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Abstract. A controllable repairman model consists of L machines sub-
ject to failures and two repair servers working at different speeds. The
problem of optimal allocation of failed machines between the servers is
examined. The optimal control policy is calculated versus cost struc-
tures. As a result the optimal policy can be of threshold type, hysteretic
type or have more complicated form. It is shown that the corresponding
Markov process for hysteretic control policy belongs to the class of the
Quasi-Birth-and-Death processes (QBD) with three diagonal block in-
finitesimal matrix. The stationary characteristics in this case are derived
in matrix analytic form. Some numerical results are used to illustrate a
number of features of the controlled model under study.

Keywords: Machine repairman system, performance analysis, dynamic-
programming, optimal allocation, threshold policy, hysteretic policy.

1 Introduction

The machine repairman systems are normally described by means of the closed
queueing systems, i.e. the systems with finite population. In such a system the
customers of the finite population are the machines which are working at the op-
eration area and during operation time they can fail independently of each other.
The failed machines are sent to the repair facility where they can be restored.
After the repair the machine becomes as good as a new one and is returned to
the operational area. If all repair servers are busy a just failed machine has to
wait for the repair at the buffer. In most cases in multi-server case the repair
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servers are assumed to be homogeneous, i.e. they repair the machines at equal
speeds [2]. Only few papers deal with heterogeneous servers, see e.g. [9].

The problem of optimal allocation between heterogeneous servers was stud-
ied exhaustively only for infinite population queues. In [10] it was shown that
the optimal allocation policy in heterogeneous system without preemption and
switching costs is of threshold type, i.e. the server with larger mean usage cost
has to be used if the queue length reaches some prespecified threshold level. The
equivalent system with switching cost was analyzed in [5], where the hysteretic
allocation policy took place. Due to this policy the usage of the server with
higher mean usage cost is performed via the switch-on and switch-off threshold
levels. For some other results concerning the hysteretic policy we refer the reader
to [1,4,6].

In this paper we combine the finite population queueing system with het-
erogeneous repair facility and optimal allocation problem which obviously rep-
resents a missing subject among the available results. For the fixed threshold
level and specified cost structure we have obtained explicitly the corresponding
average cost which was minimized. To calculate the policy we use a dynamic-
programming approach. Several structural properties of a control policy are es-
tablished as well.

The rest of the paper is organized as follows: Section 2 describes the math-
ematical model based on a controllable Markov process. In Section 3 optimiza-
tion problem is formulated and optimal equations for the dynamic-programming
value function are derived. Section 4 deals with explicit evaluation of the mean
performance measures. Finally, some numerical examples are presented in
Section 5.

2 Mathematical Model

Consider the machine repairman system described in introduction. L machines
subject to failure are working in- parallel. The operational time of each machine
is exponentially distributed with parameter λ. The machines fail independently
of each other. The repair facility consists of two heterogeneous servers with
exponential distributed repair times with parameters μ1 > μ2 > 0. The process
of the repair is assumed to be without preemption, i.e. the failed machine can not
change the server during the repair process. The operational and repair times
are assumed to be mutually independent.

Let Q(t) denote the number of failed machines in the buffer and Di(t) – the
state of the ith repair server. The system states at time t are described by a
continuous-time Markov process

{X(t)}t≥0 = {Q(t), D1(t), D2(t)}t≥0.

The controllable model associated with a Markov process {X(t)}t≥0 is a five-
tuple

{E,A, {A(x), x ∈ E}, λxy(a), c(x, a)}.
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– E is a state space of the process {X(t)}t≥0,

E = {x = (q, d1, d2); q ∈ {0, 1, . . . , L}, dj ∈ {0, 1}, q +
2∑

j=1

dj ≤ L}.

Further in the paper the notations q(x), dj(x), j = 1, 2, will be used to specify
the certain components of the vector state x = (q, d1, d2) ∈ E.

– A = {0, 1, 2} is an action space with elements a ∈ A, where a = j > 0 means
”to send a failed machine to the server j”, j = 1, 2, and a = 0 means ”to
send a failed machine to the buffer”.

