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Abstract. In this paper a special system with two-way communica-
tion is modelled by a finite and an infinite sources queueing system
with retrial. The system is unreliable, the server may subject to ran-
dom breakdowns. Customers from the finite source are the first order or
regular customers, while the customers from the infinite source are the
second order or the invited customers. The novelty of this paper is to
investigate and model this unreliable system with different idle and busy
breakdown intensity and different service rates for first and second order
customers. In case of a busy server for first order customers, they can
retry their requests. In case of an idle server, the second order customers
are called for service. The effect of the breakdown and repair intensi-
ties are also investigated. The system balance equations are formulated,
and the steady state probabilities can be obtained. Here the MOSEL-2
tool is used for these calculations. By the help of these probabilities the
common performance measures are calculated and displayed.

Keywords: Retrial queues · Two-way communication · Unreliable
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1 Introduction

Queueing theory has been investigated since decades for modeling of various
problems of computer science, telecommunication systems, etc. As the com-
plexity of the considered systems has been increased rapidly, developing new
approaches of queueing models were necessary. Mainly the telephone switching
centers motivated a new model. It was the retrial queueing systems. In case of
busy lines or operators, the incoming call is not lost, but it is redirected to a
virtual waiting facility, to the orbit, and it can retry the call again. These types
of models were investigated by Falin, Templeton, Artalejo and more authors
[3,4,10,13,14,21]. Real-life situations require, that in the models the customers
generate their calls or request from a finite number of population. These demands
lead to study the finite source models [3,12]. Furthermore, the considered real-
life systems are unfortunately unreliable, that is the server or other parts of the
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systems can lose their efficiency or may breakdown. These types of unreliable
systems were investigated e.g. in [9,22,23,25].

An other new general model was developed for not to lose the customers,
who are not able or not disposed to wait the service (in the queue or in the
orbit). Demands based on real applications were the motivation for developing
the two-way communication systems. The key assumption is, that the idle server
makes an outgoing call for the customers. One of the first paper on the retrial
queueing system with two-way communication was presented by Falin [11]. So
far several authors have investigated this type of models [7,8,15–17,19,20].

In business and economic application fields (e.g. trade and IT companies)
where the agent can promote their new services, products, discounts, etc. it is
very important to increase the performance and the utilization of the core facility
(server) of the system. See, e.g. in [1,2,6,14,18,24].

This paper deals with a special case of searching for the customers, and in the
background an unreliable server with breakdowns and repairs is supposed. Two
types of sources are considered. The organization has a finite number of goodwill
customers. They are the first order customers, making primary calls towards the
organization (server). These clients are served according to the common retrial
queueing discipline. The idle periods of the server is utilized for making outgo-
ing calls towards the customers in the second, infinite source. The clients in this
infinite source (second order customers) will contact the organization with some
special interest. In case of a busy server (meanwhile another regular customer
arrived), this special second order customer is treated as a non-preemptive pri-
ority client. In this model there is no distinction made between the service times
for the two types of calls. The server is non-reliable, it is subject to random
breakdowns. Different cases for busy time breakdown and repair is considered.
The remaining parts of this work contain the followings. In Sect. 2 the model
definition, the underlying Markovian process with 2 dimensions and the applied
parameters are described. In Sect. 3 the steady-state probabilities are considered,
and some performance measures (utilization, response times, etc.) are provided
by the help of MOSEL-2 tool. At the end of the paper the results are summarized
in a Conclusion.

2 Description of the Model

The considered system is modelled by a finite and infinite source retrial queueing
system with a single server. The functionality of the model is displayed on Fig. 1.

The model has two sources. The first one is finite, the number of customers is
N . They are the first order customers. These customers generate a job towards
the server with an exponentially distributed inter-request time. The generation
rate of a single first order customer is λ1. If the server is idle, the service starts
immediately. After the service, the job goes back to the source. The service time
is again exponentially distributed with parameter μ1. When the server is busy,
the job is transferred to the orbit. The maximum size of the orbit is N . From
the orbit the jobs after a random (exponential, with parameter ν) time keep
retrying their request to the server until they are served.
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Fig. 1. The system model

The system has an infinite number of sources, as well. They are the second
order customers. The idle server makes a call towards this infinite source, and
the jobs in the source generate a request. The distribution of the inter-generation
times are exponential, with parameter λ2. Here λ2 is the generation rate from
the infinite source. In case, when the server is idle at the time of arrival of a
second order customer, the service starts immediately. The service times are
exponentially distributed with parameter of μ2. When a second order customer
finds the server busy, several working modes can be considered.

– The second order job is transferred back to the infinite source,
– The second order job takes place in a priority buffer. When the server becomes

idle, the service of this job will start.

