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Abstract

Retrial queues are important stochastic models for many telecommuni-
cation systems. In order to construct competitive networks it is necetgsary
investigate problems related to optimal control of queueing systems. This
paper considerg -server retrial systems with Markovian arrival process,
heterogeneous service time distributions of general phase-type and exp
nentially distributed retrial times. It is shown that the optimal policy which
minimizes the mean number of customers in the system is of a threshold
type with threshold levels depending on the states of the arrival, retrial and
service processes. Based on the Howard'’s iteration algorithm a nuierica
procedure for an optimal control is proposed. Finally, some numerieal re
sults are given to illustrate the system'’s dynamics.

AMS subject classification: 60K25, 93E20

Key words: Optimal control,M AP, PH, retrial queueing system, control-
lable queueing systems, monotonicity of optimal policies, threshold levels,
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1 Introduction

Retrial queueing models are effective tools to describe fheraiion of many
telecommunication networks. Since the theory of contbbdajueueing systems
has many applications involving the control of admissiaryiing, routing and

1The research is supported by the Austro-Hungarian Codpar@rant No. 616u16, 2005.



scheduling of jobs in queue and networks it seems to be veryigng to match
these two approaches. This paper deals with retrial queitesmwiltiple hetero-
geneous servers where the arriving customers form a Mahkasirival process
(MAPs, see [13] and [10]), service time distributions areuased to be of general
phase type (PH, see [14]) and the retrial times are suppaosked ¢xponentially
distributed random variables. As usual, the arrivalsjalkstand service times are
assumed to be independent random variables.

Recent investigations for retridlf AP/PH/K systems with homogeneous
servers are available (e.g. [4, 2, 12]), as well as statilstiodel fitting forA/ APs
and PH distributions (see [1] and [3]). Since results in the analg$ these tra-
ditional or so called non-controllable retrial queueingdels, where the arriving
customer is directed to the orbit if and only if all servers husy, have already
been achieved, our aim is to combine the traditional and dreralled retrial
gueues with heterogeneous servers and to find some optimabtpolicies.

Controlled queues are assumed to involve a so-called deaisaker or con-
troller. Looking at the state of the system the controlleym@nsiderably improve
the system’s performance by reducing the queue length orasing the through-
put, whereas in the absence of a controller the system’svimiranay get quite
erratic, exhibiting periods of high load and long queuek¥éd by periods dur-
ing which the servers remain idle. Therefore, it is cleat thaay be better, e.g.
in terms of average number of jobs in the system, not to stsetdce on a slow
server whenever the current number of customers in the igrbit too large, so
that the waiting customer can anticipate being servicecherfast server within
a short delay. The theoretical foundations of controlleduging systems have
been developed within the theory of Markov, semi-Markov sechi-regenerative
decision processes [7, 8, 17, 22, 20, 24].

The problem of an optimal allocation of jobs between hetenegus servers
aiming to minimize the mean number of jobs in the ordinarywepieg system
was considered in [5, 9, 11, 16, 18, 21, 23]. It was shown ti@bptimal policy
belongs to a class of structured policies, i.e. thresholitips, which use a slow
server only when the queue length exceeds a certain thoeshol
To the best knowledge of the authors no paper on controlkei@dlrgueueing sys-
tems has been published, thus our goal in this paper is to #awa threshold
policy is optimal for retrial queues as well, furthermoreadgorithm is proposed
which allows us to construct these optimal policies. Sdvaunenerical examples
are given to illustrate the effect of different input paraemns on threshold func-
tions by the help of which the optimal control policies areanhed.



2 Problem description

Consider a retrial/ AP/ PH /K queueing system witik’ heterogeneous servers.
The service time (ST) distributions are supposed to be o@lgpe with rep-
resentation$n, My). The dimension of thé® H-distribution for thek-th server
is denoted bym,. The vectorsy, = (ni,...,n.") are the initial states of the
phase-type service processes and the irreducible matkiges- [ufj] contain
those transition intensities which do not lead to servicmmletion. The inten-
sities of trainsitions, which lead to service completior defined by the vectors
fr, = — M1,

The Markovian arrival process is parametrized by the ratgioes A = [)\;;]
(which specifies intensities of phase transitions withauvals) andN = [v;;]
(which specifies intensities of phase transitions accomeplasy an arrival), whose
sumA + N is an irreducible infinitesimal generator of ordey ;. The average
arrival rate) is defined as\ = 7NT, where7 is the invariant vector of the sta-
tionary distribution of the arrival process.

The vectorr is a unique solution to the systefifA + N) = 0, #1 = 1. Here
I is the column-vector of appropriate size consisting of cemes0 is the row-
vector of appropriate size consisting of zeros. For morermétion onM APs
and P H-distributions, see [10] and [14], respectively.

It is assumed that the times between the successive ratfigiach jobs are
exponentially distributed with parametgrthus the total retrial rate; depend on
the current numberof customers in the orbit, that ts = i~y (cf. [4], section 6).
Denote byB < oo the maximal possible number of customers in the orbit.

The control epochs are the arrival times of new or retriatmugrs. At the
arrival times of new customers the control consists in sgnthem to one of the
idle servers or to the orbit if it is not full. When retrial arals take place the
control consists in either sending a customer to some idkes®r leaving all
customers in the orbit. An arriving customer is rejected/onlthe case if at the
time of its arrival the orbit is full and all servers are bugy.customer starting
service on a slow server has to complete service there sie@m when a faster
server may become available during its service time.