– The subsets A(x) ⊆ A of control actions in state x ∈ E, where A(q, 0, 0) ≡
A,A(q, 0, 1) = {0, 1} and A(q, 1, 0) = {0, 2}.

– λxy(a) is a transition intensity to go from state x to state y under a control
action a. It is assumed that the model is stable and conservative, i.e.

λxy(a) ≥ 0, y �= x, λxx(a) = −λx(a) = −
∑
y �=x

λxy(a), λx(a) <∞,

λxy(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ
[
L− q(x) −∑2

j=1 dj(x)
]

y = x+ ea, a ∈ A(x),

μjdj(x) y = x− ej , q(x) = 0,

μjdj(x) y = x− ej − e0 + ea, q(x) > 0,

a ∈ A(x− ej − e0).

The notation ej is used for the vector with 1 in the jth position (beginning
from 0th) and 0 elsewhere.

– c(x, a) is an immediate cost in state x under control action a,

c(x, a) = c(x) + c01λ
[
L− q(x)−

2∑
j=1

dj(x)
]
1{d2(x)=0,a=2}+[

c01μ1d1(x)1{d2(x)=0,a=2} + c10μ2d2(x)1{a=0∨a=1}
]
1{q(x)>0},

c(x) = c0q(x) +

2∑
j=1

cjdj(x)

where c0 – holding cost per unit of time in the buffer, cj – usage cost of a
repair server j per unit of time, c01 and c10 – fixed costs for switching on
and off of the slower repair server. If c0 = cj = 1, j = 1, 2 and c01 = c10 = 0,
then c(x, a) represents the number of failed machines in state x.

We will next explain how the controller chooses its actions. According to the
stationary Markov policy f : E → A whenever at a decision epoch the system
state is x ∈ E, the controller choses an action f(x) = a ∈ A(x) ⊆ A regardless
of the past history of the system. We have two types of decision epochs:

– just after a failure of a machine at state x the controller chooses an action
a ∈ A(x), which prescribes to allocate the machine to one of available servers
or to the buffer;
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– just after a repair completion at server j in state x the controller chooses an
action a ∈ A(x − e0 − ej), which prescribes to take another machine from
the queue, if it is not empty, and allocate it to one of available repair servers
or put it back to the buffer.

3 Optimization Problem for Performance Characteristics

The process {X(t)}t≥0 has a finite state space hence we may guarantee that
this process is an irreducible, positive recurrent Markov process defined through
its infinitesimal matrix Λ = [λxy(f(x))]. As it is known [8], for ergodic Markov
process with costs the long-run average cost per unit of time (also referred to as
gain) for the policy f coincides with corresponding assemble average,

gf = lim
t→∞

1

t
V f (x, t) =

∑
y∈E

c(y, a)πf
y , (1)

where

V f (x, t) =

∫ t

0

∑
y∈E

P
f [X(u) = y|X(0) = x]c(y, a)du (2)

denotes the total average cost up to time t when the process starts in state x and
πf
y denotes a stationary probability of the process given policy f . The policy f∗

is said to be optimal when for any admissible policy f

gf
∗
= min

f
gf . (3)

We expect that the gain gf
∗
will be smaller or equal to the gain under other

heuristic allocation policies, e.g. Fastest Free Server discipline, which prescribes
to use a fastest server among available.

The optimal policy f∗ can be evaluated by means of a Howard iteration al-
gorithm [3], which constructs a sequence of improved policies until the average
cost optimal is reached. The key role in this algorithm is played by the dynamic
programming value function v : E → R+ which indicates a transition effect of
an initial state x to the total average cost and satisfies a well-known asymptotic
relation,

V f (x, t) = gf t+ vf (x) + o(1), x ∈ E, t→∞. (4)

The functions V f , vf and gf further in the paper will be denoted by V , v and
g without upper index f .

