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Abstract. The aim of the present paper is to give a review of recent
results on single server finite-source retrial queuing systems with collision
of the customers. There are investigations when the server is reliable and
there are models when the server is subject to random breakdowns and
repairs depending on whether it is idle or busy. Tool supported, numeri-
cal, simulation and asymptotic methods are considered under the condi-
tion of unlimited growing number of sources. Several cases and examples
are treated and the results of different approaches are compared to each
other showing the advantages and disadvantages of the given method. In
general we could prove that the steady-state distribution of the number
of customers in the service facility can be approximated by a normal
distribution with given mean and variance. Using asymptotic methods
under certain conditions in steady-state the distribution of the sojourn
time in the orbit and in the system can be approximated by a generalized
exponential one. Furthermore, it is proved that the distribution of the
number of retrials until the successful service in the limit is geometrically
distributed. By the help of stochastic simulation several systems are ana-
lyzed showing directions for further analytic investigations. Tables and
Figures are collected to illustrate some special features of these systems.
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1 Introduction

Finite-source retrial queues are very useful and effective stochastic systems to
model several problems arising in telephone switching systems, telecommuni-
cation networks, computer networks and computer systems, call centers, wire-
less communication systems, etc. To see their importance the interested reader
is referred to the following works and references cited in them, for example
[3,9,15,19]. Searching the scientific databases we have noticed that relatively
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just a small number of papers have been devoted to systems when the arriving
calls (primary or secondary) causes collisions to the request under service and
both go to the orbit, see for example [1,7,18,24,40].

Nazarov and his research group developed a very effective asymptotic method
[39] by the help of which various systems have been investigated. Concerning to
finite-source retrial systems with collision we should mention the following papers
[25–28,35].

Sztrik and his research group have been dealing with systems with unreliable
server/s as can be seen, for example in [2,44,45,51] and that is why it was
understandable that the two research groups started cooperation in 2017.

Our investigations have been based on the analytical, numerical, simulation
and asymptotic approached as treated in, for example [3,5,6,10,16,20,23,29,30,
34,39,42,43,50,52].

The primary aim of the present paper is to give a survey on the results
obtained in this field in the near past by means of different methods. Doing so
we have tried to unify the notation appeared in different publications and to use
the standard notation of Western-style papers which is many times differs from
the Russian-style ones.

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding multi-dimensional non-Markov process is
defined. In Sects. 3 and 4 systems with a reliable and an unreliable server are
treated, respectively. In the subsections models with exponentially and gener-
ally distributed service times are investigated, and then analyzed by means of
tool supported, algorithmic, simulation and asymptotic methods, respectively.
The main results of the papers are collected and several Figures illustrate the
most interesting features of the given system. Finally, the paper ends with a
Conclusion and some future plans are highlighted.

2 Model Description and Notations

In the following we introduce the model in the most general form as it was
treated by the help of numerical and asymptotic methods.

Let us consider a retrial queuing system of type M/GI/1//N with collision of
the customers and an unreliable server (Fig. 1). The number of sources is N and
each of them can generate a primary request during an exponentially distributed
time with rate λ/N . A source cannot generate a new call until the end of the
successful service of this customer.

If a primary request finds the server idle, he enters into service immedi-
ately, in which the required service time has a probability distribution function
B(x). Let us denote its service rate function by μ(y) = B

′
(y)(1 − B(y))−1 and

its Laplace -Stieltjes transform by B∗(y), respectively. If the server is busy, an
arriving (primary or repeated) customer involves into collision with customer
under service and they both move into the orbit. The inter-retrial times of cus-
tomers are supposed to be exponentially distributed with rate σ/N . We assume
that the server is unreliable, that is its lifetime is supposed to be exponentially
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Fig. 1. Retrial queueing system of type M/GI/1//N with collisions of the customers
and an unreliable server

distributed with failure rate γ0 if the server is idle and with rate γ1 if it is busy.
When the server breaks down, it is immediately sent for repair and the repair
time is assumed to be exponentially distributed with rate γ2. We deal with the
case when the server is down all sources continue generation of customers and
send it to the orbit, similarly customers may retry from the orbit to the server
but all arriving customers immediately go into the orbit. Furthermore, in this
unreliable model we suppose that the interrupted request goes to the orbit imme-
diately and its next service is independent of the interrupted one. Of course in
the case of reliable server γ0 = γ1 = 0. All random variables involved in the
model construction are assumed to be independent of each other.