We assume there a¥€ servers with mean service times

0<m' <hy' <o <Jig, 1)

Whereﬁj‘1 = —nfMj‘lf, I.e. the fastest (in average) server has the lowest index.



To model the system dynamics consider the controllablega®c
{Z(t)} ={X(®),U(®)}.
Here, the process
{X () =0 = {Do(t), Di(t), ..., Dk (t), Dr+1()}

denotes the observed process and it is a vector with thevioigpcomponents:
Dy(t) is the number of customers in the orbit at time

Di(t), ..., Dk(t) describe the phases of the servers at this time,
D;(t) = 0, if the j-th server is idle at timé and
7 ld; =1, my, ifthe j-th server is in phasé,

Dgy1(t) = {dk41 = 1, mk1} describes the phase of the arrival process.
Denote the state space of the observed process by

K
E=Nx][J{0,....m} x {1,... ,mxs}
k=1

with N := {0,1,..., B}. For each state = (dy,ds,...,dk,dx 1) denote by
q(z) = do(z), d;(z) anddk1(x) the number of jobs in the orbit, the states of
ST-phases for each servér£ 1, K) and thel/ AP in system state, respectively.
Also, denote byJy(x) and J;(x) the sets of indiceg for which d;(z) = 0 and
dj(x) > 0, respectively, i.e.

Jo(x) ={j:dj(x) =0}, Ji(x) ={j:d;(z) > 0},j € LK.

As a controlling process consider the procgSst) },~o, wherelU (¢) is a decision
which should be taken at the next decision epoch.Aet {0,1,..., K} be the
set of available controls and

M) — Jo(z) U {0}, forzwith ¢(x) < B,
(@) = Jo(z), for z with ¢(z) = B,

be the set of admissible controls when the system state is
Suppose at a certain time instarhe system stat& (¢) = =. Then the controller
chooses an admissible cont@lt) = a € A(z), wherea = k& > 1 has the
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meaning "switch on servér’, whereasu = 0 has the meaning "send the job to
the orbit".

Under the considered assumptions, the pro¢e&¢)} = {X(¢),U(t)} is a
Markov decision one with finite state spaEeand finite control spacd(z) C A
depending on the statec F.

Denote by, = (0,...,0,1,0,...,0) the K +2 - dimensional vector for which

H,_/ H/—/

K+1—i
the:-th component (beglnnlng from O-th) is one and all otherzares. Consider

the shift operators,, Sj when arrivals of new customers take place in the queue
Sor = & + eglig(z)<B},
d.
Sy'r =z + dje;lje ()}

otherwise, ifg(z) = B andj € Jy(z), Spx = Sjﬂ'x = z. In case of exponential
servers when a customer arrives the upper index of the apefatvill be omit-
ted. When a retrial arrival and a service completion takeeptate considers the
inverse shift operators; ' and S;dj for the pointsz € E, for which they exist,
ie.

Sole =z — eolig)>oy,

S;'r =z —diejlijen)y

otherwise, if¢(z) = 0 andj € Jy(z), Sy'z = = andS ‘r = z. The same

operatorSfj is used to represent a phase change Wlthout service coorphatd
modulating phase change

SPx =+ [d; — dj(@)]le;Lgen @y

Sffiﬁlx =2+ [dg41 — dg1(7)]ex 1.

Using the above notations we can represent the transittensities\,, (a) of
the proces§Z(¢)} to go from stater to statey, when actior: is selected, in the

form
dr4+1(y)

)‘dK+1( Ydx+1(y)> Y= SK-H x,
Vg 1 (2)di 41(y )[L{a=0}

Aay(a) = JZZ_‘(;)( )1{#0}], y= Séi”f?ﬁﬁl(%)x, a € A(SE W),
oy o y:S Tx, j e Ji(x),
T y= Sd W, je hi(z)n dly),
L)y Lazy. y = S,‘faS x, a € A(Sy'x),
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whereujﬂ'(’“) are the components of the vecfor = —M;1. The diagonal entries

are the negative sums of the non—diagonal entries in the sammand all positions
not specified above are zero.
In this matrix

e the first row corresponds to a transition of an arrival phagbout a new
job arrival

the second row corresponds to an arrival of a new job in theesysind
sending it in the orbit or to some server in accordance wehdicision rule

the third row corresponds to the service completion

the fourth row corresponds to the service phase changing

the fifth row corresponds to the retrial arrival and sending of jobs from
the orbit to one of available servers in accordance withsiecirule.

3 Optimality of threshold policies

3.1 Problem statement

In the present section we consider the problem of a mean Nuaild®bs Mini-
mization (NJM-problem). The total number of jobs in the systequals the sum
of the jobs in the orbit and under service. For the NJM-pnobtee quantity
functional underlying the minimization problem takes then

Y(t) = /0 t(Do(u)+ > 1{Dk(u)>0}>du.

1<k<K

Leti(xz) = q(x) + > cp<i L{di(2)>0; deNote the number of jobs in state
(which does not depend on the contpl This number represents the sum of jobs
in the orbit plus the number of busy servers.

