# Computer network architectures and protocols

laboratory

#### Imre Varga University of Debrecen, Faculty of Informatics

For internal use only!

04 September 2017

Subject, course:

**Computer network architectures and protocols** INHK721 (Computer Science Engineering BSc) **Computer networks (Architectures and protocols)** INJK711-K5 (Business Information BSc)

Wednesday 10:00-12:00, TEOKJ II/106B room (Lecture, I.V.) Tuesday 12:00-14:00, IF03 room (Practice, INJK711L, I.V.) Tuesday 16:00-18:00, IF03 room (Practice, INHK721L, A.K.)

subject credit: 5 (INJK711-K5 ), 4 (INHK721)

#### Teachers:

**Dr. Varga, Imre** (Tuesday 10, Tuesday 12) Department of Informatics Systems and Networks email: varga.imre@inf.unideb.hu www: irh.inf.unideb.hu/user/vargai room: IF13

### Karsai, Andrea (Tuesday 16)

Network and Telecommunication Supplier Unit email: karsai.andrea@it.unideb.hu room: Chemistry Building, C stairway 4/3

Requirements, conditions for **practice** (INJK711L): maximum number of absences: 3 late arrival (more than 20 minutes) means absent from class

2 midterm tests (+1 retake)

to pass a test: reach at least 50%

if a test failed: retake is necessary with extra conditions retake test: covers the whole semester

result overwrites the worse test result

Requirements, conditions for lecture (INJK711-K5):

- written exam
- to pass: reach at least 50%

signature + passed theoretical test: suggested grade theoretical and practical results together determine the final grade (50%-50%)

Readings:

Andrew S. Tanenbaum: *Computer Networks*, Prentice-Hall, 2003.

### Numeral systems

### Decimal number system

10 different symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 How do we count in decimal?

| • • • | ••• | •••         | •••               | •••          |
|-------|-----|-------------|-------------------|--------------|
| 08    | 18  | 098         | 598               | 0998         |
| 09    | 19  | 099         | 599               | 0999         |
| 10    | 20  | <b>1</b> 00 | <mark>6</mark> 00 | <b>1</b> 000 |
| 11    | 21  | 101         | 601               | 1001         |
| 12    | 22  | 102         | 602               | 1002         |
|       | ••• | •••         | •••               |              |

### **Binary systems**

Why binary systems are so important?

- There are many binary systems in our environment.
- The computer is binary.

| no                     | yes                 |
|------------------------|---------------------|
| false                  | true                |
| absent                 | present             |
| close                  | open                |
| switched off           | switched on         |
| insulator              | conductor           |
| electric current flows | no electric current |
| 0                      | 1                   |

### Binary number system

### Only 2 different symbols: 0, 1

#### How do we count using binary?

| 00000                | 0 | 00111                | 7  | 01110               | 14 |
|----------------------|---|----------------------|----|---------------------|----|
| 00001                | 1 | 0 <mark>1</mark> 000 | 8  | 01111               | 15 |
| 000 <mark>1</mark> 0 | 2 | 01001                | 9  | <mark>1</mark> 0000 | 16 |
| 00011                | 3 | 01010                | 10 | 10001               | 17 |
| 00100                | 4 | 01011                | 11 | 10010               | 18 |
| 00101                | 5 | 01100                | 12 | 10011               | 19 |
| 00110                | 6 | 01101                | 13 | 10100               | 20 |
| $\langle$            |   |                      |    |                     |    |

### Conversion from decimal to binary

| conversion of 217:         | 217      | 2 |                              |
|----------------------------|----------|---|------------------------------|
| 217 = 2*108+1              | 108      | 1 | 1                            |
| 108 = 2*54+0               | 54       | 0 |                              |
| 54 = 2*27+0<br>27 = 2*13+1 | 27       | 0 |                              |
|                            | 13       | 1 | 217 - 11011001               |
| 13 = 2*6+1                 | 6        | 1 | 217 <sub>10</sub> - 11011001 |
| 6 = 2*3+0                  | 3        | 0 |                              |
| 3 = 2*1+1                  | 1        | 1 |                              |
| 1 = 2*0+1                  | <u>0</u> | 1 |                              |

# Conversion from binary to decimal

Decimal (10):

2495 = 2\*1000+4\*100+9\*10 +5\*1

 $2495 = 2*10^3 + 4*10^2 + 9*10^1 + 5*10^0$ 

Binary (2):  $1010011_2 = 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0$   $1010011_2 = 1*64 + 0*32 + 1*16 + 0*8 + 0*4 + 1*2 + 1*1$  $1010011_2 = 64 + 16 + 2 + 1 = 83_{10}$ 

### Hexadecimal number system

16 different symbols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F How do we count in hexadecimal?

| •••        | ••• | •••         | ••• | •••                |
|------------|-----|-------------|-----|--------------------|
| 08         | OE  | OFE         | 9FE | OFFE               |
| 09         | OF  | OFF         | 9FF | OFFF               |
| 0A         | 10  | <b>1</b> 00 | A00 | <mark>1</mark> 000 |
| 0 <b>B</b> | 11  | 101         | A01 | 1001               |
| 0 <b>C</b> | 12  | 102         | A02 | 1002               |
| •••        | ••• | •••         | ••• | •••                |

### Conversion to hexadecimal

| conversion of 3564 <sub>10</sub> : | 3564     | 16 |                               |
|------------------------------------|----------|----|-------------------------------|
| 3564= 16*222+12                    | 222      | С  |                               |
| 222= 16*13+14                      | 13       | E  | $3564_{10} = \text{DEC}_{16}$ |
| 13 = 16*0+13                       | <u>0</u> | D  | 1                             |

### conversion of $1011111110110011_2 = 17FB3_{16}$ 1 7 F B 3

# **Conversion from hexadecimal**

conversion of  $2BA5_{16}$  to decimal (10):  $2BA5_{16} = 2*4096+B*256+A*16+5*1$   $2BA5_{16} = 2*16^3 +B*16^2+A*16^1+5*16^0$  $2BA5_{16} = 8192+2816+160+5 = 11173_{10}$ 

conversion of  $2BA5_{16}$  to binary (2):  $2BA5_{16} = 001010111000101_2$ 

# Numbers in computer

- Bit is similar to a digit of a binary number. (0 or 1)
- Byte is 8 bit (a maximum 8 digit long binary number).
- Numbers on a byte (8 bit): 00000000 - 11111111 (0-255)
  256 different values

# Logical operations

Logical values:

- true: 1
- false: 0

Logical operations:

- AND (&)
- OR (|)
- NOT (!)

#### Table of truth of AND (X & Y = Z):

| Χ | Y | Ζ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

| Elephant is a fruit   | and | it is small. | False statement. |
|-----------------------|-----|--------------|------------------|
| Elephant is a fruit   | and | it is large. | False statement. |
| Elephant is an animal | and | it is small. | False statement. |
| Elephant is an animal | and | it is large. | True statement.  |

# Logical operations

Logical values:

- true: 1
- false: 0

Logical operations:

- AND (&)
- OR (|)
- NOT (!)

#### Table of truth of OR (X | Y = Z):

| Χ | Y | Ζ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

| Elephant is a fruit   | or | it is small. |
|-----------------------|----|--------------|
| Elephant is a fruit   | or | it is large. |
| Elephant is an animal | or | it is small. |
| Elephant is an animal | or | it is large. |

False statement. True statement. True statement. True statement.

# Logical operations

Logical values:

- true: 1
- false: 0

Logical operations:

- AND (&)
- OR (|)
- NOT (!)

#### Table of truth of NOT (!x = z):



Elephant is not small. Elephant is not large. True statement. False statement.