Let J(t) be the number of customers in the system at time t, that is, the
total number of customers in the orbit and in service. Similarly, let K(t) be the
server state at time t, that is

K(t) =

⎧
⎨

⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is down (under repair).

Thus, we will investigate the process {K(t), J(t)}, which is not a Markov-process
unless the service time is exponentially distributed. To be a Markov one we will
use the method of supplementary variables, namely, we will consider two variants:
the residual service time method and the elapsed service time method depending
on what is the aim of the investigation.

Let us denote by Y (t), and Z(t), the supplementary random process equal
to the elapsed service time of the customer till the moment t and by Z(t) the
residual service time, that is time interval from the moment t until the end of suc-
cessful service of the customer, respectively. It is obvious that {K(t), J(t), Y (t)}
and {K(t), J(t), Z(t)} are Markov processes. Let us note, that Y (t) and Z(t) are
defined only in those moments when the server is busy, that is, when K(t) = 1.
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Let us define the stationary probabilities as follows:

P0(j) = P{K = 0, J = j},

P1(j, y) = P{K = 1, J = j, Y < y},

P1(j, z) = P{K = 1, J = j, Z < z},

P2(j) = P{K = 2, J = j}.

Of course in the case of exponentially distributed service time the steady-
state probabilities are denoted as follows:

Pk(j) = P{K = k, J = j}, k = 0, 1, 2, j = 0, ..., N.

The steady-state distribution of the server’s state is denoted by

Rk = P (K = k), k = 0, 1, 2

and the distribution of number of customers in the system is designated by

P (j) = P (J = j), j = 0, ..., N.

It is clear that in the case of reliable server all the probabilities where K = 2
are 0.

The main aim of the investigations is to get these distributions and other
performance measures of the systems, such as the distribution of the sojourn time
in the system, distribution of the total service time, distribution of the number
of retrials. These are very complicated problems and to the best knowledge of
the authors there are no exact analytical formulas to the solutions. That is the
reason we have tried to obtain the characteristics of different systems by the help
of tool supported, algorithmic, stochastic simulation and asymptotic methods.

3 Systems with a Reliable Server

3.1 M/M/1 Systems

Algorithmic Approach. In papers [26,35] the steady-state Kolmogorov equa-
tions were derived and the distribution of the system’s state were obtained by
an algorithmic approach. Then the distribution of the number of customers in
the system were calculated and used to validate the asymptotic results.

Asymptotic Approach. The main contribution of paper [35] is that the in
steady-state the prelimit distribution of the number of customers in the system
can be approximated by a normal distribution with given mean and variance.
In paper [35] 2nd and 3rd order approximations of the prelimit distribution
were compared to the exact distribution obtained by the algorithmic method.
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In different parameter setup and for different N the applicability of the asymp-
totic method was validated and some conclusions were drawn.

A more complicated problem, namely the distribution of the sojourn time in
the service facility was investigated in [25] by the help of asymptotic methods as
N tends to infinity. It was proved that the characteristic function of the sojourn
time T of a customer spends in the service facility can be approximated by

E exp {iuT} ≈ q + (1 − q)
σq/N

σq/N − iu
, q =

μR0

δ + μ
.

3.2 M/GI/1 System

This section deals with the results when the required service times are generally
distributed but in the examples the gamma distribution is used due to its useful
properties. Namely, it is easy to see that its squared coefficient of variation can
be less, equal or greater than 1 depending on the values of the shape and scale
parameters.