A strategy (or a policy) is a rule for choosing control acianc A. In gen-
eral it may depend on the history of system states and mayruomzsized. As
usual in Markov decision theory (see [7, 17, 25]), we definérategy and a
probability distributionP?, (.) = P(.|X (0) = zo, §) which is a measure on the set
of thetrajectories(the sequence of the states and controls during the obgarvat
period) of the proces§Z(t)}, given an initial stater, and a strategy. Further,
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let ES [] = E[.|X(0) = o, 6] denotes the expectation with respect to this distri-
bution. Then the problem of minimizing the long-run averagenber of jobs in
the system can be represented as follows: Minimize

glao;8) = limsup 1S, [V (1) 2)
with respect to all admissible strategies

As it is well known (see, for example [7, 19, 22, 25] ) for a Mavldecision
problem with respect to the long-run average minimizatiotegon an optimal
strategy is a stationary Markov one, i.e. it is determinedhgy optimal policy
f =A{f(x) : = € E} which can be found from the optimality equation for the
process as a minimizer of its right-hand side, and the gdijy(x(; ¢) exists and
for ergodic Markov process it is independent of the inittatsz; that is, there is
areal numbep = inf; g(zo;0).

To specify the optimality equation for the model let us dermy

V(w, t) = inf E2[Y (1)]

the minimal expected total sojourn time of all customerdhimmsystem until time
t. Then the obvious relation is

1 1
lim ?V@’ t) =inf lim ~E[Y(t)] = g

t—o0 t—o0
for all x. The last relation motivates the relation (for a proof seg §]) that a
functionv : E — R exists such that for eache E
V(z, t) =tg+v(z)+o(l), for larget.

In fact the functionv(x) indicates the transient effect of the initial state on the
expected sojourn time of the customers under the giveregiyatWe often refer
to v(z) as the loss in state.

For small time interval of length according to common Markov process ar-
guments the following equation can be obtained

V(z,t+h)=1l(x)h+V(x,t)

di(z)d;(x

j€J1(J?)
Mmg+41 my
i d d di od
+ Z VdK+1(a:)dK+1h mjlr(l {V(S()SKIiT:C, t)7 Z nka(SkkSKKﬁllx’ t)}
dgi1=1 keA(S T x) ot



mg,
raonn_min, (Vi 0,3 ivistsyte o)
)

keA(Sy ! i
MK 41

+ Y M@ AV (SE T )+ ) Z Mpv(S, )

Ax =1 jEn() 4
dg 174K +1(2) ﬂfd (w)

d; —d;
+ Z p;' WV (S; 7, t).

jEJl(x)

The first term on the right hand side represents the sojoom ¢if/ () customers
resident in the system during a time interval of duratigpthe second term repre-
sents the total sojourn time of all customers being in théesysluring the subse-
guent time interval of durationin case that there are no state changes, the next
term represents the total sojourn time of all customersgogithe system during
timet in case that a new customer arrives before the next retr&ibmer arrives.
The following term represents the total sojourn time of thstemers in the sys-
tem in case of a retrial arrival before a new customer arrived next two terms
deal with the total sojourn time in the system in case of a @lthgnge without
arrival or service completion, and the remaining term repnés the total sojourn
time in the system during timein case that one of the serviced customers leaves
the system before some customer arrives.

After some elementary algebra, and passing to the limit- 0 the above
equation leads to a differential optimality equation. Nownshbstituting the above
asymptotic expansion far— oo in the differential equation, after canceling out
common terms, the optimality equation assumes the follgenm

1
w0) = 1|+ i) + ) - g+ ©
MK11 .
+ D Vi@ TSI D) + e s o o 4@ ”TU(SO_%)]
dK+1=1
= Bu(z),

whereBv(x) denotes the transform operator for the function), (see [21]).
In this representation

x)d;(x)
Ae = (Ad“l("” i)+ D K 1{aeA<solz>\{0}}Q(x)7)

]€J1(x)



is the total transition intensity out of state

Cy (33) = Z )‘dK+1($)dK+1 ?;:-Jrllw Z Z /1'] )

dx 17dK1() jeNi(z) djFd;(x)

is called the loss rate due to a transition of the MAP or theisephase without
decision making;
= > uy (s, )

jeJi(x)

is the loss rate due to a service completion;

Tu(z) = mm{ (Soz), 277 Sdk :k:L—K} 4)

dp=1

is called the minimal loss in the case of a new arrival to stafEhe same operator
at the pointS; ' = represents the minimal loss in case of a retrial job.

As in case of a classic queue (see [5, 21]) the form of the @bitiynequation
shows that the optimal policy = {f(z) : € E} is completely determined by
the value function = {v(z) : € E'} whichin turn is a solution of the optimality
equation (3), namely

v(S.z), exponential service
f(z) = argmin ¢ 1,_0y0(Soz) + 1{azr=0y0(Sp2), Erlangian service
L{a—0y0(Sox) + Liacisoy Dog'y Mikv(Sika),  PH-type service
(5)

Thus the functionf(x) specifies the optimal decision rule which has to be taken
in case of a new or retrial request’s arrival in the state

3.2 Assignment to the fastest available server

Our objective in this section is to prove that it is optimaluge the fastest avail-
able server. As shown in the previous section the optimatya completely
determined by the value functiariz), therefore, it is necessary to investigate the
properties of this function. The form of the optimality etjoa (3) shows that for
retrial queueing systems all the properties of the funatiar) for ordinary queues
also should hold in this case, see for details [5]. Sinceelassertions can only
be partially proved, they are formulated as conjectures.



Conjecture 1: The value function of the model= {v(x) : = € E} satisfies
the following monotonicity properties

Lo > PSPy <> nfe(Siie),ig € o), Bt <A
d;=1 di=1
mi

2 Z nMu(Shr) < v(Sx),
di=1

v(z) < v(Sox),v(z) < v(S%x), di=T,my,
4. v(S%) < v(SPx), Qe Jy(x), ud >l
5. w(Sg) < 'U(S[ﬁ(ﬂm), Vo < Vp.

