DOI 10.1007/s10958-022-06124-z
Journal of Mathematical Sciences, Vol. 267, No. 2, October, 2022

THE EFFECT OF OPERATION TIME OF THE
SERVER ON THE PERFORMANCE OF
FINITE-SOURCE RETRIAL QUEUES WITH
TWO-WAY COMMUNICATIONS TO THE ORBIT

J. Sztrik! , A. Téth!, A. Pintér?, and Z. Bacs?

In this paper a retrial queuing system is considered with the help of two-way communication where
the server is subject to random breakdowns. This is a M/M/1//N type of system so the population of
the source is finite. The server becoming idle enables calls the customers in the orbit (outgoing call or
secondary customers). The service time of the primary and secondary customers follows exponential
distribution with different rates p; and us respectively. All the random variables included in the
model construction are assumed to be totally independent of each other. The novelty of this paper
is to show the effect of the different distributions of failure time on the main performance measures
such as the mean waiting time of an arbitrary customer or the utilization of the service unit. In order
to achieve a valid comparison a fitting process is done; thus, in case of every distribution the mean
value and dispersion is the same. Graphical illustrations are given with the help of the self-developed
simulation program.

1. Introduction

Nowadays, it is a very difficult task to analyze communications systems or create optimal designing
patterns of this type of schemes owing to traffic growth and the rapidly increasing number of users. In
every area of life an exchange of information is present; therefore, it is essential to develop mathematical
and simulation models of telecommunication systems or alter existing ones. Retrial queues are suitable
and effective tools for modeling real-life problems arising in systems such as telecommunication systems,
networks, mobile networks, call-centres, etc. Many papers and books are devoted to studying many
retrial queuing systems with repeated calls, for example, [7-9,16,17]. These models are utilized in many
application fields improving the efficiency of cellular mobile networks, computer networks, local-area
networks with random access protocols, and with multiple access protocols [2,18].

We examine a special retrial queuing system with two-way communication features. The two-way
communication scheme has become quite a popular topic in recent years because the operation of certain
real-life systems can be compared with models of two-way communication systems. This is especially
appropriate regarding call-centers when the service unit, besides attending to the incoming calls, may
perform other activities in the idle state including selling, promoting, and advertising products. In our
investigation once the server becomes idle after some random time it can call in a customer from the
orbit and these are known as secondary customers. Of course, monitoring the utilization of the service
unit plays an important role and has been investigated in many papers, for example, [1,3,6,12,20].

In some cases researchers assume that the service units are available constantly but failure or sudden
acts may happen during its operation resulting in the rejection of an incoming customer. Examining
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devices utilized in the different fields of industry are subject to breakdowns, meaning that considering
reliable operation is quite an optimistic and unrealistic approach. Likewise, in the case of wireless
communication numerous elements have influence on the transmission rate; therefore, throughout the
packet transmission interruption may easily occur. The characteristics of unreliability of retrial queuing
systems significantly reform the operation of the system and the performance measures. Recently, retrial
queuing systems with unreliable servers have been extensively studied in many papers, for example,
[13-15,19,24,27].

The main aim of this work is to inspect the unreliable operation of this system and to compare
different distributions of failure time on performance measures such as the mean waiting time of an
arbitrary customer or the total utilization of the service unit. The present paper is the continuation
of [25] where the server was reliable, but now the considered system does have a server, which can
break down from time to time. In order to gather the desired performance measures we developed a
simulation model using SimPack [10], which is a collection of C/C++ libraries and executable programs
for computer simulation. In this collection various algorithms are supported connected with simulation,
including discrete event simulation, continuous simulation, and combined (multi-model) simulation. In
many cases providing exact formulas is problematic or almost impossible; thus, simulation is a very good
alternative to approximating the performance measures, applying as many distributions as we desired.
The developer has the freedom of how and what performance measures are calculated. The novelty
of this paper is to present a sensitivity analysis of failure time on the main measures using various
distributions. We demonstrate results by graphically depicting interesting phenomena of sensitivity
problems.

