Journal of Computer Science and Control Systems 59

Reliability Increasing Method Using a SEC-DED Hsiao Code to
Cache Memories, Implemented with FPGA Circuits

NOVAC Ovidiu', SZTRIK Janos®, VARI-KAKAS Stefan’, KIM Che-Soong®

University of Oradea, Romania,
'Department of Decorative Arts and Design, Faculty of Visual Arts,
*Department of Electrical Engineering, Faculty of Electrical Engineering and Information Technology,
1, Universitatii Str., 410087 Oradea, Romania, E-Mail: ovnovac@uoradea.ro

2University of Debrecen, Hungary,
Department of Informatics Systems and Networks, Faculty of Informatics,
Egyetem tér 1., 4032 Debrecen, Hungary, E-Mail: jsztrik@inf.unideb.hu

“Sangji University, South Korea,
Department of Industrial Engineering,
Kangwon 220-7021, Wonju, South Korea, E-Mail: dowoo@sangji.ac.kr,

Abstract — In this paper we will apply a Hsiao code to
the cache level of a memory hierarchy to increase the
reliability of the memory. We have selected the Hsiao
code from the category of SEC-DED (Single Error
Correction Double Error Detection) codes. For
correction of a single-bit error we use, a check bits
generator circuit, a syndrome generator and a
syndrome decoder. Implementation of SEC-DED code
in the cache is made with FPGA Xilinx circuits.

Keywords: SEC-DED; cache; FPGA circuits; HSIAO
code;

I. INTRODUCTION

In the design of the computer systems an issue that
raises particular problems is the slowly increase of
memory speed compared with the increase of processor
speed [1],[2]. The processor allocates, during the
execution time, an increasing fraction of time, waiting
for data to be brought from main memory. To reduce the
gap between processor speed and memory speed, current
processors allocates most of their hardware resources, to
the cache level. For example Intel Itanium 2 processor
allocates 86% of its transistors to L3 cache level [3],[5].
Cache memory is the fastest storage buffer for the
central processing unit of a PC.

In this paper we will use both names: cache and
cache memory.

In the efficiency analysis methods to increase the
dependability of a memory hierarchy, the most
vulnerable part to turn to critical applications in terms of
reliability is the cache memory.

A memory hierarchy is the solution to the need for
programmers to have a large and fast memory. This

hierarchy is organized on several levels, each with less
storage capacity, higher speed and cost per bit higher
than the previous level. The objective that we are
looking, in a memory hierarchy, is to obtain a memory
system that have a cost almost as low as the cheapest
level of memory and speed almost as great as fastest
level of hierarchy [6].

Memory hierarchy is based on several fundamental
properties of information storage technology. Different
storage technologies have different access times. Faster
technologies have a higher cost per bit than slower
technologies, but those have a greater capacity to store
the information. Figure 1 represents such a memory
hierarchy [7].

The hierarchy has at the bottom level, the slowest,
most expensive and the highest capacity storage. As we
move to the top of the pyramid, we have increasingly
faster levels, greater cost per bit and with less storage
capacity.

U Registers

L1 1 Cache on chip
(SEAN)

L2 Cache off chip
(SRAND

L3 Idan memory
(DRAM)

Secundary storage devices

L4 (ocal disk)

L5 Secondary storage devices
’ (web servers)

Figure 1. Memory hierarchy

mailto:ovnovac@uoradea.ro
mailto:jsztrik@inf.unideb.hu
mailto:dowoo@sangji.ac.kr

60 Volume 4, Number 2, October 2011

In the level situated on the top of the pyramid (LO),
we have a small number of CPU registers, with low
access time, because they are accessed by the CPU in
one clock cycle.

In the next, one or two levels, there is a medium size
SRAM cache, which can be accessed in a few CPU
clock cycles. On the next level there is a DRAM main
memory, with large storage capacity. This memory can
be accessed in tens or hundreds of clock cycles. Below
are local disks, with very large dimensions and with the
disadvantage that they are very slow. On the last level,
some systems include an additional level disks or remote
servers, which can be accessed via a network.

A possible solution to increase the reliability of the
cache level is the use of fault tolerant approach in the
design. Traditionally this is realized by the introduction
of information redundancy based on data coding.

The widely used code for fault tolerant design is the
Hamming code, based on multiple parity bit generation.
We present and implement a more efficient design, with
a modified version of this code. The resulted design was
implemented and tested in an FPGA circuit.

II. APPLYING HSIAO CODE TO CACHE MEMORY

In modern computer systems, at the cache level of
the memory hierarchy, we can successfully apply
multiple error correction codes. This type of code for
detection and correction of errors are added to memories
to obtain a better reliability.

In high speed memories the most used codes are
Single bit Error Correcting and Double bit Error
Detection codes (SEC-DED) [7]. This codes can be
implemented in parallel as linear codes for this type of
memories.

We have chosen the Hsiao code, because of its
properties. Hsiao code is a SEC-DED code preferred in
computer technique due to its favourable recovery
capacilty from multiple errors. The Hsiao code is a
modified Hamming code, with an odd-weight-column,
because every column contains an odd number of 1's
[41.[9].