The system will be uniformized as in Puterman [7] with the uniformization
constant

λL+ μ1 + μ2 = 1,

which can be obtained by time scaling. As it is well known, the optimal policy
f and the optimal average cost g are solutions of the optimality equation

Bv(x) = v(x) + g, (5)

where B is the dynamic programming operator acting on value function v.
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Theorem 1. The dynamic programming operator B is defined as follows

Bv(x) = c(x) +
[
L− q(x)−

2∑
j=1

dj(x)
]
λ min

a∈A(x)
{v(x+ ea) + c011{a=2}}+ (6)

[
q(x) +

2∑
j=1

dj(x)
]
λv(x) +

∑
j:dj(x)=1

μjv(x− ej)1{q(x)=0} +
∑

j:dj(x)=0

μjv(x)+[
μ1d1(x) min

a∈A(x−e1−e0)
{v(x− e1 − e0 + ea) + c011{d2(x)=0,a=2}}+ (7)

μ2d2(x) min
a∈A(x−e2−e0)

{v(x− e2 − e0 + ea) + c101{a=0∨a=1}}
]
1{q(x)>0}.

Proof. The optimality equation is obtained by analyzing the function V (x, t) in
some infinitesimal interval [t, t+dt]. It leads to the differential equation. Applying
further the limit expression

lim
dt→0

V (x, t + dt)− V (x, t)

dt
= 0

and taking into account Markov property of {X(t)}t≥0 with asymptotic relation
(4) ones get (6).

Corollary 1. From (6) it follows that the optimal policy f = (f0, f1, f2) consists
of components which specify the control action just after a new arrival in state
x, just after a service completion at server 1 or 2 for nonempty queue,

f0(x) = argmin
a∈A(x)

{v(x+ e0), v(x + e1)1{d1(x)=0}, (v(x + e2) + c01)1{d2(x)=0}},

f1(x) = argmin
a∈A(x−e1−e0)

{v(x− e1), v(x − e0), (v(x − e1 − e0 + e2) + c01)1{d2(x)=0}},

f2(x) = argmin
a∈A(x−e2−e0)

{v(x− e2) + c10, v(x− e2 − e0 + e1), v(x − e0)}.

In case c01 = c10 = 0, fj(x) = f0(x− ej − e0), j = 1, 2.

4 Explicit Evaluation of the Gain Function

As is shown in Section 5 the optimal control policy can be approximated by
the hysteretic policy with two threshold levels (U,D), D ≤ U , i.e. the slower
server must be activated when the queue length reaches the upper bound U and
deactivated – when the queue length goes below the lower bound D. Under the
fixed values U and D the gain g can be evaluated explicitly using the right hand
side of (1).

Denote by π the row vector of the stationary state probabilities with compo-
nents πx = limt→∞ P[X(t) = x]. Define the following row-subvectors,

π00 = (π000, π001), πk =

{
(πk10, πk11) 0 ≤ k ≤ U − 1,

πk11 U ≤ k ≤ L− 2.

The corresponding transition diagram is shown in Figure 1.
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Fig. 1. Transition rate diagram for the hysteretic policy (U,D)

Theorem 2. The Markov process {X(t)}t≥0 for the thresholds (U,D) is of the
QBD-type (Quasi-Birth-Death) with a state space

E = {x = (q, d1, d2); dj ∈ {0, 1} if q ∈ {0, 1, . . . , U−1}, dj = 1 if U ≤ q ≤ L−2}
and three-diagonal block infinitesimal matrix Λ = [λxy(U,D)] defined as

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B0 A0
0 0 0 0 0 0 0 0 0 0 0 . . . 0

C0 −B0
1 A1

0 0 0 0 0 0 0 0 0 0 . . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

0 . . . C0 −BD−1
1 AD

0 0 0 0 0 0 0 0 . . . 0

0 . . . 0 C1 −BD
2 AD+1

0 0 0 0 0 0 0 . . . 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0 . . . 0 0 C1 −BU−2
2 AU−1

0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 C1 −B3 aU
0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 C2 −bU2 aU+1
0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 c2 −bU+1
2 aU+2

0 0 . . . . . . 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

0 . . . 0 0 0 0 0 0 0 0 c2 −bL−4
2 aL−3

0 0

0 . . . 0 0 0 0 0 0 0 0 0 c2 −bL−3
2 aL−2

0

0 . . . 0 0 0 0 0 0 0 0 0 0 c2 −bL−2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