### Logical 'AND' operation on bytes

| Example 1: | 10010110          | 150          |
|------------|-------------------|--------------|
|            | & <u>00000000</u> | <u>8</u> 0   |
|            | 00000000          | 0            |
| Example 2: | 10010110          | 150          |
|            | & <u>11111111</u> | & <u>255</u> |
|            | 10010110          | 150          |
| Example 3: | 10010110          | 150          |
|            | & <u>11110000</u> | & <u>240</u> |
|            | 1001000           | 144          |

### Layered Network Architecture

# Layered Network Architecture

#### Why we use layered network architecture?

- To describe a huge protocol is complex and difficult.
- A hierarchical protocol system can be easier implemented.
- The change tracking is easier.
- Layers can cooperate also in case of different producers.

### Layers (Levels), Protocols, Interfaces



# Encapsulation

#### **Encapsulation:**

Packaging the information arrived from a higher level with a header of a specific protocol (it is similar when a traditional mail letter is put in an envelope and the envelope is addressed).

H2H3H4 L5 DATA T2

#### **Protocol Data Unit (PDU):**

Entity (contains header and data) handled by the considered protocol. (It is frequently mentioned as packet.)

### Scheme of Network Communication



# **OSI Reference Model**



# Mapping of TCP/IP - OSI Model



# Hybrid Reference Model



# Layers of hybrid model

### Physical Layer (L1):

Specification and properties of different transmission mediums in order to implement signal transmission.

• Cables, connectors, modulation, signal coding, etc.

### Data Link Layer (L2):

Reliable transmission between two directly connected devices. Two sublayers: LLC, MAC.

• Physical addressing, media access, logical topology, etc.

# Layers of hybrid model

### Network Layer (L3):

Connection between any two network nodes (not just dirrectly connected).

• Routing, traffic control, network addressing, etc.

#### Transport Layer (L4):

Reliable connection between softwares on two nodes. Protocols may connectionless or connection-oriented.

• Error detection/correction, order guarantee, etc.

# Layers of hybrid model

### **Application Layer (L5):**

Interface between applications and users. Provides same interpretation of information (different nodes can use different data structures, data representation). Encryption, compression, etc.

• DNS, http, ftp, e-mail, bittorrent, etc.

### Network interconnection

# Network Interconnection - Basics

#### **Collision domain; Bandwidth domain:**

- Part of a network, where collisions can be detected (a common communication channel that is shared by multiple nodes).
- In a collision domain only one information transmission can be performed at a time.

#### **Broadcast domain:**

Part of a network, where information transmitted with a broadcast address can be detected.

#### **Repeater:**

- Amplifies and repeats the signals sent on transmission media.
- Does not separate the connected subnetworks.
- Repeaters with multiple ports is called a HUB.

### Bridge:

- Working in Data Link Layer it performs selective connection ("Only those packets goes through the bridge, who tends to other side").
- The interconnected subnets form separate collision domains.
- Usually transmits the broadcasting towards all interconnected subnets.

#### Switch:

A multiple port device with bridge functionality between any two ports.

#### **Router:**

- Working in Network Layer it performs selective connection, routing, and traffic control.
- The interconnected subnets form separate collision domains and separate broadcast domains.
- It is a node with own IP address.
- Sometimes it is also called a gateway in Network Layer (default gateway).

- Which node-pairs don't disturb each other?
- Who is available form where by broadcast?



- Which node-pairs don't disturb each other?
- Collision domains:


## Network Interconnection Devices

- Who is available form where by broadcast?
- Broadcast domains:



### Physical layer

# Physical layer

First layer of hybrid model (L1)

Specification and properties of different transmission mediums in order to implement signal transmission.

Topics

- Cables and connectors
- Topology
- Modulation and signal coding,
- etc.

# Physical transmission and cables

### Wired

- Coaxial cable (electric signal)
  - Thin, thick
- Twisted pair (electric signal)
  - UTP, FTP, STP
- Optical fibre (light)
  - Multimode, single mode

### Wireless

- Air (electromagnetic waves)
  - Radio wave, microwave, infrared

### Coaxial cable



# **Coaxial cable**

### Transmission characteristics:

- Due to the concentric structure of conductors, it is not sensitive for interference and crosstalk
- In case of digital transmission amplifiers are required in every km
- In case of analog transmission, amplifiers are required in every several km

### **Applications:**

- Transmission of television broadcasting
- Large distant telephone transmission
- Connection of computers



# **Unshielded Twisted Pair**

#### **Characteristics:**

- It is the cheapest media
- Data transmission speed (100Mbps) and the distance (100m) to be covered are highly limited
- Two isolated copper conductors are twisted and four such pairs are grouped without shield (UTP)
- Foiled Twisted Pair (FTP): pairs has a common shield cover
- Shielded Twisted Pair (STP): pairs are shielded separately

## TIA/EIA T568 standard



# Cable types

Straight-through

 Ends: T568A – T568A or T568B – T568B

Crossover (crosslink)

 Ends: T568A – T568B or T568B – T568A

Auto-MDI/MDIX

• Automatic detection of cables



### **Connection of devices**



|      |                 | MDIX      |           |           | MDI       |                 |           |  |  |
|------|-----------------|-----------|-----------|-----------|-----------|-----------------|-----------|--|--|
|      |                 | modem     | hub       | switch    | router    | access<br>point | computer  |  |  |
| MDIX | modem           | crossover | crossover | crossover | straight  | straight        | straight  |  |  |
|      | hub             | crossover | crossover | crossover | straight  | Straight        | straight  |  |  |
|      | switch          | crossover | crossover | crossover | straight  | straight        | straight  |  |  |
| MDI  | router          | straight  | straight  | straight  | crossover | crossover       | crossover |  |  |
|      | access<br>point | straight  | Straight  | straight  | crossover | crossover       | crossover |  |  |
|      | computer        | straight  | straight  | straight  | crossover | crossover       | crossover |  |  |

## **Optical fiber**







# **Optical fiber**

#### **Characteristics:**

- Core and cladding: glass or plastic with different reflective index
- Works in 10<sup>14</sup> 10<sup>15</sup> Hz (infrared) domain
- 3 versions are used: multi mode, single mode, multi mode graded index
- Light sources: LED, laser diode

# **Optical fiber**

### Advantages:

- Larger capacity: High transmission speed can be achieved (2 Gbps in 10x km).
- Smaller size and weight
- Smaller attenuation: The attenuation is smaller, and it is constant at a wide frequency range.
- Electromagnetic isolation: Not sensitive for outer electromagnetic effects, there is no crosstalk.
- Larger repeating distance: Smaller the number of repeaters is, smaller the possibilities of errors and the costs are.

# Signal, Signal Coding, Modulation

- **Signal**: Physical quantities, depending on place and time, and carrying information. Information carrier on the communication channel, it could be analog or digital.
- **Signal Coding**: Mapping the (digital) information onto the digital carrier signal (eg. voltage levels, changing of voltage levels).
- **Modulation**: Mapping onto analog carrier signal. The process of creating the (modulated) signal to be transmitted through the channel from the modulating signal coming from the source and the analog carrier signal. Inverse process is the demodulation. A modem performs modulation and demodulation, as well.

# Signal Coding



## Signal coding exercises

• What is the coded bitseries in case of NRZ, RZ, PE?



• Continue the encoding of the following bitseries by NRZ, NRZI and PE.



# Modulation



### Data link layer

# Data link layer

Second layer of hybrid model (L2)

Reliable transmission between two directly connected devices. Two sublayers: LLC, MAC.

Topics

- Physical addressing (identification)
- Media access
- Logical topology
- etc.

## Data link Layer



## Ethernet

The most popular technology for wired LANs based on Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) media access method.

| version              | standard     | year | speed        |
|----------------------|--------------|------|--------------|
| 'Classical' Ethernet | IEEE 802.3   | 1980 | 10 Mbps      |
| Fast Ethernet        | IEEE 802.3u  | 1995 | 100 Mbps     |
| Gigabit Ethernet     | IEEE 802.3ab | 1999 | 1.000 Mbps   |
| 10Gigabit Ethernet   | IEEE 802.3ae | 2002 | 10.000 Mbps  |
| 100Gigabit Ethernet  | IEEE 802.3ba | 2010 | 100.000 Mbps |

# Ethernet frame format



# Ethernet (MAC) address

6 bytes wide identifier of network cards written in hexadecimal number system separated per bytes. Example:



MAC address is 'burned' into the network interface.