In the check matrix of the Hsiao code, another
property is that no two columns are the same
[81.[91,[10].

For the cache memory we use a (22,16,6), Hsiao
code . For this code there are k = 6 control bits, u = 16
useful (data) bits and the total number of code bits is t =
22. In this case, for correcting a single bit error it is
satisfied the condition 2>u+k+1. Usually it is enough a
number of k= 5 control bits, but we will use k = 6
control bits, in order to achieve a double bit error
detection. Parity check matrix of the Hsiao code, is
defined by matrix H presented below:

o oo o o~
o oo o~ o
o oo —~ o o
o~ o o o
o - o o o o
- o o o o o
S o = = o =
S = = o o
- - o o o =
- 0 O © = =
-0 o = = o
S o = o = =
oo = = =
S O = = = o
S = = = o ©o
- - - o o o
S = = = = -
—_ O = e e e
—_— O e e
—_— e O e
_— e = O
=]

Q)

We have generated the Hsiao matrix, so that the
column vectors corresponding to useful information bits
to be different one from other.

A typical codeword, of this matrix has the folowing
form:

U=(CoCC€2C3C4CsUoU U U3U4UsUU7USUGU ol U oW 3U 14U 5)

It has parities in positions 1,2,3,4,5, 6 and data bits from
position 7 to 22.
The control bits are calculated with parity equations

2):

Co— uo®u1@u2@u3®u5@u6@ulo@ul 1@1112@1113@1114

C = U3@U4®US®U6@U7®U10®UI1@1112@1113@1115

Cr = uo@u4®u6®u7@u8®ulo®u1 1@1112@1114@1115

C3= UO®U]@U5@U7®118@U9®U10@U1]@1113@1114@1115 (2)
Cq = ul@UQ®U8®119@1110@1112@1113@1114@1115

Cs = UZ@U3®U4®UQ@U1 1@u|2®u13®u14®u15

Decoding of a received vector uses the syndrome
equations (3) :

So :C()@llo@u1@1]2@113@115@116@1110@111 1@1112@1113@1114

S| :Cl@U3®U4®U5@UG®U7@UI()@U] 1@1112@1113@1115
52:C2®UO@U4®U6@U7®UR®U10@111 1@1112@1114@1115 (3)
S3 :C3@u0®u1®u5@u7®ug@ug@ulo@u11@u13@u14@u15

S4 :C4®U1@Lb@u;;@llg@u10@1112@1113@1114@1115

S5 205@112@113@114@119@111 |®U12@U13@U14@U15

We will apply this SEC-DED code to the design of
the error control part of a 64K x 16 bit cache memory.
When the information is retrieved from the cache, we
read the useful data bits (uyu; uy U3 us Us Ug U7 Ug Ug UjgUyg
Uj; U3 Ugg Uys) and the control bits (cq ¢; ¢; €3 ¢4 Cs) toO.
We implement with XOR gates, the equations (2) and
generate the control bits ¢y’ ¢;” ¢,” ¢3” ¢4’ ¢5” from data
bits that we have read from the cache. For example, to
generate the control bit ¢,’, we use equation (4):

C()’: uo®u1®u2®u3®u5®u6@um@ul 1@1112@1113@11]4, (4)

In order to implement this equation we use 10 XOR
gates with two inputs, situated on four levels, as
presented in figure 2.

We do in the same mode to generate all control bits,
c’, ©°, ¢, ¢4/, ¢s5’. The generated control bits
(co’ci’ca’cs’cq’cs’) are compared with the control bits
that we have read from the cache (¢ ¢ ¢; ¢3 ¢4 C5), also
with two input XOR gates, and we get as result
syndrome equations: sy=cy @ ¢y’, s;=c; @D c¢;’, $H=¢;
D cy,s3= 3P cy’,sa=¢Cs Dy, 8S5=0¢5 D cs’. We
connect one NOT gate on each syndrome line, and we
construct with 16 AND gates with six inputs, the
syndrome decoder. Equations (5) are used to build the
syndrome decoder.

Uy = Sq S *Sy* SgeSy - S5

U; =S58, +S, * S5+ S, + S,

Journal of Computer Science and Control Systems 61

Uy =Sq* S, S, S5 S, *Ss (5)

Ujp =858, °S;°83° 8455
U, =858, S; 8378, S5
Uiz =88 8,°S3°8,S;
Uiy =S¢ 8178, 53-8, S5

Uis =8¢ "8, 8,538, S5

We present in figure 2 a scheme used for single error
correction.

Figure 2. Design of Hsiao (22,16,6) code circuit with
XILINX software tool

To correct the data bits we use 16 XOR gates with
two inputs, following equations (6).

