric solution method to obtain the stationary state
distribution and some reliability measures, such as availability and
failure frequency. Combining the forward-elimination-backward-
substitution method for the boundary states with the generating
function approach for the states above the highest threshold level
yielded a closed form solution in terms of the Laplace transform
for the reliability function and, consequently, for the mean time to
first failure. A distribution of the number of failures during the life
time was derived, expressed in terms of the probability generating
function. Finally, we presented numerical experiments to explore
the effect of various system parameters on the reliability of servers
and system.
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