Algorithmic Approach. Paper [27] deals with the algorithmic approach how
to get the steady-state distribution of the system. The method of supplementary
variable technique with residual service time were applied and several numerical
examples were treated with gamma distributed service time. The results helped
the validation of asymptotic results for the same model.

Stochastic Simulation. Papers [37,38] are devoted to the asymptotic analysis
of the mean total service time, distribution of the sojourn time in the system
and the distribution of number of retrials. It must be noted that the results have
not been validated by simulation, yet. Meanwhile simulations have been carried
out the estimations for the mean and variance of the sojourn time have been
obtained, and the distribution of the number of retrials also has been determined.
The simulation analysis will be published in the near future.

Asymptotic Approach. In this part the asymptotic results published in
[37,38] are summarized. Before doing that we need some notations, namely

B∗(α) =
∫ ∞

0

e−αxdB(x), δ(κ1) = λ + (σ − λ)κ1.

Then κ1 can be obtained from

κ1 = 1 − δ(κ1)
λ

· B∗(δ(κ1))
2 − B∗(δ(κ1))

, (1)

and the distribution of the server’s state can be determined by

R0 =
1

2 − B∗(δ)
, R1 =

1 − B∗(δ)
2 − B∗(δ)

.
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Introducing the notations

A1 = λ(1 − κ1), R∗
1(α) = −δR0 [B∗(α)] ,

we obtain

κ2 =
A1

(
R0 · B∗(δ) [δ + A1] − (δ + A1R0)

)

A1(σ−λ)
(
R∗

1(δ)−R1−R0(B∗(δ)−1)
)
+δ

(
(σ−λ)

(
R∗

1(δ)−R0B∗(δ)
)
−λ

) .

Consequently the steady-state prelimit distribution of the number of cus-
tomers in the system can be approximated by a normal distribution with mean
Nκ1 and variance Nκ2.

For the distribution of the number of retrials/transitions of the tagged customer
into the orbit we have the following results.
Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1 − (1 − q)z
,

where value of parameter q has a form

q = R0B
∗(δ).

From the proved theorem it is obviously follows that the probability distribution
P {ν = n} , n = 0,∞ of the number of transitions of the tagged customer into
the orbit is geometric and

P {ν = n} = q(1 − q)n
, n = 0,∞.

Consequently, by using the law of total probability for the characteristic
function of the sojourn/waiting time W of the tagged customer in the orbit we
get

EeiuW ≈ q + (1 − q)
σq

σq − iuN
.

In the case of N → ∞ the limiting probability distributions of the sojourn
time of the customer in the system T and the sojourn time of the customer in
the orbit W coincide, namely

lim
N→∞

E exp
{

iu
T

N

}

= lim
N→∞

E exp
{

iu
W

N

}

= q + (1 − q)
σq

σq − iu
.

4 Systems with an Unreliable Server

In many practical situations the server is not reliable and after a random time
it can fail and needs repair which also takes a random duration. To deal with
these service interruptions several papers have been published, see for example
[2,8,11,12,14,21,41,45,48,49,53]. In the following parts we summarize our
results obtained by different methods.
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4.1 M/M/1 System

Tool Supported Approach by MOSEL. Because of the fact, that in many
practical situations the state space of the describing Markov chain is very large,
it is rather difficult to calculate the system measures in the traditional way of
writing down and solving the underlying steady-state equations. To simplify this
procedure several software packages have been developed and effectively used for
performance evaluation of complex systems, see for example [11–14,17]. In our
investigations a similar software tool called MOSEL (Modeling, Specification and
Evaluation Language) has been used to formulate the model and to obtain the
performance measures. Paper [4] deals with the model formulation, derivation
of several performance measures and generation of illustrative examples showing
an interesting phenomenon of finite-source retrial queues, that is under specific
parameter setup the mean waiting/ sojourn time has a maximum as the arrival
intensity is increasing.