In this model the single server is an unreliable server, it may subject to
breakdown. When the server is up, it will breakdown after a random time with
exponentially distribution. The breakdown intensities are γ0 for the idle server
and γ1 for the busy server. In case of a breakdown, a repair process starts
immediately. The repair time is exponentially distributed with parameter γ2.
When a first order customer finds the server down, it will be transferred to the
orbit. A second order customer also may arrive. The idle server makes a call for
the customers, and during the request generation time (with parameter λ2) a
breakdown might occur. In this situation different cases can be investigated.

– The second order job is transferred back to the infinite source,
– The second order job takes place in a priority buffer. When the server becomes

up, the service of this job will start.

The server may breakdown in a busy state, as well. A first order or a second
order customer is under service at the time of breakdown. The first order cus-
tomers can be transferred to the orbit or to the source, or the jobs may remain at
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the server. The service will continue after the repair. The second order customers
also may remain at the server or may sent back to the infinite source.

Let us denote O(t) and S(t) the number of requests in the orbit and the state
of the server at a given time point of t.

Let us define the state of the server by S(t), that is

S(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, when the server is idle
1, when the server is busy

with a first order customer
2, when the server is busy

with a second order customer
3, when the server is down.

It is easy to see, that the maximum size of the orbit is N . From here, the state
space representation of the Markovian-process (S(t), O(t)) can be described as a
set of {0, 1, 2, 3}× {0, 1, 2, ..., N} elements. Although, the system has an infinite
source, the maximum number of the customers in the system is (N + 1) (N in
the orbit and one second order customer under service), there is no stability
problems regarding the system. The state space is finite.

All of the times, time intervals considered in the model, are exponentially
distributed and totally independent from each other.

Let us consider the non-buffered model, when a second order customer under
service is sent back to the source in case of breakdown. For this case the system
balance equations for the steady-state system probabilities can be formulated as
follows:

pi,j = lim
t→∞ P (S(t) = i, O(t) = j),

i = 0, 1, 2, 3 and j = 0, 1, ..N

[(N − j)λ1 + λ2 + jν + γ0] p0,j = μ1p1,j + μ2p2,j + γ2p3,j

[(N − j − 1)λ1 + μ1 + γ1] p1,j
= (N − j)λ1p0,j + (j + 1)νp0,j+1

[(N − j)λ1 + μ2 + γ1] p2,j = λ2p0,j

[(N − j)λ1 + γ2] p3,j = γ0p0,j + γ1p1,j−1 + γ1p2,j

with p1,−1 = p0,N+1 = 0.
Similarly, consider the case in the non-buffered model, when a first order

customer under service remains at the server in case of breakdown. The second
order customer is sent back to the source. Because the exponentially distributed
service time, the restarted or the continued services have the same characteris-
tics. For this case the system balance equations for the steady-state probabilities
can be formulated as follows:
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pi,j = lim
t→∞ P (S(t) = i, O(t) = j),

i = 0, 1, 2, 3 and j = 0, 1, ..N

[(N − j)λ1 + λ2 + jν + γ0] p0,j = μ1p1,j + μ2p2,j + γ2p3,j

[(N − j − 1)λ1 + μ1 + γ1] p1,j
= (N − j)λ1p0,j + (j + 1)νp0,j+1

[(N − j)λ1 + μ2 + γ1] p2,j = λ2p0,j

[(N − j)λ1] p3,j = γ0p0,j + γ1p1,j + γ1p2,j

with p0,N+1 = 0.
The system balance equations for the steady-state system probabilities in the

other cases can be obtained by similar way.
Solving manually these balance equations is rather difficult. There exist sev-

eral effective tools performing the background calculations. In this paper the
MOSEL-2 tool was used. When the steady-state probabilities are calculated,
this tool provides the well known performance characteristics. These measures
are obtained using the following formulas.

– Utilization 1

U1 =
N∑

o=0

p1,o

– Utilization 2

U2 =
N∑

o=0

p2,o

– Average number of jobs in the orbit

O =
3∑

s=0

N∑

o=0

ops,o

– Average number of active primary users

M = N − O − U1

– Average generation rate of primary users

λ1 = λ1M

– Mean time spent in orbit by using Little-formula

W =
O

λ1
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3 Numerical Results

The most important goal of these types of stochastic systems is to obtain the
performance measures and system characteristics. Usually the throughput, uti-
lization, response times, waiting times, queue length are considered. Here the
utilization and waiting time in the orbit are focused.

