On the machine interference

By JANOS SZTRIK (Debrecen)

1. Introduction

In this paper we deal with a special queueing problem, which is of considerable
practical importance. The roots of it date back even to Hincsin, who first raised
the question in the thirties. Then it was investigated by several famous mathematicians
such as Palm, Naor, Fry, Takdcs, Kronig, Feller, Benson and Cox. In our case the
problem can be formulated as follows.

Let us consider a set of a machines which are serviced by a single repairman.
The machines work continuously and independently; however, at any time one of
them may break down and need service. Let us suppose that if at time ¢ machine
i is in working state, the probability that it will call for service in the time interval
(t, t+A4t) is A;At+0(4t). If a machine breaks down it will be serviced immediately
unless the repairman is attending another one, in which case a waiting line is formed.
The repairs are carried out in the order of machines’ breakdowns. It is supposed
that the operative is idle if and only if there is no machine failed. Service times are
assumed to be independent and having distritution function F,(x) for machine i.
It should be mentioned that the mathematical model of machine interference often
occurs in probabilistic description of multiprogramming computer systems.

Finally, we give some books and papers concerning the problem in question:
TAKAcCS [1], CoHEN [2], GAVER [3], Cox—SmITH [4], PAGE [5], GNEDENKO—KOVA-
LENKO [6].

2. The model

Let the random variable (abbreviated by r.v.) ¥(¢) denote the number of
machines not working at time ¢ and let oy(?), oy(?), o, (¢) indicate their indices
in the order of their breakdowns.

Introduce the stochastic process

I(f) = (v (I)a oy (f), 152 av(r) (t))

The process (y(7), £=0) is not Markovian unless the distribution functions Fy(x)
are exponential, i=1, 2, ..., n.

Let the r.v. &, denote the attained service time the machine under repair has
got till time 7.
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Putting
(1) x(@) =(y®, &) =0, a®, ..., ayy(®; &)

the process (x(f),#=0) has already the Markov property.

Let ¥} denote the set of all variations of order % of the integers 1,2, ...,n
ordered lexicographically. A possible state of (x(¢),7=0) is (k, iy, ..., i; X)
where (i), ..., i) €V} and x€R, . The process is in this state if X machines are failed,
their indices in the order of their breakdowns are (i, ...,7,), and the attained
service time of machine 7#,, which is under repair, is x.

The state when all machines are working will be denoted by {0}. Thus the

state space of (x(t), 7=0) is [ 0 V;:] X R, +{0}.
k=1

In order to derive the Kolmogorov equations consider the transitions that can
occur in an arbitrary time interval (¢, 1+4t). The transition probabilities are the
following.

) Plx(t+40) = (iy, ---, i3 X+4D/x(O) = (iyy ..., i %)} =
1—F, (x+41)
(1",-¢.-§.,s,,)"’m) ey +o(41),

(i1) P{x(f) L (T x+A40)[x(1) = (iy, ..., [P x)} =

1—F, (x+ At
il . 1—12:(.»:) ) o(dn),
(ii) P{x(t+41) = (ia, ..., i; 0)/x(1) = (is, oo, ig; %)} =
F; (x+40)—F, (x)
— —F.0 +o0(41).

Let us introduce some notations.

Aix,....b;: 2 ):'j’ A:J_g;.ljv ﬁi=f)€,'d1‘-‘,-(}(.'),

j#il"”'ik 0

(=]

k
Sty i = '2;21_,; D(s; i) = f e **dF,(x),
J:

0

k k
H;“l"""u)-: 17 Ai-‘/ I Si:+1sn--"¢'
q

r=[+2 =[+2
1=l=k 1=k=n-1.
For the distribution of (1) consider the functions given below.
Py(t) = P(v(1) = 0),
Py, (% ) = P(v(t) = k, ay (1) = iy, ..., oy (1) = iy; €, = %),
O o BIETE, Kot 2 i



On machine interference 167

Theorem 1. If B;<eo, i=1,2,...,n then the limits
Py = lim Py (),
11—+

P!'p...,fk(x) — ;li..n; Pfg.....ik(xi f),

Gisovs IVEVE, B=1.2 st #CBs,

exist and satisfy the normalization condition

n
Pot+ 2 2Zim P, o (%)= 1.

k=1 V;’c‘ X-rco

Proor. Note that (x(7),7=0) is a linear Markov process treated in GNE-
DENKO—KOVALENKO [6] in details. Our statement follows from a theorem on page 211
of this monograph.