Stochastic Simulation. To validate the applicability of the asymptotic app-
roach we need either numerical or simulation results. The correct operation of the
simulation software was tested by the numerical sample examples. The investiga-
tions carried out by the simulation and asymptotic methods have been submitted
for publication, see [31,32].

Asymptotic Approach. First we deal with the distribution of the number cus-
tomers in the system as it has been published in [31]. The first order asymptotic
results are the following

lim
N→∞

Eexp
{

iw
J

N

}

= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1 − κ1) λ − μR1(κ1) = 0,

where the stationary distributions of probabilities Rk(κ1) of the server state
k = 0, 1, 2 are obtained as follows

R0(κ1) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· a (κ1)
a (κ1) + γ1 + μ

}−1

,

R1(κ1) =
a (κ1)

a (κ1) + γ1 + μ
· R0(κ1),

R2(κ1) =
1
γ2

[γ0R0(κ1) + γ1R1(κ1)] ,

here a (κ1) is
a (κ1) = (1 − κ1) λ + σκ1.
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The second order asymptotic results are

lim
N→∞

Eexp
{

iw
J − κ1N√

N

}

= exp
{

(iw)2

2
κ2

}

,

where κ2 is

κ2 =
γ2μ(R1 − b1) + (1 − κ1)λ {(γ1 + γ2) b1 + (1 − κ1) λR2}

(λ + μb2) γ2 − (1 − κ1) λ (γ1 + γ2) b2
,

and

b1 =
(1 − κ1) λ

a + γ1 + μ
R0, b2 =

(σ − λ)(R0 − R1)
a + γ1 + μ

.

Consequently the prelimit distribution of the number of customers in the sys-
tem can be approximated by a normal distribution with mean Nκ1 and variance
Nκ2.

One of the main contributions of paper [32] is that for the limit of the charac-
teristic function of the normalized sojourn time we have

lim
N→∞

E exp
{

iw
T

N

}

= q + (1 − q)
σq

σq − iw
,

where q is

q =
(1 − κ1)λ

(1 − κ1)λ + σκ1
.

Consequently the characteristic function of the sojourn time of the customer
in the system in the prelimit situation of finite N can be approximated by

E eiuT ≈ q + (1 − q)
σq

σq − iuN
. (2)

For the distribution of the number of transitions/retrials of the tagged cus-
tomer into the orbit we got the following results.
Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1 − (1 − q)z
,

resulting that the probability distribution P {ν = n} , n = 0,∞ of the number
of transitions of the tagged customer into the orbit is geometric and has the form

P {ν = n} = q(1 − q)n, n = 0,∞.

Consequently the prelimit characteristic function of the sojourn/waiting time W
of the tagged customer in an orbit can be approximated as

EeiuW ≈ q + (1 − q)
σq

σq − iuN
.
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In the case of N → ∞ the limiting probability distributions of the sojourn time
of the customer in the system T and the sojourn time of the customer in an
orbit W coincide, namely

lim
N→∞

E exp
{

iu
T

N

}

= lim
N→∞

E exp
{

iu
W

N

}

= q + (1 − q)
σq

σq − iu
.

4.2 M/GI/1 System

Stochastic Simulation. In paper [47] the required service time is supposed to
be gamma distributed and the input parameters of the system are collected in
Table 1.

Table 1. Numerical values of model parameters

Case N λ/N γ0 γ1 γ2 σ/N α β

1 100 0.01 0.1 0.1 1 0.01 0.5 0.5

2 100 0.01 0.1 0.1 1 0.01 1 1

3 100 0.01 0.1 0.1 1 0.01 2 2

Figure 2 shows the steady-state distribution of the three investigated cases. It
is observed the mean number of customers increases as α and β are getting
larger. Case 2 is a special case because when α = 1 it represents the expo-
nential distribution. From the shape of the curves it is clearly visible that the

Fig. 2. Comparison of steady-state distributions
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steady-state distribution of the cases are normally distributed. The next table
presents the considered performance measures in relation with the different cases
(see Table 2).