Table 1. Numerical values of model parameters

Case studies

No. N λ1 λ2 μ ν γ0 γ1 γ2

Fig. 2 100 x-axes 2 3 0.05 0.01 0.01 1

Fig. 3 100 x-axes 2 3 0.05 0.1 0.01 1

Fig. 4 100 x-axes 2 3 0.05 0.01, 0.1 0.01, 0.1 1

Fig. 5 100 x-axes 2 3 0.05 0.01, 0.1 0.01, 0.1 1

Fig. 6 100 x-axes 2 3 0.05 0.01 0.01 1

Fig. 7 100 x-axes 2 3 0.05 0.1 0.1 1

Fig. 8 100 0.2 2 3 0.05 x-axes x-axes 1

Fig. 9 100 0.2 2 3 0.05 x-axes x-axes 1

Fig. 10 100 0.2 2 3 0.05 0.1 0.1 x-axes

There exist several methods to calculate the system measures. Solving
directly the balance equations is rather difficult in most cases. Effective soft-
ware tools can be used to get the steady-state system probabilities. From these
probabilities the performance measures can be computed directly or by the help
of the considered tool. In this paper the MOSEL-2 tool is used. This is not a
simulation tool. The system equations are build up and solved by one of the util-
ities developed for MOSEL-2. Here the SPNP (Stochastic Petri Net Program) is
used (see in [5]). The following figures illustrates the most interesting numerical
results. The numerical values of the applied parameters in the model are listed
in Table 1. Most figure compares to different cases:

– In case of busy state breakdown, the first order and second order customers
are interrupted. The first order customers are sent back to the orbit, the
second order customers are sent back to the source. On figure these cases are
denoted with blue lines dotted by diamonds.

– The service of both types of customers are interrupted. The customers are left
at the server. After the repair their service will continue or restart. Because of
the exponentially distributed service time, this difference - restart or continue
- has no effect to the system characteristics. On figure these cases are denoted
with orange lines dotted by squares.
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Fig. 2. Mean waiting time vs. λ1 (Color figure online)

Fig. 3. Mean waiting time vs. λ1 (Color figure online)

Fig. 4. Mean waiting time vs. λ1 (Color figure online)
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On Fig. 2 the running parameter (values of x-axes) is the first order generation
rate λ1. The failure rate is small for this figure. There are not so significant
differences between lines. The waiting time of the ‘leave the system’ case is
greater, because the first order jobs goes to the orbit and they have to try again.

Figure 3 displays the same situation with ten times greater failure rate, which
will cause a much more significant deviance between the cases. The interruption
is more frequent and the first order customer are sent back to the orbit more
frequently, which results higher waiting times. The two considered failure rates
are compared on Figs. 4 and 5 for ‘Continue’ and for ‘Leave the system’ scenarios,
respectively. The expected results can be seen, the waiting times are higher for
greater values of failure rates.

Fig. 5. Mean waiting time vs. λ1 (Color figure online)

Figure 6 shows the utilization in function of the first order generation rate.
The failure rate here is small, so the differences between the two scenarios are
also small. The utilization is greater for the ‘Continue’ case, because after the
repair the server state will be busy, immediately. While for the other scenario the
server will be idle, and an exponential retrial, first or second order generation will
take place. For Fig. 7 the parameters are the same, but the Failure rate, which
is again ten times greater than on the Fig. 6. Consequently, the differences in
utilization are more significant.
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Fig. 6. Utilization vs. λ1 (Color figure online)

Fig. 7. Utilization vs. λ1 (Color figure online)

On Figs. 8 and 9 the failure rate, γ0 and γ1 is the running parameter. The
two parameters move together. On Fig. 8 the mean waiting time is considered.
Here the parameter is modified in wider range than on Figs. 2 and 3, but the
tendencies are the same. The higher the failure rate is, the higher the waiting
times are. Additionally, waiting times for ‘Leave the system’ scenario is higher,
as well.

On Fig. 9 the failure rate, γ0 (and γ1 with the same way) is the running
parameter. With higher failure rate the utilization will decrease, and comparing
the two scenarios, utilization is higher for the ‘Continue’ scenario.

Figure 10 investigates the effect of repair rate. Since the repair rate and the
average repair time are reciprocal values, higher repair rate means shorter repair
time. According this, it can be seen, that for higher repair rate the waiting times
will decrease. Comparing the two cases, ‘Leave the system’ has greater waiting
times.
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Fig. 8. Mean waiting time vs. γ0 and γ1 (Color figure online)

Fig. 9. Utilization vs. γ0 and γ1 (Color figure online)

Fig. 10. Mean waiting time vs. γ2 (Color figure online)
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4 Conclusion

In the present paper a special two-way communication system was investigated.
First order customers come from a finite source, while in case of an idle server,
second order customers are able to reach the system via a direct call. Different
cases can be considered. For simplicity, the service rates for the first and the
second order customers were supposed to be different. Similarly, different failure
rates are considered for idle server and busy server.

The main focus was to compare the ‘Continue’ and the ‘Leave the system’
scenarios. Based on the results displayed on the figures above, it can be stated,
that the system performance (in waiting times and utilization) is better for the
‘Continue’ case. For the results, the buffered case of the second order customers
was considered. It is closer to the real life situation. When a customer is called
for service from the outside world, and in the meantime the server becomes busy,
give the chance for the called customer to be served.
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