Property 1 means that the controller has to activate onliastest server available
in statex. According to property 2, whenever the fastest (the firgijyesds idle it
is always optimal to allocate a job to this server. The negpprty 3 describes the
monotonicity condition of the value function with respezthe shiftss, andSZ.di.
The last two properties 4 and 5, wheuﬁ is the total service rate from phagge
andyy, ., denotes the total arrival rate from the modulating phasg, show the
monotonicity of the value function with respect to the diffiet states of arrival
and service processes.

To prove these inequalities it is necessary to show thatpkeadorsB andT’,
introduced by (3) and (4), respectively, preserve themHterfunction which is
monotone with respect to the partial order introduced orstate spacé’, see [5,
21]. Then the inequalities follow from the monotone conegrte lim B"[(z) =

n—oo

v(x), as shown in Howard [6], and the fact that the functién) preserves the
mentioned monotonicity properties.

A rigorous proof of these inequalities has been pursuedfonlyimplified queues
(e.g. with exponential servers) and is analogous to a paradridinary queueing
systems, as investigated in [5].

As an example we prove the first inequality of the Conjecturerlttie M/M/K
retrial queue.
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Proof: To study the monotonicity properties of the value functiomexploit
a partial ordering of the state spage and the complete ordering of the sét
of controls. For that purpose the servers are arranged iortter of decreasing
service intensities (increasing mean service times)

0<p' <py' <---<pg (6)

and the components of the vectbr= (di,...,dx) are numbered accordingly.
Assume, that the operatofs and.S; shift the points ofE in positive direction,
that is,

Sox >z and Sz >z, i€ Jy(x). (7)

Shifted points are ordered with respect to increasing meance times, i.e.
Six > Sjz, i i>j4, i, jeo(z) (thatisp; ' > ). (8)

PointsSyz andS;z, (j # 0) are not comparable.

In the setA of controls a complete ordering is given according to the Inerimg
1 <2< --- < K (with respect to servers, ..., K). Clearly, this induces the
corresponding ordering in any subsktr).
To prove e.g. the first property in Conjecture 1 for the quegeiystem under
consideration we have to prove that the following is truedach valuer € £

Tv(Siz) > Tv(x), i € A(x), Tv(Siz) > Tv(S;z), i,j € Jo(z), i > j.

Let the functionu(x) be nondecreasing with respect to the introduced ordering,
namely

v(S;x) >wv(x), 1€ Ax); v(Siz) > v(S;z), 1,7 € Jo(z), i > j.
For the first inequality we have fare A(x)

Tv(S;x) = min v(SpS;z) > min v(Sgr) > min v(Spz) = Tw(z),
keA(S;z) keA(S;x) keA(x)
where the first item follows from assumption that the funetigr) is nondecreas-
ing and the second item follows from relatief{S;z) C A(x) together with the
fact that the minimum does not increase upon expanding themzation set.
Finally, we prove that upon passing frofj to S;, 7,5 € Jo(z), @ > j, the
operator]; preserves the property to be nondecreasing.iliette Jy(x). Then
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the setd(x) can be represented dsz) = B(z) U {i} U {j} with someB(z) so
that A(S;z) = BU{j}, A(S;z) = B(z) U {i} and the relations

Tv(S;z) = kerg(ié}i)v(SkSix) =

mln{k:gg&) v(SES;ix), v(S; ;) }

> min{krerga)v(Sijx), ’U(SZ'S]'ZE)} = Tv(S;x)
are valid by virtue of inequality (S;z) > v(S;z).

Now we show that the operat@t defined by (3) also retains monotonicity upon
passing fromS;z to S;z, i, j € Jo(z), i > j.

Let us multiply each side of equation (3) for the stéte by \s,,. and add

(ks + 1{aeA(sglsjm)\{o}}Q(Sjl‘h)U(Sﬂ)

to each side.
Analogously, for the staté;z we multiply the optimality equation bys, ., and
add

(pi + 1{6@4(50—lsix)\{o}}Q(Siw)’Y)U(Sj@
to each side.
To simplify the form of an optimality equation we make thddaling notation

(ASiLU+l’[’j+1{a€A(571Sjgj)\{o}}Q(ij)’Y)) = ()\Sjﬁ'ﬂz"|‘1{aeA(s(;lsix)\{o}}Q(Sﬂ)V)) = w.

0

Finally, for nondecreasing functiar(z) for anyi, j € Jo(x) such that > j,
taking into account that(S;z) = ¢(S;z) = ¢(x), we get

Bu(S;z) — Bu(Sjz) = %([Z(Szx) —1(S;x)] + A[Tv(Six) — Tv(S;x)]

+ Z pulv(SiS; ) — v(S;S; )]

leJi(z)
+ pi[v(Siz) — v(@)] — pilv(Sjz) — v(w)]
+ 1{aeA(s*lsix)\{o}}Q(l‘)V[TU(50_15196) — v(S;)]

0

- 1{aeA(351ij)\{o}}Q(x)'V[TU(SO_ISJ'ZE) - U(Szx)]) > 0,

12



where the first three items in the right-hand side are nortiveglay virtue of the
constancy of the functiof{x) upon passing fron$;x to S;z, i,j € Jo(z), i > j
and the fact that operat@r retains the monotonicity of the functions.