2. Model description and notations

As shown in Fig. 1 the considered system is a finite source queuing system with retrials that contains a
nonreliable server. N customers populate the source, where every customer generates request (primary
customers in the system) with rate A/, so that each inter-arrival time is exponentially distributed
with parameter A\/N. It should be noted that our model does not comprise queues; thus, an incoming
customer occupies the server when it is available and not busy. The service time of primary customers
follows exponential distribution with parameter p;. After a successfully executed service the customer
returns to the source. Otherwise, when an arriving customer (either from the source or orbit) encounters
the server in a busy or failed state then the requests are forwarded to the orbit. In the orbit the customer
may initiate attempts to get its service requirement after an exponentially distributed random time with
parameter o/N. It is supposed that a server breaks down according to gamma, hypo-exponentially,
hyper-exponentially, Pareto, and lognormal distribution with different parameters but with the same
mean value. The repair process starts instantaneously upon failure of the server. Repair time is also an
exponentially distributed random variable with parameter v5. When the busy server gets into a failed
state then the customer is transmitted immediately to the orbit. Even though the service unit is not
available, all the customers residing in the source are able to generate requests but these find themselves
in the orbit. However, an idle server can make an outgoing call to the customers in the orbit, which
is performed after some random time. This random variable is exponentially distributed with rate 7.
The service time of these secondary customers follows exponential distribution with parameters ps. The
reason for using rates A/N and o/N is that in [22,23] similar systems were evaluated by an asymptotic
method where IV tends to infinity. In these papers it was shown with proof that the number of customers
in the systems follows a normal distribution.

It is assumed that all the random variables in model creation are totally independent of each other.

3. Simulation results

We used a statistic module class that originates from an adaptation of the statistics package written
by Andrea Francini in 1994 [11]. This class is a statistical analysis tool with which it is feasible to perform
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Fig. 1. System model.

Table 1. Numerical values of model parameters

N v o/N p» v
100 1 0.01 1.1 0.02

a quantitative estimate of the mean and variance values of the observed variables by applying the method
of batch mean. It gathers a sequence of independent samples by aggregating n successive observations of
a steady-state simulation. It is one of the common methods for establishing a confidence interval for the
steady-state mean of a process. To assure that the sample averages would be approximately independent,
sizable batches are required. More about the batch mean method can be found, for example, in [4,5,21].
The simulations are performed with the confidence level 99.9%. The relative half-width of the confidence
interval required to stop the simulation run is 0.00001.

The applied values of the input parameters are shown in Table 1. In [25] the server was reliable and
now we want to show the effect of the nonreliable operation of the system. The service time of primary
customers follows gamma distribution with parameters o = § = 0.04 to make a comparison with the
results of [25]. Figure 2 reveals how the mean waiting time starts to increase and then decreases despite
the increment of arrival intensity. But curiously, when the failure rate is low it results in a lower mean
waiting time than in the case of reliable operation. When the server breaks down the customer is sent
back to the orbit and its service does not continue. After it becomes operational again it can call a
customer from the orbit.

3.1. Squared coefficient of variation is greater than one

In this section the parameters of failure time in every distribution were selected in a way in which
the mean value and the dispersion would be equal. To do that, a fitting process has to be done that can
be found in the following paper [26]. Throughout this section we work with four different distributions
to ascertain their effect on the performance measures. Using hyper-exponential distribution ensures that
the squared coefficient of the variation is more than one. Table 3 demonstrates the input parameters of
the various distributions. Similarly, Table 2 displays the applied values of the other parameters.

Figure 3 shows the steady-state distribution using different distributions of failure time. Taking a

Table 2. Used numerical values of model parameters

N AN v o/N p p v
100 0.01 1 001 1 1.2 0.02
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Fig. 2. Mean waiting time in function of arrival intensity with different failure rates.

Table 3. Parameters of failure time

Distribution Gamma Hyper-exponential Pareto Lognormal
Parameters a=20.6 p=0.25 a=22649 m = —0.3081
B8=0.5 A1 = 0.41667 k=0.67018 o = 0.99037
Ap =1.25
Mean 1.2
Variance 2.4
Squared coefficient of variation 1.6666666667

closer look on the curves it can be observed that all of them correspond with the normal distribution. In
the case of Pareto it seems that more customers are located in the system, but huge differences cannot
be observed among the applied distributions.