In Table 2 the notations mean the followings: E(J) and V ar(J) - mean num-
ber and variance of customers in the system, E(T ) and V ar(T ) - mean and
variance of response time, E(W ) and V ar(W ) - mean and variance of waiting
time, E(S) and V ar(S) - mean and variance of successful service time, E(IS) -
mean interrupted service time.

Table 2. Simulation results

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S) E(IS)

1 63.6842 27.9734 175.3073 65657.3454 174.5884 65434.6696 0.3147 0.1979 0.4041

2 70.5912 24.3012 239.9734 105273.4267 238.9734 104918.6389 0.4784 0.2289 0.5217

3 75.1825 21.2439 302.8106 151781.1411 301.5377 151277.6006 0.6472 0.2095 0.6257

Figure 3 represents the confirmation of mean waiting time. The same param-
eters are (see Table 2) used as in case of Fig. 2 but here the running parameter is
λ/N . As it is expected with the increment of λ/N mean waiting time increases
as well but an interesting phenomenon is noticeable namely after λ/N is greater
than 0.1 mean waiting time starts to decrease.

Fig. 3. Mean waiting time vs. intensity of incoming customers

Asymptotic Approach. These results have been published in [36] using sup-
plementary variable technique. The limit of the characteristic function of the
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scaled number of customers in the systems can be written in the following form

lim
N→∞

E exp
{

iw
J

N

}

= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1 − κ1) λ − δ(κ1) [R0(κ1) − R1(κ1)] + γ1R1(κ1) = 0,

here δ (κ1) is
δ (κ1) = (1 − κ1) λ + σκ1,

and the stationary distributions of probabilities Rk(κ1) of the server’s state
k = 0, 1, 2 are determined as follows

R0(κ1) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· δ (κ1)
δ (κ1) + γ1

[1 − B∗(δ(κ1) + γ1)]
}−1

,

R1(κ1) = R0(κ1)
δ (κ1)

δ (κ1) + γ1
· [1 − B∗(δ(κ1) + γ1)] ,

R2(κ1) =
1
γ2

[γ0R0(κ1) + γ1R1(κ1)] .

4.3 Stochastic Simulation of Special Systems

In paper [47] systems with not only gamma distributed service times but also
gamma distributed inter-arrival and gamma distributed retrial times have been
investigated.

The Effect of Breakdowns Disciplines. In paper [46] the M/G/1//N and
G/M/1//N systems were investigated with exponentially distributed operating
and repair times. In case of a server failure two operation modes are considered:

– The interrupted request gets into the orbit instantaneously.
– The service of the interrupted request is suspended and it continues after

repairing the server.

As it was expected the second operation mode results lower mean sojourn times
and higher mean successful service times. The Figures are similar to the cases
treated earlier that is why they are omitted.

5 Conclusion

In this paper tool supported, numerical, simulation and asymptotic methods
were considered under the condition of unlimited growing number of sources in a
finite-source retrial queue with collisions of customers and an unreliable server.
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During the survey several cases and examples were treated and the results of
different approaches were compared to each other showing the advantages and
disadvantages of the given method. Tables and Figures were collected to illustrate
some special features of these systems. In the near future the two research groups
would like to continue their investigations in this direction including systems with
impatient customers, systems embedded in a random environment, systems with
two-way communications, just to mention some alternative generalizations.
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3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the
European Social Fund.
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46. Tóth, A., Bérczes, T., Sztrik, J., Kuki, A.: Comparison of two operation modes
of finite-source retrial queueing systems with collisions and non-reliable server by
using simulation. J. Math. Sci. (2017). (submitted)
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