For the next item we obtain

pilv(Siw) — v(@)] = pilv(S52) — v(z)] =
v(Siz) —v(z)  v(S;z) —v(x)
Hi H

since
v(Six) —v(z) > v(Sjz) —v(z) >0

andy; < uj;, owing to the monotonicity assumption.
For the last item we consider several subcases. If a cantso in statesS; ' S;z
andS, ' S,z then this item is equal to zero. In case“ 0 in both of states we get

g(@([Tv(Sy " Six) +v(Siz)] = [Tv(Sy ' Sjz) + v(Sja)]] = 0

owing to the monotonicity assumption and property of therafme7". In case if
a # 0in stateS; 'S,z anda = 0 in stateS; ' S;= we obtain

q(2)y[Tv(Sg " Six) — v(S;z)] = 0,

since in each state the decision has been made if necessgavptamality equation
(3) is defined only for the sTable states It means that this function satisfies a
condition

v(S;r) = min (S5, 9;r) < min v(SkSy tSw) = Tw(Sy ' Sir).
k€A(Sy S ) k€A(Sy 1 Six)\{0}
Finally, if a = 0 in stateS; ' S;z anda # 0 in stateS; ' S;z then analogously we
get
q(z)y[Tv(Sy ' Sjx) — v(Siz)] <0,

due to the properties of the functioir)

v(Siz) > v(S;z) > min v(SkSy 1 Sx) = Tw(Sy ' S;x).
kEA(Sy ' S;2)\{0}

It should be noted that the operatdr retains inequalities in the sense that if
v(xz) > v(y) then Bu(x) > Bu(y). Therefore the theorem follows from the
mentioned above monotonicity convergence of the sequBriter) to the value
v(x) and the fact, that the functidir) is constant relative to shifts froi} to .S;.
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3.3 The optimal policy is of threshold type

Based on the properties of the value functigir) the following strengthened
conjecture can be formulated:

Conjecture 2: Under the conditions of Conjecture 1 the value functios
{v(z) : = € E} of the model satisfies the following monotonicity properties
the increments:

L. v(Sozx) — Z M, Sd" < v(S2x) — Z Mg Sd’“Sox

dkl di,=1

mg
2. v(SpSex) Z niu(SpESiT) < v(SoSTw) — Y nitu(SiSTw),

dp=1 dp=1
Ty
3. v(SoSki 1) — Z un Sd’“SKHx) < v(SpS K+1x Z un SdkSIng)
dp=1 =1
Vo < Vg.

Property 1 of this conjecture means that if in some state opismal to keep a
customer in the orbit, then this control action is also ogtiin all states with
the same collection of busy servers and less number of joing lre the orbit.
Properties 2 and 3 show that the incentive to make an assignimehe k-th
slower server is greater in the ststg ., with larger arrival intensity; > v, and
smaller service intensity” < ;. of somei-th faster server. These inequalities
can be proved in the same way as in [5, 21].

As before we consider the simplified queue M/M/K to prove thet fassertion in
Conjecture 2.

Proof: Regarding to the servers switching rule we show that an oppoiecy
has a threshold type, i.e. if in some statec E with ¢(x) jobs in the orbit
at the decision epoch it is optimal to leave a job in the orént this control
action will be optimal in all stateg with the same collection of busy servers and
q(y) < ¢(x). In other words, the equalitf(x) = 0 leads to the equality(y) =
if ¢(y) < q(x). For this it is sufficient that

f(Sox)=0 = f(z)=0.
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Itis possible to rewrite the last relation in accordancéhe definition of optimal
policy (5) in the form

v(Sgx) > v(SeSkx) = v(Sex) > v(Skw) forallk € Jy(z)
or as inequality
v(Soz) — v(Skr) — v(Sgw) + v(SeSkr) < 0. 9)

According to the inequality 1 in Conjecture 1 only two solusoare possible in
each stater: f(x) = 0 (not to serve the job) of (zr) = k (to use the fastest
free server), so that here the famif){z) of controls is independent on the shift
So. We set out to prove that the operaforetains the above inequality. Thus it is
necessary to check whether this property is satisfied fduthaions(x) = Tv(x)

if it is satisfied for some function(z). That is we have to prove

0(Sow) — 9(Spx) — 6(S52) + 0(SoSpr) =
min{v(S;5x) : | € Jo(z)} — min{v(S;Skz) : 1 € Jo(Skx)}—
mln{U(SngSL’) le JQ(I)} + min{v(SlSoSkx) le J()(Skl')} < 0.

To prove this assertion for each point £ we divide it into several cases

1. First we consider the case when the optimal solutionscaignat the
points Syz and S3z (whereo(z) is involved in inequality with negative sign),
and f(Sxz) = f(S2x) = f. Obviously, by replacing the optimal solution at the
rest of the points by, we obtain that

0(Sox) — 0(Spx) — 0(Sgx) + 9(SeSkx) =
9(Sox) — v(SSkr) — v(SpSiz) + 9(SeSpr) <
U(SfSol‘) — U(SfSkI> - U(stgl’) + U(SfSoSkl‘> S 0.

2. The case of different optimal solutions at the poifits and S2z (where
0(x) is involved in inequality with negative sign) should be ded into two sub-
cases:f(Sgz) = 0, f(Skx) = [ # 0, wherel is the index of the fastest available
server, andf (S2z) = k # 0, f(Spx) = 0.

In the first subcase, by summing the inequalities (9) at thetp®,.x and Sy,
respectively,

U(S()Skl’) - U(SlSkx) — U(S&Skl’) -+ U(SQS[SkI> S O,
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and
v(Sgx) — v(SoSkx) — v(Syz) + v(SgSKr) <0,

we get the inequality
v(S3z) — v(SpSix) — v(Siw) + v(SES;Sez) < 0,

which shows that the inequality (9) is satisfied for the fiorct (x) at the pointe
since

9(Soz) — D(Spx) — D(Siw) + 0(SKSex) =
U(ng) — ’U(Skslﬁ) — U(ng) -+ ’U(SkSlSox) S 0.