Our next task is to give a procedure to determine the ergodic probabilities
B, 7). Oseslabl, et 2 .
To do so, first of all we show that the ergodic functions
Py, i@ (s €W, k=1,2,...,n,

are differentiable at common continuity points of F;(x). Then we introduce the
so-called normed density functions:

d

=Py i@

@) =

We derive a system of integro-differential equations for these functions, and by the
help of its solution we can give an algorithm for calculating the stationary distri-
bution.

Consider for (i, ..., i )€VE, k=1,2,...,n, 1=0, 1=I<k=n, the following
conditional probability

P(v(t+7) =k, a;(t+7) = ij, 1 =j=k, . =tv@d =1, o;() =i, 1=j=1, §,=0).
One can easily verify that this quantity is

k
[Ll—F, (1) e Hinenar ¥ JI A% i,

0<zp,;<..<zZ <t J=l+1

This probability will further be denoted by
[1_‘F'l1 (T)] V;:f. ,::c (I)'

In homogeneous case (1;=2)

i i 1 —Ank—r ,—(n—K)t
o e il e S

Now we prove the following theorem.



168 Janos Sztrik

Theorem 2. The ergodic distribution function P. Li(X)  possesses density

Junction p; . (x) for all (iy,...,i)eVe, k=1,2, ..., n and almost every xcR,.
In addition, the normed d.f.

p(p e (x)

P?,...,fk\x) —
> 1-F,(x)

is differentiable at every x€R., .

Proor. We first prove the existence of densities Pi,...u (%) L& the s.p.
(x(2),2=0) be in state (i, ...,#; x) at an arbitrary ¢. This event occurs if at
some epoch u, f—x<u<t, the operative completes a repair and immediately
starts servising machine 7. If the indices of machines not working at time u are
(i1, .-, 1,) then the unexpired service time of 7, must excess t—u and during the
time interval (w, 7) machines (i,.,, ..., 7) should break down in this order.

Consider the sequence of those service completion epochs when the operative
has completed a repair and just started to service the machine #,, while the others
with indices (i3, ..., 7,) are also waiting for repair. These time instances are regene-
ration points for the process (x(r), #=0), i.e. they form a renewal process.

If the initial state (j, ..., j;; Z) differs from (i, ...,7.; 0) then this renewal
process is a so-called delayed one.

Let us denote by H;:>r .(¢) the renewal function of the process considered
above.

Denote by

(Ros By,,.... 0205220, Gy oer s JIEVR, 8=1,2, .oy 1)

the initial distritution of (x(7), 1=0). Keeping in mind the tehavior of the re-
current process, by using the theorem of total protability we get

Py, .n® D = ( > 2 dejl,...Tj,(f)+Ra]-

e -l

t
[ Ve =)L~ F, (t—w)] dHie ().

13resdgr 2

k
- 2
¥=1 ;

Applying the key renewal theorem of Smith we have
Pil,....l'k(x) = :111110 Pij,..-,lk(x’ f) =

k 1 4 " .

_ B o Eopuicyt
ol r=1 mi1,...,fr Of [1 El(u)]Vi:;-—-,if(u) =

where m;, ; denotes the expected recurrence time into state (7, ..., 7,; 0) which

is finite since the process is ergodic. Now it follows that indeed Py ...(%) i8

differentiable at every continuity point of F; (x).

This implies that the d.f. p, ; (x) is defined almost everywhere and

. 1

pfl»--dfk(x): Z

r=1 i

Vie ni @I = Fy()].

.

wiaiety

Therefore the normed functions are differentiable at every x¢R., .
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Theorem 3. The stationary density f. of the process (x(t), t=0) satisfies the
following system of differential equations

dpi, (x) —
dx +Ailpi1 (x) o= O,
d * fk(x
(3) { H%-_)-}—Ail""’i"p?l’ ‘__,,;k(JC) = Aikp?:l....,fk—l(x)r
dpi,, .i.(x) i
e = APy inen ().