C0 :=

(
μ1 0
0 μ1

)
, B0 =

(
Lλ 0
−μ2 (L − 1)λ + μ2

)
, A

k
0 =

(
(L− k)λ 0

0 (L− k − 1)λ

)

B
k
1 =

(
(L − k − 1)λ + μ1 0

−μ2 (L− k − 2)λ + c2

)
, C1 =

(
μ1 0
0 c2

)
, A

D−1
0 =

(
(L− D + 1)λ 0

0 (L − D)λ

)
,

B
D−1
1 =

(
(L− D)λ + μ1 0

−μ2 (L − D − 1)λ + c2

)
, A

k
0 =

(
(L− k)λ 0

0 (L− k − 1)λ

)
,

B
k
2 =

(
(L− k − 1)λ + μ1 0

0 (L− k − 2)λ + c2

)
, C2 =

(
0 c2

)
, A

U−1
0 =

(
(L − U + 1)λ 0

0 (L − U)λ

)
,

B3 =

(
(L− U)λ + μ1 −(L− U)λ

0 (L − U − 1)λ + c2

)
,

a
k
0 = A

k
0 · e2 = (L − k − 1)λ, b

k
2 = B

k
2 · e2 = (L − k − 2)λ + c2, c2 = C2 · e2 = μ1 + μ2.

Proof. The statement can be proved by simple block identification at the system
of balance equations taking into account defined above specifications of the sub-
vectors.
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Theorem 3. The stationary state probabilities π00 and πk, 0 ≤ k ≤ L − 2, can
be calculated by

π00 = πL−2

L−2∏
i=0

ML−2−i,

πk = πL−2

L−k−3∏
i=0

ML−2−i, 0 ≤ k ≤ L− 3,

πL−2 =
[
1 +

U−1∑
k=0

L−k−3∏
i=0

ML−2−ie+

L−3∑
k=U

L−k−3∏
i=0

ML−2−i

]−1

,

where Mk satisfies the recursive relations

Mk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0B
−1
0 , k = 0

C0

(
Bk−1

1 −Mk−1A
k−1
0

)−1
, 1 ≤ k ≤ D − 1

C1

(
BD−1

1 −MD−1A
D−1
0

)−1
, k = D

C1

(
Bk−1

2 −Mk−1A
k−1
0

)−1
, D + 1 ≤ k ≤ U − 1

C2

(
B3 −MU−1A

U−1
0

)−1
, k = U

c2
(
bk−1
2 − ak−1

0 Mk−1e1
)−1

, k = U + 1

c2
(
bk−1
2 − ak−1

0 Mk−1

)−1
, U + 2 ≤ k ≤ L− 2.

Proof. The main idea consists in deriving the recursive relations for the sub-
vectors πk from the system of balance equations in the form

π00 = π0M0, πk = πk+1Mk+1,

where matrices Mk can be evaluated also by the recursive relations defined in the
statement. Note that the inverse matrices which are involved into these formulas
are well defined since the matrices are main diagonal dominant and hence non-
singular.

Corollary 2. The main performance measures:

– Load factor of the repair server j = 1, 2

Ū1 =

U−1∑
k=0

πke+

L−2∑
k=U

πk, Ū2 = π00e1 +

U−1∑
k=0

πke1 +

L−2∑
k=U

πk;

– Mean number of busy servers C̄ =
∑2

j=1 Ūj;
– Mean number of failed machines in the buffer

Q̄ =
U−1∑
k=0

kπke+
L−2∑
k=U

kπk;
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– Mean number of failed machines in the system N̄ = C̄ + Q̄;
– Mean waiting and sojourn time of the failed machine

W̄ =
Q̄

λ(L− N̄)
, T̄ =

N̄

λ(L− N̄)
;

– P[Machine n is failed] = λW̄
λW̄+1

;
– The mean cost per unit of time

g(U,D) = c0Q̄+

2∑
j=1

cjŪj + c01λ(L − U)πU−1e0 + c10μ2

D−1∑
k=0

πke1.