In the second subcase, the relation has the form

9(Sox) — D(Spx) — D(Siw) + (SeSkpx) =
d(Sgw) — v(SeSkr) — v(SKSgx) + 1(SeSpx) <
v(SkSoz) — v(SoSkr) — v(SESgx) + v(SeSeSkw) = 0.

For the boundary pointg(z) = B, Jo(x) = 0, the inequality (9) for the
functionv(x) is also satisfied due to the definition of the shift operathisy the
first assertion of Conjecture 2 follows from the fact that @y of (9) is retained
for linear operations defining the operaf®rthe function/(x) satisfies (9) and the
successive approximatiori$®/(x) converge monotonously to the value function
v(z).

Thus for some simplified retrial queues we can prove and foege system we
may expect that the optimal policy is of threshold type, atest below:

Corollary: The optimal policy for the controlled retrial systeMAP/PH/K is

of threshold type with finite thresholgS(d,, . . . , dk, dx 1), d; > 0, i =1,j — 1,

for each arrival and service phase and it is necessary to svatcthej-th server
only if g(x) > ¢;. In case of the NJM-problem the decision maker has to use the
fastest available server.

It is obvious that if the orbit is nonempty and the first senw#th mean service
time ;' = kr{l]i?){ﬂ,;l} is available (idle), then the idleness of the fastest server
cJo(x

is never optimal, i.e. the threshold level for the first senfe= 0.
We note that for the NJM-problem the threshold level for jié serverg; (di,
..,dg,dk 1) depends on the states of arrival and service processest tan
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depend on the states of slower servers. Numerical resultg tfat such influence
may arise only in case of a large arrival intensity and theghold levels can vary
by at most 1 when the states of slower servers change.

Now assume that in our system there ar@bs and no future arrivals take
place. The jobs must be served as soon as possible. Thieprablknown as
"scheduling problem".

In caseK = 2 servers it is possible to obtain the threshold level exgici
Indeed, in this case = 0. Now using the equation (3), taking into account
the above statement, we just want to clear a system whichdlreontains the
customers. Solving recursively the optimality equationoaa find the threshold
levels ¢5(d;) for the second server. By virtue of the threshold propertyhef t
optimal policy if the finite state = (0,0, 0) we get

o(Se: 7 St
o(S¢:? ™ 53x)

(qu ml Sm1 )
If ¢5(dy) is a threshold for using the second server the following uradity holds
Z v (S TSP P ) < w(SE Y Sha)

do=1
For the last inequality we get
-1 x
Z nPo(SE TS Sy = T 4 o(SE T Sty < u(SP M S a)
doe1 Hia

and now we obtain the vector of thresholds for the secondkséoy each service
phase

(1) (1)
72(2) 3(2)

||l e
g2(m1) g (m1)
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For the value of "mean" threshold we have

5[] - (2o

In caseK > 2 it can be shown that for the threshold levels

\‘Z Z /'7 : 77]]11Q;<(d17"'7dj—1)J7 ]:2,7[(

di=1  dj_1=1

the bounds can be obtained, namely

(2-H X m-6-n| <7< |t 5m-6-1]
j i=1
We expect that this values represent the bounds for thehiiekevels also in
a so-called light traffic case, whene [0, i, ). Finally, when the retrial intensity
~ is large then the model turns to be the classical queueingmbrdthis case the
bounds for the threshold levels coincide.

4 An Algorithm

The following algorithm is based on Howard’s iteration algaom [6] but it has

been modified with respect to specific properties of the @bl The algorithm

consists of two basic step8alue function evaluatioandPolicy improvement
Value function evaluation. For a given policyf = {f.(x) : x = 0, I}, where

I is defined below, starting from = 0 solve the equation (3) by a successive

approximation method with given accuracy

o) = - (10) + Culo) + Cate) - 3 ) +

As

mgE4+1

Z VdK—H dK+1

T dri1=1

di 1 di i i1
( ;l(}_(ql )=0}Un(SOSK+1 l’)—i— {fn( K[_(plq k}dzl'ﬂ Un S SK+1 ))+
k
1 Mk
Q-1

A {fn 0 33) k#0} Z nk; UTL S kSO LU)

dp=1
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for all x € FE under the conditiom,,(0) = 0.

Policy improvement. For a given solution,, = {v,(z) : x € E} find a new
policy fni1 = {fn—&-l(x) Lx e E} (5):

{2211;1 ﬂgkvn(ii + dkek), k= 1, K7

a1 (x) = argmin

keA() | Un(T + €o), k=0.

The algorithm stops when two successive iterations yieddsdime policy.

To describe the system state changes we consider the aretoerrespon-
dence between the multi-dimensional representation afytbeem state and the
index of such a state. Namely,

K -1

#(x) = H(mi—i-l)(do(x)mKH—l—dKH(x)—l)jLZ dj(x)1s1y H(mi—l—l) =z,

i=1 i=1

wherez = 0,7, T =[], (m; + D)mg(B+1) — 1.
Now, if y; is the state after a possible transition from jk coordinate it can
be obtained with respect to the formula

(d; — dj(2)) TIi, (mi + D 1—oymuci
Liicjery [Tie; (mi + 1)
Thus, in the one-dimensional case we have

Yy =T+

K
Sox =x + Mgy I_I(mZ +1),
=1
K
Solte =2 — my H(ml +1),
=1
j—1
d;
SPx =+ (d; — dj(2)) [ (mi + 1),
=1
7j—1
Sj_djas =x —dj(x) H(mz + 1),
=1
K
St =+ (dicsa — dica (@) [ T(mi + 1),
=1
Using this algorithm one can construct explicit forms ofioyatl policies for the
retrial queueing system/ AP/PH,.,/ K and any particular case of this system.
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5 Numerical Examples

For numerical results of optimal policies we will considae tretrial queueing
systems\[/M /K, MAP/M/K, M/E/K andM AP/E/K and investigate the
results for different system parameters. The numericalyaisais based on a
series of experiments. The optimal control policies willrbpresented by means
of control tablesandcontrol diagrams Before we discuss the obtained results we
give some necessary comments. In all these examples therseme arranged
in increasing order of their mean service times (1) and theuging systems are
considered withB = 100.