The boundary conditions are

4y = 3 [ 5t aF)
i=1,
50) =4, P+ D T (OHAF (%),
(4) 3 pl( ) 170 j;éilof pJ‘, 1( ) _;( )
pfls---,ik(o): _#_Z = f p?,il,...,ih(x)dF}(x)a p;l,_,,,fn(ﬂ)z().
J#lyy i g

Proor. The equations are obtained in the manner familiar in the theory of
linear Markov processes. For details see SZTRIK [7].
It is quite easy to see that the solution of (3), (4) is

k
* — k—1I “'Ai [ et £ {. v'"sf
Ph .o (®) = !Z; = O 8 S L ),

(iys ooy iDEVE, 1=k=n,

where the constants ¢;  ; are to be determined from the boundary condition (4).

In the following we describe an iterative method to calculate these coefficients.
Let ¢, denote the vector

C1,2,...,k

bissseslic

Cn,n—l, BN, s o i

of dimension z k! The components of ¢, are listed in the lexicographic order

of their indices, k=1, 2, ..., n. Notice, that the boundary condition p; _; (0)=0
is equivalent to equation ¢,=A"; ¢,_1+...+A4M¢; with a suitably chosen A"

matrix of order n!X [Z]k!. The k-th boundary condition, where 2=k=n-—1
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gives the relation

k
S (1), g Itk =
k o
F 2 s iR [ ettt a6,
J#E, o, B 1=0 0

In term of the Laplace—Stieltjes transform this becomes

k
2 (_ l)k-!cilg P 1 H.!Ul’ et o=

2 Z( l)k l l(-Jll-'li k)¢(AJ' iy,. ,l':.J')°

J#ig, ..
More succintly
o = Acrir+ ... + AW g,.

Now we are able to define our algorithm. We have
n—1
== Z' A}”) <,

(%) ,:5,' By,

where the matrix B{"~" is defined by
B=1 = (I— AP~ A, — ALY 1. (AP~ D AP + AP-D), 1 =] =n—2.
Similarly
k-1
(% %) C = Z; B® ¢;,
J'=
where the matrix B{® is given by
B = (I— AR, B0 — AP) . (AR, BF+ 4+ A),
2=k=n—1, 1=j=k—1.

For ¢, we have the equation

M
¢ = AP e+ A4V ¢+ Py
An
Using the formula for ¢, we obtain
Ay
(I—*Aél) BJ(.z))Ql = Py :
A
Hence
Ay
(% * *) ¢ =(1—4A{P B®)1| : | P,.
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Starting with an arbitrary P, and using the relations (), (% %), (* % %) we can
determine the vectors c¢;, ¢, ..., ¢, (in this order). Following this procedure we
obtain all constants and also the density functions p7,  ; ().

Let us denote by P; ;. the stationary probability that machines with indices

115 .-29

(i, ..., i) are not working. Apparently,

Pyoin= [ Puos@dx= [ pf (1 —F,(x))dx.
0 0

Denote by P, the steady state probability that & machines are failed. We have
Py= 2 Py,
V”I

The value of P, can be calculated from the normalization condition

Pg+ Z'szl.
k=1

3. Utility investigations
(i) Operative utilization.

It is easy to see that the repairman’s activity can be divided into two periods,
viz. idle and busy ones. Together they form a cycle. The duration of these cycles
are independent and identically distributed random variables.

By the virtue of a renewal consideration it follows that

(24

&= 1/[i§Af]+M5’

n
where M$ denotes the mean occupation time of the server and 1 / >, A; the average
i=1

idle period length.
If U, denotes the utilization of the repairman, which is the long-run fraction
of time the server is busy, then
Mo

U, = .
1 /[gl ,1,-]+M5

Consequently
M5 = (1—Py)/(APy).
(i) Machine utilization.

During production the activity of machine 7 can be divided into three parts:
running, waiting and repairing periods. If one consider these periods as a cycle,
then in equilibrium for a fixed machine these cycles have identical distribution,
but they are not independent.
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Let P® denote the ergodic probability that machine i is failed and let the
average working, waiting, repairing period lengths be 1/2;, W;, f;, respectively.

