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Abstract. In this paper we investigate a single-server retrial queueing system
with collision of the customer and an unreliable server. If a customer finds the
server idle, he enters into service immediately. The service times are indepen-
dent exponentially distributed random variables. During the service time the
source cannot generate a new primary call. Otherwise, if the server is busy, an
arriving (primary or repeated) customer involves into collision with customer
under service and they both moves into the orbit. The retrial time of requests
are exponentially distributed. We assume that the server is unreliable and could
be break down. When the server is interrupted, the call being served just before
server interruption goes to the orbit. Our interest is to give the main steady-state
performance measures of the system computed by the help of the MOSEL tool.
Several Figures illustrate the effect of input parameters on the mean response
time.

Keywords: closed queuing system, finite-source queuing system, retrial queue,
collision, unreliable server.

1. Introduction

The performance analysis of computing and communicating systems
has always been an important subject of computer science. The goal of
this analysis is to make predictions about the quantitative behavior of a
system under varying conditions, e.g., the expected response time of a
server under varying numbers of service requests, the average utilization
of a communication channel under varying numbers of communication re-
quests, and so on.

Retrial queueing systems (RQS) are characterized by the feature that
arriving customers finding all the servers busy upon arrival are obliged
to leave the service area and repeat their requests for service after some
random time [1], [2], [3]. This feature plays an important role in modeling
many problems in telephone switching systems, telecommunication net-
works, computer networks, call centers, etc. The main difference between
retrial queues and classic queues is that the classic queueing theory does
not take the actually existed retrial customers into account. It assumes
these retrial customers are either lost due to congestion or delayed in the
waiting line (if any).
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Since in practice some components of the systems are subject to ran-
dom breakdowns it is of basic importance to study reliability of retrial
queues with server breakdowns and repairs. Finite-source retrial queues
with unreliable server have been investigated in several recent papers, for
example, [4], [3], [6], |7

Many times when different data is transmitted and there are only a
limited number of available free channels may cause a conflict. This may
in many cases result in collisions that lead to data loss. Recent results on
retrial queues with collisions can be found in, for example [8], [9].

The aim of the present paper is to investigate a single-server retrial
queueing system with collision of the customer and an unreliable server.

Because of the fact, that the state space of the describing Markov chain
is very large, it is rather difficult to calculate the system measures in the
traditional way of writing down and solving the underlying steady-state
equations. To simplify this procedure we used the software tool MOSEL
(Modeling, Specification and Evaluation Language) to formulate the model
and to obtain the performance measures. The organization of the paper
is as follows. Section 2 contains the corresponding queueing model with
components. In Section 3, we present some numerical examples.

2. System model

Let us consider (Figure 1) a closed re-
trial queuing system of type M/M/1//N
with collision of the customers and an un-
reliable server. The number of sources is
N and each of them can generate a pri-
mary request with rate A\/N. If a customer
finds the server idle, he enters into service
immediately. The service times are inde-
pendent exponentially distributed random

Figure 1. System variables with parameter p. During the
service time the source cannot generate a
new primary call. Otherwise, if the server
is busy, an arriving (primary or repeated)

customer involves into collision with customer under service and they both
moves into the orbit. The retrial time of requests are exponentially distri-
bution with rate o/N. We assume that the server is unreliable and could
be break down. The lifetime is supposed to be exponentially distributed
with failure rate ~yq if the server is idle and with rate ~y; if it is busy. When
the server breaks down, it is immediately sent for repair and the recovery
time is assumed to be exponentially distributed with rate 5. All random
variables involved in the model construction are assumed to be indepen-
dent of each other.
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Table 1
Numerical values of model parameters

Case N A/N “Yo Y1 v2 | o/N
Figure 2 case 1 | 100 0.01 0.01 | 0.01 1 0.1
Figure 2 case 2 | 100 0.01 0.1 0.1 1 0.1
Figure 2 case 3 | 100 0.01 1 1 1 0.1

Figure 3 100 | 0.03-81 | 0.01 | 0.01 | 1 0.1
Figure 4 100 | 0.03-8.1 | 0.1 0.1 1 0.1

3. Numerical results

0.08 —e—Case 1
—e—Case2

Case 3

Pli)

Figure 2. Steady-state distributions

The Table 1 shows the input parameters of the investigated Figures.

Figure 2 shows the steady-state distribution of the three investigated
cases. In this figure we can see also the effect of the breakdown of the
Server. We can see that the mean number of customers increases as the
breakdown intensity are getting larger. From the shape of the curves it is
clearly visible that the steady-state distribution of the cases are normally
distributed.

Figure 3 and 4 shows the mean response time as a function of the
customer generation rate. As we see the mean response time will be greater
as we increase the generation rate, but after after A\/N is greater than 1.5
the mean response time starts to decrease.

229



209.0

208.5 _a-u-ug

o —

Response Time
o
[=1
S
@
— |

207.0

206.5

206.0 ———T——T T T T T T T T T T T T T T T I T T T T T T T
Tk Mo dmnhadmnhoadmnhadmnthadmntaadmen oo
i e e i i e e e e B e e i Bt et B B B B

AN
Figure 3. vs A/N, 70 =1 = 0.01
228.5

A

Response Time
o ~
I N
I N
o w

—

226.5

226.0

Figure 4. vs A/N, 0 =71 =0.1

4. Conclusions

In this paper we investigate a single-server retrial queueing system with
collision of the customer and an unreliable server. We the MOSEL tool to
calculate the steady state probabilities and to get the main performance
measures.
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