The control tables show the optimal control policieg(z) for each system
state in case oK = 5 heterogeneous servers when the values of system parame-
ters are fixed. The left column represents the list of setvaeges and the upper
row represents the number of jobs in the orbit. The optimatrod actions that
correspond to the threshold levels (critical number of jolthe orbit) are under-
lined. As it was mentioned above, the optimal decision rateusing some server
j shows a weak dependence on the states of slower serveesptieghe states of
slower servers are labeled as "*", that means &,0¢ 0 for i > ;.

By means otontrol diagrams we investigate the queues with = 3 servers.
The diagrams show the behaviour of threshold functigneshen the values of
system parameters are varied. In this section we investigatthreshold function
q; for the second server with varying service intensities effirst two servers,
i.e. the thresholds which occur in the states- (d;,0,*), d; > 0. In fact, the
threshold functiony; for the third server in the states= (d,, ds,0), di,dy > 0,
have the same structure and illustrate the same propesties the second server,
but depending on the service intensities of all three servEmne service intensity
for the third server in control diagrams for all systems igdixi.e.us = 0.05.

5.1 M/M/K system

The following Table gives the optimal policies for the systeith X' = 5 servers
and parameter values= 0.01, p; = {2.50,0.63,0.52,0.40,0.30}, v = 2.90.
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Table 1: Optimal control in each system state

System State: Number of jobs in the orbig(x)
(di,da,d3,da,ds) O] 1]2[3]4]5[6]7[8]9J10]11]127]...
(0,*,**%) i/1(1(1(11|1|1|1)|1 1 1 1 1
(1,0,%*,%) ojo0|2|2|2|2|2|2|2|2| 2 2 2 2
(1,1,0,*,%) 0/{0|0|3|3|3|3|3|3|3]| 3 3 3 3
(1,1,1,0,%) 0|0|0|0|0|4]|4|4]|4|4]| 4 4 4 4
(1,1,1,1,0) 0j|0|0|0O0O|]O0O|O0O|O|O|5|5]| 5 5 5 5
(1,1,11,1) ojojojojojojOjOjO]jOjO]|O0]|O 0

In the Tables the optimal control actions which correspanithé threshold levels
are underlined. The Table shows that while the fastest sexadways activated,
each slower server has a threshold that prescribes whenithsm this server.
Therefore, the optimal control rule can be described by medrihe threshold
sequenc® = ¢q; < ¢; < --- < ¢y, wWhereq; =0,¢ =2,¢5 = 3,q; =5 and
q:=8.

Some results for this system are summarized in the diagrsinosyn in the
Figures 1.1(a,b)-1.3(a,b) in Appendix 1. In these diagrémeschanging of the
threshold levels;; for second server represents the threshold function uhaer t
variation of the first service intensity for different vatuef the second service
intensity.

Different types of curves are used to show the thresholdddwehavior for
different values of the second service intensity. The ldg#rthe diagrams repre-
sents the states where threshold levels occur, i.e. forabens! server the states
arex = (1,0, %).

The retrial intensityy and input intensityA are varied over the Figures:

e 1=0.3in Fig.1.1,
e v=0.5in Fig.1.2,
e 7=0.91in Fig.1.3,
e )\=0.01 (pictures labeled by letter "b").

e )\=0.51 (pictures labeled by letter "a"),

From these diagrams one can see that the curves have a stgprstivhich shows
the threshold phenomenon of the optimal policies for the ehadder consider-
ation. The threshold behavior depends on service intessiind the threshold
levels for the slower second server monotically increasesmthe first service
intensity increases, and/or the second service intensityedses. The retrial and
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arrival intensities also influence the threshold behavidamely, the threshold
level decreases when the arrival intensity increasesoaniié retrial intensity
decreases.

52 MAP/M/K system

The following Table shows that the optimal thresholds cgpedé on the modu-
lating state. The parameter values are the same as befdrenedn arrival rate
A = 0.01. We select elements of the matti of dimensionmn ., = 5 such that
Vo <vg, a > 3.

Table 2: Optimal control in each system state

System State: Number of jobs in the orbif(x)
(di,da,d3,da,ds,dg) ||O[1[2[3[4[5[6[7[8]9[10[11]12] ...
(0% **** 1f1J1]1]a1]a]a]a]a]a] 21711 1
(1,0,*,***) o(0|2|2|2|2|2|2]|2]|2 2 2 2 2
(1,1,0,%%% ojfof[o[3[3[3[3[3[3[3][3 ]3] 3 3
(1,1,1,%%1) oj(o[o[of[o0|4[4|4]|4]|4]| 4| 4] 4] 4
(1,1,1%5%5) O|lo|o[o|O0|O0|[4a[4a|4a|a] 4] a]a] 4
(1,1,1,1,0% olo[o[o[o|O0[]O0O|O|5[5]5]| 5] 5 5
(1,1,1,11% olo[o[o[o[O0[O|O]O[O] O] O] O 0

Now the threshold sequenfe= ¢} < ¢;(dx+1) < -+ < ¢} (dk1) depends on
the state of the arrival process. In this examgley) > ¢;(0) if v, < vg.