There are no network cards in the world with same MAC address.



### Ethernet frame transmission (CSMA/CD)



## Computing the delay and wait



## Receiving an Ethernet frame



# Ethernet switching

- A collision domain occurs when multiple computers are connected to the single, shared transmisson media (line).
- Devices in second layer (bridge or switch) divide the collision domains.
- Each port of a switch forms a separate collision domain.
- These devices control the transmission of frames by MACaddresses assigned to the Ethernet devices.
- Switches for each port stores the MAC addresses of the accessible devices from that port in a switching table.
- Switches upload and maintain their switching tables dynamically.

## **Ethernet** switching



08-00-27-00-FC-E1

3

## Switching exercises

- What is happening during the following sending?
- 1. Source: 30:e4:db:27:8d:3f Destination: 38:22:9d:c3:07:9c
- 2. Source: bc:ee:7b:8d:f5:dc Destination: 00:1C:C0:3C:79:3A
- 3. Source: 00:1C:C0:3C:79:3A Destination: FF:FF:FF:FF:FF:FF
- What is happening if Step 2 and Step 3 are replaced?



# Data-link layer commands

- ifconfig | grep HWaddr shows the MAC addresses of interfaces
- ethtool eth0
   displays ethernet card settings
- mii-tool

manipulates media-independent interface status

## Network layer

## Network layer

Third layer of hybrid model (L3)

Connection between any two network nodes (not just dirrectly connected).

Topics

- Network addressing
- Routing
- Subnetting
- etc.

## The IP network protocol

IP (Internet Protocol) (*RFC 791*)

- The network layer protocol of TCP/IP reference model.
- Widely used, it is the basic element of Internet.
- Most important characteristics:
  - Structure of IP header.
  - IP addressing, address classes.
  - Fragment supporting.
  - Datagram services towards Transport Layer.

## Structure of IP header

#### Consists of 32-bit words.

#### Length: Minimum 5, maximum 15 words.

| Version                           | IHL    | Type of service                         | Whole length    |  |  |  |  |  |  |  |
|-----------------------------------|--------|-----------------------------------------|-----------------|--|--|--|--|--|--|--|
|                                   | Iden   | D     M       F     F   Fragment offset |                 |  |  |  |  |  |  |  |
| Time T                            | ō Live | Transport layer prot.                   | Header checksum |  |  |  |  |  |  |  |
| Sender (source) IP address        |        |                                         |                 |  |  |  |  |  |  |  |
| Receiver (destination) IP address |        |                                         |                 |  |  |  |  |  |  |  |
| Optional field(s) [0-10 words]    |        |                                         |                 |  |  |  |  |  |  |  |

# IP addresses

- Identifies the node in Network Layer.
- 32 bit (4 byte) long.
- Dotted decimal notation
  - eg. 157.45.190.57
- Managing identifiers
  - InterNIC
  - -IANA
- For organisations not unique addresses but address domains (network identifiers) are assigned.
## IP addresses

 The first part on an IP address identifies the network, the second part identifies the node (inside the network).



- The IP routing based on the network identifiers.
- How many bits should be in network IDs?
  - If too small, the large domains will be unused.
  - If too large, only small subnetworks can be handled.

### **Classes of IP addresses**



## Network mask

#### Network mask (netmask):

• A 32 bit mask, which contains bits with values of 1 in place of network and subnetwork identifiers, and bits with values of 0 in place of host identifiers.

#### **Prefix length:**

• The number of value 1 in netmask (number of binary places in netmask).



### Law of First Byte

| Class | Leading bit(s) | First byte | Netmask       | Prefix |
|-------|----------------|------------|---------------|--------|
| Α     | 0              | 0-127      | 255.0.0.0     | 8      |
| В     | 10             | 128-191    | 255.255.0.0   | 16     |
| С     | 110            | 192-223    | 255.255.255.0 | 24     |

## Special IP addresses

- Broadcast on the specific network

Network 1111111111111111111

• Loopback address

| 01111111 | Anything    |
|----------|-------------|
|          | <i>ii</i> 0 |

What is the Network ID of 172.17.22.45 /12?

- IP address: 172.17.22.45
   10101100.00010001.00010110.00101101
- Netmask: prefix length is 12 1111111.1110000.0000000.000000000
- Result (network ID): 172.16.0.0

What is the broadcast address of this network? 192.168.64.0 /255.255.224.0

- Network ID in binary: 1100000.10101000.01000000.00000000
- Netmask in binary: 11111111111111111100000.00000000
- Broadcast in binary: 11000000.10101000.01011111.1111111
- Result (broadcast in dotted-decimal): 192.168.95.255

Is the computer with IP 172.20.21.22/255.240.0.0 in the 172.16.0.0 network?

- Binary IP of node: 10101100.00010100.00010101.00010110

- Ansewer: yes, the computer is inside this network.

- What is the Network ID of the network of this node in case of default netmask? Node IP: 193.6.128.5
- What is the Network ID of that network which contains IP 172.23.125.22, if netmask is 255.255.192.0?
- What is the broadcast address in the network of node 10.0.0.0 /25?
- Is the computer with IP 192.168.31.22 /23 in the 192.168.32.0 network?

## Problems with classful IP networks

• Class A networks are to large, Class C networks are to small, Class B networks are full.

#### Solutions:

- Private IP domains (e.g. 192.168.0.0/16) with Network Address Translation (NAT)
- Classless IP addressing: the border between network and host ID is shiftable (e.g. netmask 255.240.0.0)
- IPv6, new version of Internet Protocol (IPv6 address is 128 bit long)

## Private IP networks

- Network that uses private IP address space
- Commonly used for home and office LANs, when globally routable addresses are not mandatory
- Must use a network address translator (NAT)
- Private domains:
  - -10.0.0/8
  - -172.16.0.0/12
  - -192.168.0.0/16

## IP subnets

#### Why is it necessary to create subnets?

- The logical functionality of the institute can be a reason.
- On an IP network more than one broadcast domains (usually with the same size) have to be created.

#### How can we create a subnet?

- Some of the higher position bits of host ID of an IP address will be used identifying the subnet.
- The new network-node boundary is denoted with the network mask (longer prefix is used).

Task:

- Network ID: 192.168.0.0
- Netmask: 255.255.255.0 (prefix: 24)
- We need 5 subnets

How many bits is enough to identify 5 subnets?

- 1 bit: 2 possibilities (0, 1)
- 2 bits: 4 possibilities (00, 01, 10, 11)
- **3 bits: 8 possibilities** (000, 001, 010, 011, 100, 101, 110, 111)
- So 3 bit is enough to identify 5 subnets.