Consider again the process (¥(7), #=0) with state space [J Vi+{0}. Let H; be
k=1

the event that machine i is not working. Introduce the function

{1 if Y({)€EH,,
Zn, () = 0 otherwise.
Theorem 4. For P the following relation holds
e Wit B
(i) L) = . — i i
e A Tﬂfzﬂi(’) R

ProoF. The statement is a special case of a theorem concerning mean sojourn
time for semi-Markov processes, see TOMKO [9] on page 297.
Hence the utilization of machine 7 1s as follows

. 1/4;
U.=1—P® = : :
I 1/2;+W;+ b
Since the probability P can be calculated from the distribution P ; by

PO = Z’ Z’ Pi‘;, . s

k=1 Vi€ (g .nrig)
the mean waiting time of machine i is W;=P®/[1,(1—P®)]—p;. Finally, for the
total productivity of all machines we get

U= SU,=n—3 PO
i=1 i=1

4. Derivation of the Takacs-formulae

If the machines are homogeneous, i.e. 4,=1 and Fy(x)=F(x), i=1,2,...,n
we have the famous Takacs-model. In this section we are going to show how his
results can be obtained from our system.

Let the r.v. v(¢) denote the number of machines not working at time ¢ and
&, the attained service time the machine under repair has got till the time ¢.

Introduce the stochastic process

x(@) = (@, &),
which is of Markov-type with state space Z={0}+{l,2,...,n}XR,.
Let
Py(t) = P(v(1) = 0),
P =Pl =k ¢&=x)
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and denote the ergodic distribution by
PO —_— t].lm Pﬂ(r),
Tly=s rlim Po(x, D

This also possesses stationary density function p,(x), which are solutions of the
following system of differential equations

dpy "
B n—1)p1 () =0,

o) LD | 0k ApE () = (Kt ) A2 ()
WD) o i)

The boundary conditions are

niPy= [ pi(x)dF(x),
0

pr(0) = miPy+ [ pEGYAF(),
(©) b o
p(0) = f Pic+1(x) dF(x),

[ ,(0) = 0.

It is easy to see that the following functions are the solutions of (5) and (6)

k _(n—j —
=2 1 ’[n_k]cje P,
i=1

where the constants ¢; are to be determined from (6). This time, however, we can
give a closed expression for ¢;, namely

)Y
“T17e,,

2]

. n—1(n-—1) 1
H,=1+ni [ . )»————-,
S +n ﬁj;; 4 7

J

[H,,_j—[j.]]f)‘,, S

where
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, &= [ e RdF(x).

1]
Let P, denote the steady state probability that & machines are failed.

Theorem 5. For the stationary distribution {P,}, k=1,2,...,n we obtain

X fn—j n
s k— — L S
Pk"jgl'('_l) J[n_k)[B:-j—[j]B:], 1=k=n-1,
n—1 (n -
— ¢k n—j * | [ * - #*

‘Pn jgl'. ( 1) [BH—J LJ] Bn‘ +'A'ﬁB].=
moreover
(n—1) >3 =
CJ 1 dy)

n—1
P,=H;l= [1+mlﬁjg{;

In addition
Pk:Q:—ls k:]-’ 23 ceny 1,

where B7=H P, and Q,_, is the stationary probability, which has been given by
Takdcs in his model, i.e.

or= 3 1y—(!ar.

=1

Proor. It is omitted, further details can be found in SzTRIK [7]. In the follow-

ing we give some characteristics concerning the system. For operative utilization
we have

n—1 e 1
Uy = nip Z [H . l]___PO’
. il =0\ J d;
while the average busy period is
n—1 o
mo=p'> (")
= : j=o\ J /d;
For utilization of a machine we get
1 'S (n—1) 1

where o=Af is referred to as traffic intensity. Moreover, the mean waiting time
of a failed machine is

W= (@—1)f— (1 -0,-)

o= 232

J

where
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This exactly the famous Hincsin-formula. Finally, for the average virtual waiting
time we obtain

- H;..ﬁ 0'2+ﬁ2 o . I_Qn—l 2 __ N2
¥ =t (S e 122), (ot = Do)

Acknowledgement: 1 am very grateful to Prof. J. Tomkd for his helpful
discussion.
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