Figure 4 displays the mean waiting time of the customers in the function of arrival intensity. After
analyzing Fig. 3 it is not surprising that we find the highest values of mean waiting time at the case of
Pareto but among the other distributions the difference is quite obvious. Lowest values can be found
using gamma distribution. It is an interesting phenomenon that, along with the increasing arrival
intensity, after a while the mean waiting time starts to decrease. It is a general characteristic of retrial
queuing systems with finite source and with suitable parameter settings.

In Fig. 5 we can see how the total utilization of the service unit increases with the increment of arrival
intensity. Total utilization of the server includes the service of primary and secondary customers and
all the interrupted ones when a busy server suffers a failure. In every case of the applied distributions
the obtained values differ from each other in a small compass, even though in Fig. 4 the differences are
quite significant. It can be stated that the total utilization of the server is nearly identical respecting
the investigated distributions.

3.2. Squared coefficient of variation is less than one

After noticing the results of the previous section we were intrigued by how the performance measures
modify with the change of the parameters of the failure time. Now the parameters were chosen so that
the squared coefficient of variation should be less than one. We exchange hyper-exponential with hypo-
exponential distribution because in the case of hypo-exponential distribution the squared coefficient of
variation is always less than one. We will go through the same figures as in the previous section but by
using the new parameters of failure time, which is shown in Table 4. The other parameters remain the
same (see Table 1).



200 J. Sztrik, A. Téth, A. Pintér, and Z. Bacs

0,08 - A‘
0,07 ] / ]\
0,06
0,05 / \
0,04 1 [
0,03 3
0,02 ] /
0,01 1 N
0 I S —
0 10 20 30 40 50 60 70 80 9 100
i
~Gamma +=Hyper-exponential ~Pareto -Lognormal
Fig. 3. Comparison of steady-state distributions.
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Fig. 5. Total utilization of the server vs. arrival intensity.

Figure 6 presents the comparison of the steady-state distributions and now the squared coefficient
variation is less than one. The curves almost perfectly cover each other, meaning that on average
regardless of the utilized distribution of failure time the customers in the system are the same. Compared



The Effect of Operation Time of the Server on the Performance of Finite-source Retrial Queues. ..

201

Table 4. Parameters of failure time

Distribution Gamma  Hypo-exponential Pareto Lognormal
Parameters a = 1.3846 pw =1 a = 2.5442 m = —0.0894
8 =1.1538 o =5 k=0.7283 o0 =0.7373
Mean 1.2
Variance 1.04
Squared coefficient of variation 0.722222
with Fig. 3, even the averages are identical, which is around 65-66.
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Fig. 6. Comparison of steady-state distributions.

In Fig. 7 it can be seen how the mean waiting of a customer forms besides increasing arrival intensity.
By examining closer the curves it is observable that they are much closer to each other compared with
Fig. 4, however, minor differences are there among the applied distributions. Similar to Fig. 4 the highest
values are obtainable in the case of Pareto. When the squared coefficient of variation is less than one in
terms of every distribution the values of mean waiting are higher as in the previous section.
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Fig. 7. Mean waiting time vs. arrival intensity.

Figure 8 demonstrates the utilization of the service unit in the function of arrival intensity. Among
the various distributions it is nearly the same, except fot Pareto, where the utilization is considerably
smaller. The same tendency can be detectable compared with previous sections so every distribution



202 J. Sztrik, A. Téth, A. Pintér, and Z. Béacs

possesses approximately the same value of utilization. Of course, the utilization increases as the arrival
intensity grows.
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Fig. 8. Total utilization of the server vs. arrival intensity.

3.3. Conclusions

A finite-source retrial queuing system with the help of two-way communication is presented with
an unreliable server, which may summon customers from the orbit after a random idle time. We show
the effect of unreliable operation with different failure rates on the mean waiting time of an arbitrary
customer. Interestingly, we find lower values in the case of an unreliable server with a small failure
rate than with a reliable server because the service of outgoing customers is faster and the number
of interruptions is not that high. To carry out a sensitivity analysis we integrated several random
number generators into the simulation program to analyze the effect of different distributions on the
main performance measures. When the squared coefficient of variation was greater than one having the
same mean and variance among the values of performance measures, such as the mean waiting time of
a customer disparity appears but the influence was very slight when it was less than one. In the future
further modifications are planned to be done such as dealing with more distributions or complementing
the system with other features as blocking.
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