- Old netmask in dotted-decimal 255.255.255.0

- New netmask in dotted-decimal 255.255.255.224
- The prefix length of new netmask:
  27 (=24+3)

- Network ID in dotted-decimal: 192.168.0.0
- Network ID in binary: 11000000.10101000.0000000.00000000
- Subnets in binary:

11000000.10101000.00000000.00000000 11000000.10101000.00000000.00100000 11000000.10101000.00000000.01100000 11000000.10101000.00000000.10000000 11000000.10101000.00000000.10100000 11000000.10101000.00000000.111000000 11000000.10101000.00000000.111000000

The required 5 subnets

- Original network: 192.168.0.0 / 24
- Subnets in dotted-decimal: 192.168.0.0 / 27 1100000.10101000.0000000.0000000 192.168.0.32 / 27 1100000.10101000.0000000.00100000 192.168.0.64 / 27 1100000.10101000.0000000.0100000 192.168.0.96 / 27 1100000.10101000.0000000.01100000 192.168.0.128 / 27 1100000.10101000.0000000.1000000

IPs of (just) the third subnet:

- Subnet ID 192.168.0.64 / 27 1100000.10101000.0000000.0100000
- IPs of computers 192.168.0.65 / 27 192.168.0.66 / 27 192.168.0.67 / 27

11000000.10101000.00000000.01000001 11000000.10101000.00000000.01000010

11000000.10101000.00000000.01000011

192.168.0.93 / 27 192.168.0.94 / 27 11000000.10101000.00000000.01011101

- 11000000.10101000.00000000.01011110
- Broadcast of subnet 192.168.0.95 / 27 11000000.10101000.00000000.01011111 (30 IPs in each subnet)

#### Task 2:

- Network ID: 172.16.0.0
- Netmask: 255.255.0.0
- We need 2 subnets

#### Subnets:

 172.16.0.0
 / 17
 10101100.00010000.0000000.00000000

 172.16.128.0
 / 17
 10101100.00010000.1000000.000000000

(32766 IPs in each subnet)

**Classless Inter-Domain Routing** 

Main problem:

We want to divide a network to different sized subnets. (Previous method results same subnet size.)

Not the number of subnets is important, but the number of nodes in a given subnet.

IP classes are not so important.

Network-host border can be shifted.

The result depends on the arriving time of demands.

Available network 172.32.0.0/16



First demand 1000 nodes

Second demand 4000 nodes

Third demand 2000 nodes







- First demand: 1000 nodes → 1000<1024=2<sup>10</sup>
   10 bits needed to identify 1000 nodes
- Old netmask: /16 (=255.255.0.0)

- New netmask: /22 (=255.255.252.0)
- Choose the first empty subnet with this netmask!

- Network ID in dotted-decimal: 172.32.0.0
- Possible subnets in binary: first unused 10101100.00100000.000000000.0000000 subnets 10101100.00100000.00000100.00000000 **10101100.00100000.000010**00.00000000 **10101100.00100000.000011**00.0000000 **10101100.00100000.000100**00.0000000 **10101100.00100000.000101**00.0000000 **10101100.00100000.000110**00.00000000 **10101100.00100000.000111**00.0000000

- Second demand: 4000 nodes → 4000<4096=2<sup>12</sup>
   12 bits needed to identify 4000 nodes
- Old netmask: /16 (=255.255.0.0)
- New netmask in binary
   1111111111111111110000.0000000
   12 bits
- New netmask: /20 (=255.255.240.0)
- Choose the first empty subnet with this netmask!

- Network ID in dotted-decimal: 172.32.0.0
- Possible subnets in binary: **10101100.00100000.0000**0000.00000000 first unused **10101100.00100000.0001**0000.0000000 ← subnets **10101100.00100000.0010**0000.00000000 **10101100.00100000.0011**0000.0000000 **10101100.00100000.0100**0000.00000000 **10101100.0010000.0101**0000.0000000 **10101100.0010000.0110**0000.00000000 **10101100.00100000.0111**0000.00000000

- Third demand: 2000 nodes → 2000<2048=2<sup>11</sup>
   11 bits needed to identify 2000 nodes
- Old netmask: /16 (=255.255.0.0)
- New netmask in binary
   11111111111111111111000.0000000
   11 bits
- New netmask: /21 (=255.255.248.0)
- Choose the first empty subnet with this netmask!

- Network ID in dotted-decimal: 172.32.0.0
- Possible subnets in binary: **10101100.00100000.0000**0000.00000000 subnets **10101100.00100000.00010**000.00000000 **10101100.00100000.00011**000.0000000 **10101100.00100000.00100**000.00000000 **10101100.00100000.00101**000.00000000 **10101100.00100000.00110**000.0000000 **10101100.00100000.00111**000.0000000

Full network 172.32.0.0/16



First subnet (1000 nodes)

172.32.0.0/22Broadcast: 172.32.3.255

Nodes: 172.32.0.1 – 172.32.3.254

Third demand (2000 nodes)

**172.32.8.0/21** Broadcast: 172.32.15.255

Nodes: 172.32.8.1 – 172.32.15.254

Second demand (4000 nodes)

**172.32.16.0/20** Broadcast: 172.32.31.255 Nodes: 172.32.16.1 – 172.32.31.254

# ifconfig command

• ifconfig

shows the settings of all interfaces

- ifconfig eth0
   shows the settings of eth0 interface
- ifconfig eth0 192.168.0.10 netmask 255.255.255.0
   sets up IP address and netmask to eth0 interface
- ifconfig eth0 172.16.1.12/16
   sets up IP address and netmask to eth0 interface
- ifconfig eth0 mtu 512 change the maximum transfer unit of eth0 interface

## Routing

• How to find the destination?



## Routing table

- Each node have a "list" about its (direct) connections and knows who is the "best informed" of them.
- This "list" is called **routing table**.
- The "best informed" node in a network called **default** gateway.
- If a node wants to send a packet to an other, it searches for the destination in its connection list. If it is in the list, the sender can know how to reach it, else it sends the packet to default gateway maybe it can forward the packet to the addressee.

### Routing table example



| Destination<br>Network ID | Gateway       | Netmask<br>(genmask) | Interface |
|---------------------------|---------------|----------------------|-----------|
| 192.168.1.0               | 0.0.0.0       | 255.255.255.0        | eth0      |
| 172.16.0.0                | 0.0.0.0       | 255.240.0.0          | eth1      |
| 0.0.0.0                   | 192.168.1.254 | 0.0.0.0              | eth0      |

## Routing process

How the routing works in case of sending to an given IP:

- *Step 1*: See the first row of routing table!
- *Step 2*: Make AND operation between the given destination IP and the netmask in the row!
- *Step 3*: If the result equal to Network ID in the row, send the packet on your interface written at the end of row! (If gateway given send to the gateway, else directly to destination on the link.)
- Step 4: Otherwise see the next row (if exists) and go to Step 2!

### Routing example

Sending a packet to 193.6.128.5. Via which interface?

| First row  | 193. 6.128. 5              |               |
|------------|----------------------------|---------------|
|            | <u>&amp; 255.255.255.0</u> |               |
|            | 193. 6.128. 0              | ≠ 192.168.1.0 |
| Second row | 193. 6.128. 5              |               |
|            | <u>&amp; 255.240. 0. 0</u> |               |
|            | 193. 0. 0. 0               | ≠ 172.16.0.0  |
| Third row  | 193. 6.128. 5              |               |
|            | <u>&amp; 0. 0. 0. 0</u>    |               |
|            | 0. 0. 0. 0                 | = 0.0.0.0     |

Send the packet to gateway 192.168.1.254 (this is the **next hop**) via the interface eth0 (192.168.1.100). 105

## Maintenance of routing tables

Static routing

• The routing tables are treated by the system administrator (root).

Dynamic routing

- Routers automatically change information between each other to update their routing tables.
- Routing protocols:
  - Distance vector routing: RIP, IGRP, BGP
  - Link-state routing: OSPF, IS-IS, etc.
- (Routed protocols: IP, ICMP, etc.)

## Problems of Dual Address systems

In Network and Data Link Layers two independent address systems (IP addresses and Ethernet addresses) are considered.

- For encapsulation of Data Link Layer (forming an Ethernet frame) the physical address (MAC address) belonging to the IP address has to be determined.
- In certain cases it could be necessary to determine the IP address by the help of Ethernet address.

### Network Address —> Physical Address

**ARP** (Address Resolution Protocol):

- Each node records physical addresses belonging to the network addresses in a table (ARP table).
- How get a new data (pair of addresses) into the table?
  - 1. ARP question:

Who knows the physical address of the network address X?

- 2. Each node of subnet receives and processes the frame of the question by a broadcast message.
- 3. If a node 'identifies itself' with network address X, sends an answer to the ARP question with own physical address.
#### Physical Address —> Network Address

**DHCP** (Dynamic Host Configuration Protocol):

- Allows assignment of IP address domain.
- In case of more DHCP servers, the handled address domains should not overlap (in default).
- Clients get the IP address (and other network setup) for a renewable time period.