— 9
Upcor— Uo @ Up

— 9
Ujcor— U @ up

— bl
Upeor™ U2 @ U
Uzcor— U3 @ U3’
Ugcor— U4 @ U4’
Uscor— Us @ U5’
Ugcor— Ug @ u6’
U7cor— U7 ® U7’
Ugcor— Ug @ u8’ (6)
Ugcor— Ug @ ng’

p— b
Uocor= U1 D Ugg

p— b
Uticor= Urt D uyg

p— b
Uocor= U1 D Ugg

p— b
Uticor= Urt D uyg

p— b
Uizeor= U1z D up

— b
Up3cor— U13 @ sz,

— b
Upgcor— W14 @ U4

— b
Ujscor= Uts @ Uys

In figure 2 we have designed an error correction
scheme based on Hsiao (22,16,6) code, which can be
implemented with FPGA Xilinx circuits.

III. IMPLEMENTATION OF HSIAO CODE TO THE
CACHE MEMORY.USING FPGA XILINX CIRCUITS

The design process with FPGA Xilinx circuits is fast
and efficient. The internal structure of an FPGA circuit
contains a matrix composed from Configurable Logic
Blocks (CLB) and Programable Switch Matrices (PSM),
surrounded by I/O pins.

The programable internal structure includes two
configurable elements: Configurable Logic Blocks, with
functional elements that implements the designed logical
structure and Input Output Blocks (IOB), wich realises
the interface between internal signals and the outside of
circuit, using pins.

The logical function realised by CLB is implemented
by static configuration memory [7].

Figure 3. Simulation with Logic Simulator of XILINX

Figure 3 shows the simulation that we have made
through the Logic Simulator module of XILINX
program.

Figure 4. Implementation of Hsiao matrix (1) with
FPGA XILINX, XC4000XL circuits

62 Volume 4, Number 2, October 2011

To follow up the simulation we have introduced:
input signals (up-u;s), control signals (ce-cs), output
signals (Upeor-Uisecor) and signals ERORR and DED
(double error detected). We have injected errors and
checked the bahaviour of the design.

Figure 4 presents the implementation of HSIAO
matrix (1), with FPGA XILINX, XC4000XL circuits.
Analyzing the file Map Report we can conclude that
only 44 CLB circuits have been used from a total of 64,
meaning 68% of the total CLB circuits.

IV. CONCLUSIONS

We have subsequently applied this Hsiao code, to
error detection and correction in the cache and we have
implemented this code in a cache memory using FPGA
programmable Xilinx circuits. We have determined the
overhead due the additional circuits for error correction.
This Hsiao code has the minimum number of 1’s in the
matrix, which makes the hardware and the speed of the
encoding/decoding circuit optimal. The Hsiao code
(22,16,6) that we have used to the cache level of a
memory hierarchy permits single error correction and
double error detection. This code was implemented to a
cache memory, with this implementation we have
reduced the size of the syndrome generator and the cost
of error correcting scheme compared to the traditional
Hamming code based solution. Another advantage is
that if we increase the number of data bits, the
proportion of overhead is decreasing. This solution
using a SEC-DED Hsiao code, increases reliability
through fault tolerance, leading to low cost and low
memory chip dimension, because this method solves the
problem of faults by testing and correcting errors inside
the chip.

Results of this research were supported by Domus
Hungarica.

REFERENCES

[1] John L. Hennessy, David A. Patterson, “Computer
Architecture. A Quantitative Approach”, Morgan
Kaufmann Publishers, Inc. 1990-1996.

[2] John L. Hennessy, David. A. Patterson, “Computer
Arhitecture. A Quantitative Approach”, 3rd Edition, San
Mateo, CA, Morgan-Kaufmann Publishing Co., 2003.

[3] J. Chang, St. Rusu, J. Shoemaker, S. Tam, M. Huang, M.
Haque, et al., “A 130-nm Trimple-Vt 9-MB Third-Level
On-Die Cache for the 1.7-GHz Itanium 2 Processor”,
Journal on Solid State Circuits, vol. 40, no. 1, pp. 195 —
203, 2006.

[4] T.RN. Rao, E. Fujiwara,”Error-Control Coding for
Computer Systems ”, Prentice Hall International Inc.,
Englewood Cliffs, New Jersey, USA, 1989.

[5] L. D. Hung, “Soft Error Tolerant Cache Architectures”,
PhD Thesis, Department of Information Science and
Technology, University of Tokyo, December 2006.

[6] H. R. Zarandi, S. G. Miremadi, “A Highly Fault Detectable
Cache Architecture for Dependable Computing”, M.
Heisel et al. (Eds.), SAFECOMP 2004, LNCS 3219, pp. 45
—59,2004.

[7] Ovidiu Novac, “Cercetari ale eficientei metodelor de
crestere a dependabilitatii la treapta cache a unei ierarhii de
memorii”, PhD Thesis, ISBN: 978-973-625-593-9, Editura
Politehnica, Timisoara, 2008.

[8] P. L. Howard, “The Design Book: Techniques and
Solutions for Digital Computer Systems”, Prentice-Hall
Inc., Englewood Cliffs, N. J. 1990.

[91 A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, IEEE Transactions on Dependable and
Secure Computing, Vol.1, No.1, pp 11 - 33, January-
March 2004.

[10] W. Huffman, V. Pless, Fundamentals of error-correcting
codes, Cambridge University Press, ISBN
9780521782807, 2003.