5 Numerical Examples

In this section we discuss some interesting observations about the properties of
the optimal control policy f = (f0, f1, f2). To evaluate optimal policies we apply
the Howard iteration algorithm [3] and formulas obtained in previous section.

Table 1. Component f0 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 0 1 2 3 4 . . . 15

(0,0) 1 1 1 1 1 . . . 1

(0,1) 0 0 1 1 1 . . . 1

(1,0) 0 0 0 2 2 . . . 2

(1,1) 0 0 0 0 0 . . . 0

System State x Queue Length q(x)

(d1, d2) 0 1 2 3 5 . . . 15

(0,0) 1 1 1 1 1 . . . 1

(0,1) 1 1 1 1 1 . . . 1

(1,0) 0 0 0 2 2 . . . 2

(1,1) 0 0 0 0 0 . . . 0

Table 2. Component f1 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(1,0) 1 1 1 1 1 . . . 1

(1,1) 0 0 1 1 1 . . . 1

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(1,0) 1 1 1 1 1 . . . 1

(1,1) 1 1 1 1 1 . . . 1

Table 3. Component f2 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(0,1) 2 2 2 2 2 . . . 2

(1,1) 2 2 2 2 2 . . . 2

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(0,1) 2 2 2 2 2 . . . 2

(1,1) 2 2 2 2 2 . . . 2
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(a) (b)

Fig. 2. The regions of optimality for threshold U in (a) infinite population (b) finite
population L = 10 model

If the switching costs c01 and c10 are set to be equal to 0, than, as expected,
the optimal control policy f is of threshold type, i.e. is defined through a single
threshold level, U = D > 0, like at a similar system with infinite population. Due
to this policy the second server with a higher cost per service period c2

μ2
> c1

μ1

must be used in state x = (q, 1, 0) whenever the number of failed machines in
the buffer exceeds the threshold level U , q(x) > U .

If the switching costs are differs from 0 for the most values of system param-
eters λ, μ1 and μ2 the optimal policy belongs to the hysteretic policy with two
threshold levels, (U,D), discussed at the beginning of the previous section. This
policy is optimal in infinite population case as well. But surprisingly this policy
for the closed system is not optimal everywhere, i.e. for some values of system
parameters, e.g. if c01 is very large comparing to other costs, one more threshold
level appears for the activation of the first server in state x = (q, 0, 1).

Tables 1–3 illustrate the components fj , j = 0, 1, 2, of the optimal control
policy (OCP) and the hysteretic control policy (HCP), (4, 1), for the following
values,

L = 17, λ = 1, μ1 = 5, μ2 = 1, c0 = c1 = c2 = 1, c01 = 50, c10 = 5.

The gain function for these policies are equal to

gOCP = 11.0125, gHCP = 11.0524.

As we can see, the difference is not sufficient. In other numerical examples the
observable difference in performance was not more than 0.5%, so the hysteretic
policy can be treated as a quasi-optimal one.

Another observation concerns the optimal threshold policy with threshold
level U if c0 = c1 = c2 = 1 and c01 = c10 = 0. The areas of optimality for
threshold level depending on ratios r1 = μ1

λ and r2 = μ2

λ for infinite and finite
population models are shown in Figure 2. The larger upper region stands for the
case U = 1, below is shown the region for U = 2 and so on. We observe that
the slope in the finite case is flatter. In finite population case the faster server
must be more than four time faster as the slower one to get non-trivial solution
U > 1, otherwise the optimal threshold policy will coincide with the fastest free
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server discipline U = 1, where the fastest available server must be used each
time there is a waiting machine in the buffer.

6 Conclusion

In this paper we have studied a controllable machine repairman model with het-
erogeneous repair servers. For the model without switching costs the optimal
control policy has a threshold structure. We expect that this fact can be rig-
orously proved using event-based dynamic programming approach to prove the
monotonicity properties of the value function in the same way as it was done
for infinite population models. In general case with switching costs the optimal
control policy can be more complicated as a known hysteretic policy but the
difference in performance between the policies is negligible.
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