#### Physical Address —> Network Address

DHCP scheme of functioning :

- 1. DHCP question: Who can give me an IP address?
- 2. Each node of subnet receives the frame of the question by a broadcast message.
- 3. A DHCP servers process the question: If there is a free IP address in the handled address domain, then send an answer to DHCP question with that IP address.
- 4. The client chooses one from the received DHCP answers, and sends a feedback of its choice to the corresponding DHCP server.
- 5. The DHCP server books the choice of address (the address became occupied), and confirms client on booking.

### Network setup

4 necessary properties to use network on a computer:

- IP address
- Netmask
- Gateway
- DNS server

They are given by the Internet Service Provider (ISP).

Either the user do their setup or use dynamic host configuration (if possible).

The user can use 'command-line' or GUI (Graphical User Interface) to do setup process.

#### route command

- route
  shows routing table
- route -n
  shows routing table in numeric format
- route add -net 192.168.1.0 netmask 255.255.255.0 dev eth0
   sets a row into routing table to 192.168.1.0/24
   network
- route add default gw 192.168.1.100 sets 192.168.1.100 as default gateway

## Other commands

- ping 193.6.128.5
  ICMP 'echo-request' message to destination
- ping -c 5 193.6.128.5
  sends 5 ICMP messages to destination
- ping -t 4 193.6.128.5
  sends ICMP message to destination with TTL=4
- netstat -r
  shows routing table
- traceroute 193.6.128.5
  Shows internal hops to the destination

# Other commands

- arp
  shows ARP table
- arp -s <IP address> <MAC address>
  Sets up a new entry of ARP table
- /etc/ethers file
  contains static ARP entries
- dhclient **DHCP client**

#### Transport layer

## Transport layer

Fourth layer of hybrid model (L4)

Reliable connection between softwares on two nodes. Protocols may connectionless or connection-oriented.

Topics

- Error detection/correction
- Order guarantee
- Identifying programs on a node
- etc.

Problem:

- IP address (and DNS name) identifies the node only.
- A node has more different connections, it executes more network applications.
- A program has to know which segment (data unit in L4) belongs to it

#### Solution: **port**

- It identifies network programs or services on a node.
- It is a 16bits long number in decimal form.
- Range: 0 65535

Range: 0 – 65535 (since it is 16bits long)

- Well-known ports: 0 1023
  Used by system processes that provide widely used types of network services
- Registred ports: 1024 49151
- Private ports: 49152 65535
  Used freely

Stored in files:

- linux: /etc/services
- windows: C:/WINDOWS/system32/drivers/etc/services

## Well-known ports

- 21: **FTP** (File Transfer Protocol) used for down/up loading files
- 22: **SSH** (Secure SHell) used for secure login to remote computer
- 25: **SMTP** (Simple Mail Transfer Protocol) used for e-mail routing to mail servers
- 53: DNS (Domain Name System)
  used for eg.: www.unideb.hu → 193.6.128.25
- 80: **HTTP** (HyperText Transfer Protocol) used by web browsers

## Well-known ports

- 110: POP3 (Post Office Protocol v3) used for downloading e-mails from servers
- 118: **SQL** (Structured Query Language) used for distributed database
- 143: **IMAP** (Internet Message Access Protocol) used for downloading e-mails from servers (newer)
- 443: **HTTPS** (HyperText Transfer Protocol over SSL) used by web browsers for secured sites
- 995: **POP3** (Post Office Protocol v3 over SSL) used for secured downloading e-mails from servers

# Transport layer protocols

**UDP**: User Datagram Protocol

- Connection free
- Non-reliable

**TCP**: Transmisson Control Protocol

- Connection based
- Reliable

# UDP

- The UDP (User Datagram Protocol) is the connection free transport protocol of the TCP/IP protocol set.
- Transmission of datagrams without any guarantee (without confirmation).
- Failure management is to higher level (applications) protocols.
- The UDP protocol is suitable applications which do not need to concatenate sequences of segments. Eg. DHCP, DNS .
- Short header, fast transmission.

- The TCP (Transmission Control Protocol) is the connection based transfer protocol of the TCP/IP protocol set. It provides a reliable (receipted) bit stream for applications.
- Before starting data transmission, the two nodes build up a TCP connection (Three-way handshake).
- The destination node receipts the segment(s).
- If a segment is missing, the TCP protocol ensures retransmission of the missing segment.
- Long header, slow transmission.

## Headers

UDP: Source port number Destination port number Checksum Length (byte) TCP: Source port number Destination port number No. of sequence (SEQ No.) No. of acknowledgement(ACK No.) R S F S Y I T N N U A P R C S Data Reserved Window size Offset н GK Checksum URG pointer Options Filling

# Use of TCP and UDP

TCP is used when the reliability is important

- We nees all bytes precisely even if the speed is slow
- Eg: downloading file, browsing web, reading email

UDP is used when the speed is important

- We need fast, continuous transmission even if some segments are lost.
- Eg: IP phoning (eg: Skype), watching live video

#### Super-server: inetd

- If all server programs (daemons) always listen to packet, it is not efficient (too much processes).
- Incoming packets first goes to inetd
- inetd decide which server program belongs to this packet (based on port number).
- inetd launches the demon, delivers the packet.



# inetd configuration

- /etc/protocols
- /etc/services

#### Contains services, port numbers, protocols

- ftp21/tcpssh22/tcpssh22/udptelnet23/tcpsmtp25/tcp
- /etc/inetd.conf

#### If a service request arrives, how to launch a daemon

| ftp    | stream | tcp6 | nowait | root | /usr/sbin/ftpd    | ftpd       |
|--------|--------|------|--------|------|-------------------|------------|
| telnet | stream | tcp6 | nowait | root | /usr/sbin/telnetd | telnetd -a |
| рорЗ   | stream | tcp  | nowait | root | /usr/sbin/pop3d   | pop3d      |

### Access control

*tcpd*: Access control for internet services Operation

- Request arrives
- The inetd launches tcpd, not the service daemon
- The *tcpd* logs the request
- It checks the rights

by pattern-based access control config files

• Either starts the requested daemon or don't respond

### Access control

- Configuration files /etc/hosts.allow /etc/hosts.deny
- Control rules
  - Receive a demand
  - Access will be granted when a (daemon, client)
    pair matches an entry in allow file
  - Otherwise, access will be denied when a (daemon, client) pair matches an entry in deny file
  - Else access will be granted

### Access control

- Configuration file structure
  <daemon-list> : <client-list> [: <command>]
- List entries are separated by coma (,)
- Daemon: service daemon name or port number
- Client: IP address or domain name
- We can use *wildcards* ALL, LOCAL, UNKNOWN, PARANOID, EXCEPT, \*
- Example

80:192.168.1.23:DENY

From the IP don't allow web connection request

# Useful commands

- telnet
  Login to a given port of a server
  telnet 193.6.128.25 80
- netstat
  Network statistics
  netstat -i
  netstat -s
  netstat -n
- nmap

Port scanning, OS detecting nmap 193.6.128.25 nmap -v -0 193.6.128.190

# Useful commands

- netcat
  - start a server waiting for client to connect on port 4321 nc -1 -p 4321
  - connect to a given port of a server
  - nc localhost 4321
  - find out a given port is open on a given server

opening backdoor

nc -l -p 3000 -e /bin/bash

• • •

#### **Application layer**

# Application layer

Fifth layer of hybrid model (L5)

Interface between applications and users. Ensures the communication required by the users. Displaying data and images to the user in a human-recognizable format.

Topics

- Domain names (DNS)
- World Wide Web (www, HTTP, HTTPS, HTML)
- E-mail (SMPT, POP3, IMAP)
- File transfer (FTP, BitTorrent)
- etc.

## Name-IP address assignment

Problem:

- Users likes 'text-like' names instead of numbers.
- Computers identify each other by IP addresses (which are numbers).

Solution:

- Mapping IP addresses to names
- Domain Name System (DNS)

# **Components of DNS**

Space of domain names and resource records

• The computer names and information about them.

#### Nameservers

• Stores information about names belonging to a zone.

#### **Resolver** applications

• Gives IP address to given names.

### **Domain Namespace**

Tree-like graph, where each node is a set of resource (eg. computer).

Each node has a label.

- No equal labes with same parent node.
- Max length of labels is 63 characters.
- Lowercase and uppercase letters are the same.

Absolute domain name:

- Nodes can be identifies by the series of labels from the node to the root, separated by dot.
- Eg.: irh.inf.unideb.hu.

#### **Domain Namespace**



## **Resource Record**

A Domain Name specify a node of the graph.

A node related to resource set.

Information resources are stored in Resource Records.

Zone file contains RRs.

Examples of Resource Records :

- What is the IP address of a computer?
- Which computer is a name server?
- Which computer is a mail-exchanger?
- etc.

### Reource Record

#### Structure:

[domain] [ttl] [class] type data

Types:

- SOA: authoritative information about the domain
- NS: authoritative name server of the domain
- A: IPv4 address of the domain
- AAAA : IPv6 address of the domain
- MX: Mail Transfer Agent (MTA) of the domain
- CNAME: alias name of the domain
- PTR: pointer to reverse DNS lookup

### Example zone file

| @                   | IN         | SOA                | dns1.exa                         | mple.org | 5.                  | root.exa          | mple.org. ( |  |  |  |
|---------------------|------------|--------------------|----------------------------------|----------|---------------------|-------------------|-------------|--|--|--|
|                     | 2009100501 |                    | ; serial <2009-Okt-05, update 1> |          |                     |                   |             |  |  |  |
| 86400               |            | ; refresh <1 day>  |                                  |          |                     |                   |             |  |  |  |
| 3600                |            | ; retry <1 hour>   |                                  |          |                     |                   |             |  |  |  |
| 1209600             |            | ; expire <2 weeks> |                                  |          |                     |                   |             |  |  |  |
|                     | 86400)     |                    | ; negative caching <1 day>       |          |                     |                   |             |  |  |  |
| example.org.        |            | 86400              | IN                               | NS       | dns1.example.org.   |                   |             |  |  |  |
| example.org.        |            | 86400              | IN                               | NS       | dns2.example.org.   |                   |             |  |  |  |
| example.org.        |            | 86400              | IN                               | MX       | 10                  | mail.example.org. |             |  |  |  |
| dns1.example.org.   |            | 5.                 | IN                               | А        | 192.168.0.1         |                   |             |  |  |  |
| dns2.example.org.   |            |                    | IN                               | А        | 192.168.0.2         |                   |             |  |  |  |
| mail.example.org.   |            |                    | IN                               | AAAA     | 2001:503:ba3e::2:30 |                   |             |  |  |  |
| server.example.org. |            |                    | IN                               | А        | 192.168.0.4         |                   |             |  |  |  |
| host.example.org.   |            |                    | IN                               | А        | 192.168.0.101       |                   |             |  |  |  |
| e2.example.org.     |            |                    | IN                               | А        | 192.168.0.102       |                   |             |  |  |  |
| ftp.example.org.    |            |                    | IN                               | CNAME    | server.example.org. |                   |             |  |  |  |

#### Name server

A server program on a computer.

Relates to zones.

- Zone is an administrative unit of namespace, usually belongs to organizations.
- Name servers store resource record of the zone (this is the zone file)
- Usually each zone has 2 name servers (a primary and a secondary name server).

They give reply to request about  $IP \leftrightarrow$  name mapping.

## Resolver

- A program, which means interface between user applications and name servers.
- If a program needs IP address but domain name is given resolver do the address mapping.
- It sends a request to name server and gives the reply based on resource records to the user application.

Example of results: www.unideb.hu  $\longrightarrow$  193.6.128.25

# nslookup

nslookup: command-line tool for querying DNS

- Who is the name server of unideb.hu? nslookup -type=NS unideb.hu
- What is the canonical name of www.unideb.hu? nslookup -type=CNAME www.unideb.hu
- What is the IP address of www.unideb.hu? nslookup -type=A www.unideb.hu
- Who is the mail exchanger of unideb.hu? nslookup -type=MX unideb.hu
- What is the name of host where IP is 193.6.128.5? nslookup -type=PTR 5.128.6.193.in-addr.arpa
#### Configuration to DNS

To use name 'MyPC' instead of 192.168.0.123:

• Edit: /etc/hosts 192.168.0.123 MyPC

To use DNS name resolver:

- Edit:/etc/nsswitch.conf hosts: dns files
- Edit:/etc/resolv.conf domain mydomain.com nameserver 193.6.128.5

### World Wide Web

The most widely used and most quickly spreading part of Internet.

Concept: Tim Berners-Lee (CERN, 1989)

We can navigate among **websites** by hyperlink.

Based on:

- URL (Uniform Resource Locator)
- HTML (HyperText Markup Language)
- HTTP (HyperText Transfer Protocol)

# URL

Known as **web address**.

All webpage can be refered by URL.

Its parts:

- Scheme (protocol)
- Domain name or IP address
- Port number
- Path and name of file on server
- Query string
- Fragment identifier (bookmark)

## **URL** examples

- http://www.example.org:80/index.html?lang=eng#top
- http://www.unideb.hu
- ftp://152.66.115.246/.banner
- http://neptun.unideb.hu/?page=studhun
- https://hu-hu.facebook.com/login.php
- http://en.wikipedia.org/wiki/HTML#History
- mailto:varga.imre@inf.unideb.hu

Legend:

- Scheme
- Domain name
- Port

- Path
- Query
- Fragment ID

# HTML

A desription language to create websites.

Standardized by W3C (World Wide Web Consortium).

Websites are text-based files (contains only characters) which is represented (in visual form) by **browser**s.

Popular browsers:

- Internet Explorer
- Mozilla Firefox
- Google Chrome
- Netscape Navigator

- Opera
- Safari
- Konqueror
- etc.

#### Example HTML file

```
<html>
  <head>
     <title>
       Cool Page
     </title>
  </head>
  <body>
                                                                                       - 0 X
                                                 Cool Page - Windows Internet Explorer
     <a href="http://www.unideb.hu">
                                                          🝘 C:\Users\Dr. Varga 🗧 🍫 🗙 🛛 🔎 Search Results
                                                                                               0 -
         University of Debrecen
                                                                                                >>
     \langle a \rangle
                                                  Cool Page
                                                                         is a good place. </br>
                                                  University of Debrecen is a good place.
    <img src="UD.jpg">
  </body>
</html>
                                                                                   🖓 💌 🔍 135% 💌
                                                 🜉 Számítógép | Védett mód: Kikapcsolva
```

# Hyperlink

- A (hyper)link is a reference to data that the reader can directly follow (by a click).
- A hyperlink points to
- a whole website or an element within a page,
- different media (picture, audio, video).

Hypermedia is a media with hyperlink.

• Media can be text, picture or video.

Hyperlink based on URL.

Example:

<a href="http://www.google.hu"> Google </a>

### HTTP

HTTP is a request-response (client-server) information transmission protocol of application layer.

Clinet: web browser which visualize web pages for user.

Server: computer (webserver) which stores webpages.

Usually it uses TCP connection (in Transport layer)

Safer solution: HTTPS (HTTP Secure) HTTP over SSL/TLS protocol

#### Browsing web

- 1. The user gives the URL in the address bar of browser.
- 2. The web browser determines the protocol from URL (eg. http://...).
- 3. It determines the (IP) address of web server from domain name in URL via DNS (eg. www.unideb.hu).
- 4. It builds up a session with web server (via TCP usually using port 80).
- 5. A request sent to HTTP server giving the name of the folder (and the HTML file) containing the web page (eg. /index.html).

#### Browsing web

- 6. The server responds the request by sending to client the text or other medias (pictures, sounds, clips, etc.) defined in the HTML page.
- 7. The browser (client) composes files, displays the web page to user, and closes the session.



#### **HTTP Status Codes**

- 1xx: Request received, continuing process.
- 2xx: Indicates the action requested by the client was received, accepted and processed successfully.
- 3xx: The client must take additional action to complete the request.
- 4xx: In cases when the client seems to have erred.
- 5xx: The server failed to fulfill a valid request.



#### Browsing in terminal



# E-mail

Electronic mail (E-mail, email, eMail)

A method of exchanging digital messages from an author to one or more recipients.

E-mail address:

local\_part@domain\_part

- user@provider
- E-mail contains 2 sections
- Header:

It has several fields (sender, addresse, subject, ...)

• Body:

The 'message'.

### E-mail header fields

- From: Sender's e-mail address
- To:

The e-mail address(es) of the recipient(s)

- Subject: Topic of the message
- Date:

The local time and date when the message was written

• Message-ID:

Automatically generated to identify the message

## E-mail header fields

• Cc:

E-mail addresses who will get copies of message.

• Bcc:

E-mail addresses of recipients who won't see eachother in the header of their message.

- Reply-To: Address that should be used to reply to the message.
- Content-Type: Information about how the message is to be displayed, usually a MIME type.
- and much more...

### Body of e-mail

Originally it contains only characters (text).

- Modern graphic email clients allow the use of either plain text or HTML.
- Multipurpose Internet Mail Extensions (**MIME**) is an Internet standard that extends the format of email to support:
- Text in character sets other than ASCII (eg.: áíűŁäšş)
- Non-text attachments (jpg, pdf, mp3, avi)
- Message bodies with multiple parts

#### Mail servers and clients

- Programs used by users for managing e-mails are called Mail User Agents (MUA).
- MUA submit the e-mail to Mail Submission Agent (MSA) who will forward it.
- Messages are exchanged between hosts using the Simple Mail Transfer Protocol (SMTP) with software programs called Mail Transfer Agents (MTA).
- Messages are delivered to a mail store by programs called Mail Delivery Agents (MDA). Users can retrieve their messages from servers using standard protocols such as POP3 or IMAP.

### Process of e-mailing

- 1. Sender composes the message and hits "Send" button.
- 2. Senders MUA formats the e-mail and sends it to MSA by SMTP.
- 3. MSA forwards the e-mail to recipients MDA (and perhaps to some internal MTA) by SMTP.
- 4. The MDA delivers e-mail to the recipients mailbox.
- Recipient presses the "get mail" button in own MUA, which download the e-mail from MDA by POP3 or IMAP.

#### **Process of e-mailing** MSA MDA MTA MTA **SMTP SMTP** SMTP Internet SMTP POP3 MUA MU sender recipient user user

## FTP

- File Transfer Protocol
- Details in RFC 959
- Client-server architecture
- Down/upload files from/to servers
- 2 channels (Control & Data)
- FTP server codes (eg. 220 Service ready for new user.)
- Anonymous FTP
- Browsers support it
- Much popular solution is the peer-to-peer BitTorrent

Download the rfc0959.txt file which is in documents/rfc folder of ftp.bme.hu server!

- In browser: <u>ftp://ftp.bme.hu/documents/rfc/rfc0959.txt</u>
- In terminal: linux\$> ftp ftp.bme.hu Name (ftp.bme.hu:user): anonymous Password: ftp> passive ftp> cd documents/rfc ftp> get rfc0959.txt ftp> quit

### Other parts of Application layer

- Remote login (telnet, ssh)
- Down/uploading files (scp, FTP, bittorent)
- Voice over IP (VoIP) (Skype, MSN)
- IPTV (UPC)
- Distributed databeses
- Online games
- etc.

#### **Connect to HTTP server**

linux\$> telnet irh.inf.unideb.hu 80
Trying 193.6.135.80...
Connected to erlang.inf.unideb.hu.
Escape character is '^]'.
GET /index.htm HTTP/1.1
Host: irh.inf.unideb.hu

HTTP/1.1 200 OK Date: Wed, 12 Feb 2014 11:26:45 GMT Server: Apache/2.2.17 (Fedora) Last-Modified: Sun, 20 Jan 2013 11:22:30 GMT ETag: "1440c6d-135d-4d3b68f634980" Accept-Ranges: bytes Content-Length: 4957 Connection: close Content-Type: text/html; charset=iso-8859-1

<html><head>

<title>DE IK IRH</title> ...

#### Connect to POP3 server

#### linux\$> telnet freemail.hu 110

Trying 195.228.245.1... Connected to freemail.hu. Escape character is '^]'.

+OK <6245.1392286988@freemail.hu>

#### USER proglabor

+OK

#### PASS proglabor

+OK

#### LIST

+OK

1 2442

2 12658

#### RETR 1

+OK

Message-ID: <df14a185b13857ef027324fdb8561cd.squirrel@mail.unideb.hu>
Subject: Important mail to you
From: "Dr. Varga Imre" <varga.imre@unideb.hu>
To: proglabor@freemail.hu

Dear Friend, ...

#### Connect to SMTP server

linux\$> telnet mail.server.com 25
Trying 193.6.138.45...
Connected to delfin.unideb.hu.
Escape character is '^]'.
220 delfin.unideb.hu ESMTP Postfix (Ubuntu)
helo mail
250 delfin.unideb.hu
mail from: nobody@nowhere.com
250 2.1.0 Ok
rcpt to: varga.imre@unideb.hu
250 2.1.0 Ok
data
354 Enter mail, end with "." on a line by itself
Subject: test

This is a test e-mail.

250 2.0.0 Message accepted for delivery Connection closed by foreign host.

#### Connect to FTP server

| Terminal 1 (Control channel)        | <u>Terminal 2 (Data channel)</u>  |
|-------------------------------------|-----------------------------------|
| linux\$> telnet ftp.bme.hu 21       |                                   |
| Trying 2001:738:2001:2001::clca     |                                   |
| Connected to ftp.bme.hu.            |                                   |
| Escape character is '^]'.           |                                   |
| 220 Welcome to Pure-FTPd            |                                   |
| USER anonymous                      |                                   |
| 331- Welcome to ftp.bme.hu FTP serv | ice.                              |
| PASS                                |                                   |
| 230 Any password will work          |                                   |
| EPSV                                |                                   |
| 229 Extended Passive mode OK (   62 | 282 )                             |
| RETR ReadMe.txt                     | linux\$> telnet ftp.bme.hu 62282  |
| 150 Accepted data connection        | Trying 2001:738:2001:2001::clca   |
| 226-File successfully transferred   | Connected to ftp.bme.hu.          |
| QUIT                                | Escape character is '^]'.         |
| 221 Logout.                         | -                                 |
| Connection closed by foreign host.  | This is the content of ReadMe.txt |
|                                     | Connection closed by foreign host |

### Network setup & commands on Windows

#### Network setup

4 necessary properties to use network on a computer:

- IP address
- Netmask
- Gateway
- DNS server

They are given by the Internet Service Provider (ISP).

Either the user do their setup or use DHCP (if possible).

The user can use 'command-line' or GUI (Graphical User Interface) to do setup process.

### Network setup by Control Panel\*

- 1. Go to Start Menu
- 2. 'Control Panel'
- 3. 'View network status and tasks' in 'Network and Internet' block
- 4. 'Change adapter settings'
- 5. Right mouse click on the adapter, choose 'Properties'
- 6. Choose 'Internet Protocol Version 4 (TCP/IPv4)' and push button 'Properties'
- 7. Choose automatic configuration (DHCP) or give the four datas.

#### Useful network commands on Windows

- ipconfig: Shows the setups of network adapters.
- ipconfig /all: Shows the detailed setups of network adapters.
- route print: Shows the routing table of the computer.
- ping <node>: Check connection to other computers.
- arp -a: Shows ARP table.
- tracert <node>: Show the hops to a computer.
- netstat -s: Shows network statistics (IP, TCP, UDP).

#### Wireshark

#### • Free and open-source packet analyzer

| 🖉 (Untitle                                                                                                                                                                                                                                                                                      | ed) - Wireshark                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                | _IO ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ele Edit                                                                                                                                                                                                                                                                                        | ⊻jew ⊆o ⊆a                                                                                                                 | pture Analyze Statistics                                                                                                                                                                                      | Help                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 要家                                                                                                                                                                                                                                                                                              | 奥敦家                                                                                                                        | ⊨ <b>≈ ≈</b> ₽ ₽                                                                                                                                                                                              | S. 4 4 4 7 2                                                                                                                                                                                       |                                                                                                | . Q. Q. []   <b>#</b> ⊠ <mark>®</mark> ≱   <mark>B</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Ejiter: Dipression Glear Apply                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| No. +                                                                                                                                                                                                                                                                                           | Time                                                                                                                       | Source                                                                                                                                                                                                        | Destination                                                                                                                                                                                        | Protocol                                                                                       | Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1                                                                                                                                                                                                                                                                                               | 5 0.180825                                                                                                                 | 10.66.99.232                                                                                                                                                                                                  | 10.66.184.116                                                                                                                                                                                      | HTTP                                                                                           | GET http://d2.zedo.com/jsc/d2/fo.js HTTP/1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                 | 7 0.181250                                                                                                                 | 10.66.184.116                                                                                                                                                                                                 | 10.66.99.232                                                                                                                                                                                       | TCP                                                                                            | http > nut [ACK] seq=928 Ack=612 win=65535 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1                                                                                                                                                                                                                                                                                               | 8 0.356358                                                                                                                 | 10.66.99.211                                                                                                                                                                                                  | 10.66.99.255                                                                                                                                                                                       | NBNS                                                                                           | Name query NB DICT.CN<00>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                 | 9 0.407504                                                                                                                 | 10.66.99.83                                                                                                                                                                                                   | 10.66.99.255                                                                                                                                                                                       | NBNS                                                                                           | Registration NB BLRKECL10655<17>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 10                                                                                                                                                                                                                                                                                              | 0.439475                                                                                                                   | 10.66.184.116                                                                                                                                                                                                 | 10.66.99.232                                                                                                                                                                                       | HTTP                                                                                           | HTTP/1.1 304 Not Modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1                                                                                                                                                                                                                                                                                               | 0.534124                                                                                                                   | 10.66.00.222                                                                                                                                                                                                  | 10.66.184.110                                                                                                                                                                                      | ICP                                                                                            | [ICP segment of a reassembled PDU]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                 | 2 0 524611                                                                                                                 | 10 66 194 116                                                                                                                                                                                                 | 10.66.00.232                                                                                                                                                                                       | TCP                                                                                            | btto > put [ACV] Spo-1200 Ack-1104 win-65525 (ap-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1/                                                                                                                                                                                                                                                                                              | 1 0 702496                                                                                                                 | 00000000 0014224                                                                                                                                                                                              | 44159 00000000 fffffffff                                                                                                                                                                           | TE TRY SAD                                                                                     | Nearest Auery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1                                                                                                                                                                                                                                                                                               | 5 1.106359                                                                                                                 | 10.66.99.211                                                                                                                                                                                                  | 10.66.99.255                                                                                                                                                                                       | NBNS                                                                                           | Name query NB DICT CN<005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 10                                                                                                                                                                                                                                                                                              | 5 1.158562                                                                                                                 | 10,66,99,83                                                                                                                                                                                                   | 10,66,99,255                                                                                                                                                                                       | NBNS                                                                                           | Registration NB_BLRKECL10655<1f>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1                                                                                                                                                                                                                                                                                               | 7 1.262475                                                                                                                 | 10,66,184,116                                                                                                                                                                                                 | 10.66.99.232                                                                                                                                                                                       | TCP                                                                                            | [TCP segment of a reassembled PDU]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 18                                                                                                                                                                                                                                                                                              | 8 1.262521                                                                                                                 | 10.66.184.116                                                                                                                                                                                                 | 10.66.99.232                                                                                                                                                                                       | TCP                                                                                            | TCP segment of a reassembled PDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 19                                                                                                                                                                                                                                                                                              | 9 1.262541                                                                                                                 | 10,66,99,232                                                                                                                                                                                                  | 10.66.184.116                                                                                                                                                                                      | TCP                                                                                            | nut > http [ACK] Seg=1194 Ack=2381 Win=65535 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                           | 140020000C                                                                                                                 | 40.00.904.442                                                                                                                                                                                                 | 10.00.000                                                                                                                                                                                          |                                                                                                | President of a second of second and second sec |  |
| <pre>Sequence number: 1845 (relative sequence number) [Next sequence number: 2381 (relative sequence number)] Acknowledgement number: 1194 (relative ack number) Header length: 20 bytes (Flags: 0x10 (ACK) window size: 65535 (Checksum: 0x0ba5 [correct] [Reassembled PDU in frame: 21]</pre> |                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| тсі                                                                                                                                                                                                                                                                                             | P segment da                                                                                                               | ta (536 bytes)                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0000<br>0010<br>0020<br>0030<br>0040<br>0050<br>0050<br>0060<br>0060<br>0080                                                                                                                                                                                                                    | 0 16 e6 93<br>2 40 2e 35<br>3 e8 00 55<br>5 ff 0b 45<br>4 54 3b 64<br>3 6f 6d 3b<br>a 20 43 50<br>2 20 43 55<br>9 50 53 54 | 56 80 00 03 fe a4<br>50 00 7a 06 df a2<br>50 a5 da fb 90 ad<br>50 00 30 35 3a 30<br>56 6d 61 69 6e 3d<br>57 61 74 68 3d 2f<br>51 22 44 ff 49 20<br>52 61 20 41 44 4d<br>51 20 4f 5 52 20<br>61 20 4f 55 52 20 | bc 00 08 00 45 00<br>0a 42 b8 74 0a 42 .e.5<br>65 f7 13 ea 50 10 c<br>20 3a 30 30 20 47<br><br>20 7a 65 64 6f 2e MTro<br>3b 0d 0a 50 33 50 com;<br>61 20 44 45 56 61 R CL<br>42 55 53 20 55 4e P50 | m.<br>28.1<br>05:00:00<br>(omaf n=.2e0<br>path =/:F<br>= NO I OSP<br>Ra A DMA DS<br>a OU R BUS | E.<br>.e<br>P.<br>0 G<br>do.<br>3P<br>CO<br>EVa<br>UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Frame (frame                                                                                                                                                                                                                                                                                    | me), 590 bytes                                                                                                             | Parket                                                                                                                                                                                                        | : 99 Displayed: 99 Marked: 0 Dronned: 1                                                                                                                                                            |                                                                                                | Profile: Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| in anice for di                                                                                                                                                                                                                                                                                 | 1.010 0100                                                                                                                 | Tracket                                                                                                                                                                                                       | r                                                                                                                                                                                                  | Same and                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Start                                                                                                                                                                                                                                                                                           | 10 🕑 😕 👋                                                                                                                   | 🕑 Gmail - Microsoft O 🏼 🄏                                                                                                                                                                                     | Sparsh - Experienc   🔤 Command F                                                                                                                                                                   | rompt 🛛 🖉 T                                                                                    | 'ech Bytes !! > Blo    📶 (Untitled) - Wire harsh 🦥 🕊 🥝 💱 🚮 🌇 2:33 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

175

#### References & further readings

- Andrew S. Tanenbaum: *Computer Networks*, Prentice-Hall, 2003
- Wikipedia, http://en.wikipedia.org
- Béla Almási: Számítógép hálózatok, University of Debrecen