The influence of the retrial intensity on the threshold bé&brafor this model is
illustrated in Appendix 2 in Figure 2.1:

e 1=0.9 (pictures labeled by letter "b").
e v=0.3 (pictures labeled by letter "a"),

The rate matrices fak/ AP are the following
0.00 0.34 —0.34  0.00
N= ( 1.00 0.00 )’ A= ( 0.00 —1.00 )’
with average arrival ratgé = 0.51.

Different types of curves are also used to show the beha¥ibedhreshold levels
for varied service intensities but now for different systetates with respect to the
MAP. These diagrams show an analogous behavior of threshattlag in the
previous system when the intensifychanges, i.e. threshold levels increase if the
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retrial intensityy increases. But now it is possible to see that thresholds Bethe
examples depend also on the states offthé P. Such an influence is illustrated
in the examples shown in Figure 3.1 of Appendix 3. We inveséd the system
with different rate matrices for th&/ AP:

e Fig.3.1la
0.00 0.34 ~0.34  0.00
N = ( 1.00 0.00 ) A= ( 0.00  —1.00 ) '
e Fig.3.1b
0.30 0.34 ~0.64  0.00
N= ( 0.36 0.00 ) A= ( 0.00 —0.36 ) ‘

The results show that for this system the incentive to makasaignment to the
second server is greater in the state- (1,0, x, «) than in stater = (1,0, x, 3)
and to the third server is greater in state= (1,1,0,«) than in stater =
(1,1,0,0) if vy > vgs.

5.3 M/E/K system

The following Table gives the optimal policies for the systeith X' = 5 Erlan-
gian servers withn; = 5, 7 = 1, K. To compare the results with the previous
models, the mean service intensitieshave been chosen to be equal to the corre-
sponding service intensities for the model with exponésgavers.

Table 3: Optimal control in each system state

System State: Number of jobs in the orbig(x)
(di,da,ds,di,d5) ||O[1[2[3[4][5][6[7[8[9[10[11]12]...
(0,*,***) i/1(1(1(11(1|11|1 1 1 1 1
(1,0,*,*%%) ojo0|2|2|2|2|2|2|2|2]| 2 2 2 2
(1,1,0,%%) 0033333 [3[3|]3|]3]| 3] 3 3
(2,4,0,%%) 0/0|0|3]3|]3]3[3[3]3|]3]| 3] 3 3
(5,5,0,%*%) 0/{0|0|0|3|3]3[3[3|3|3]| 3] 3 3
(1,1,1,0,% 0O|o|o|O0|4|4a[4a|4a|4a|4a] 4| 4| 4] 4
(4,310 O[O0 | 0|00 |44 |a|aa| 4| 4] a] 4
(5,5,4,0,%) 0|0|0|0|0|0|4|4]|4|4]| 4 4 4 4
(1,1,1,1,0) 0/|0|0|0|O0O|O0O|O0O|S5|5|5]|5 5 5 5
(3,2,1,1,0) 0|0|0|0O0O|]O0O|O0O|O|O|5|5]| 5 5 5 5
(4,5,2,1,0) oj0|0O|0O0O|]O|O0OjO|O|O|5]| 5 5 5 5
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Because of the large state space only selected states are shthws Table. The
fastest server is always activated, whereas all other slsgrgers have a number
of thresholds, which depend on the current service statésstér busy servers.
Thus for some fixed phaseés,, ds, . . ., dx1) the threshold sequence looks like
0=0q1 < q¢3(dr) < g5(di, do) < -+ < Ghe(dus da, - -, diya).

As in previous examples the influence of the retrial intgnein the threshold
behavior for this model is illustrated in Appendix 2, Fig@.2:

e 1=0.9 (pictures labeled by letter "b").

e 1=0.3 (pictures labeled by letter "a"),

These diagrams show that the optimal policy has also thiéstnucture with
an analogous behavior as in the previous systems when #esityty changes.
The thresholds depend on service intensitigswhich are different for different
phasesl;. of the service time distribution.

Some more results for this system with= 0.01 are summarized in the diagrams
shown in Figure 3.2 of Appendix 3. The number of phasgesk = 1, K is varied:

e m;=5 (picture labeled by letter "a"),

e m;=10 (picture labeled by letter "b").

The stepped curves in these diagrams show that when theaésetvice time of
the faster server decreases, then the incentive to makeigment to the second
server is greater in state= («, 0, %) than in stater = (31, 0, ) and to the third
server is greater in state= (a1, as, 0) than in stater = (3, 55,0) if oy < Gy,

k = {1,2}. We can see that the lower and upper bounds always corresptma
states with the largest residual service time and the ssta#isidual service time,
respectively. The curves for all other possible residualise times lie between
these two bounds.

54 MAP/E/K/B+ K system

The thresholds for this system represent the combinedtsesithe previous sys-
tems, it is investigated with the same parameters forith&P and the Erlang
ST-distributions. As in the previous examples the resuliklvare shown in Fig-
ure 2.3 of Appendix 2 show the influence of the retrial intgnen the threshold
behavior for this model:
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e v=0.9 (pictures labeled by letter "b").

e 1=0.3 (pictures labeled by letter "a"),

The results which are shown in Figure 3.3 of Appendix 3 regmeshe influ-
ence ofM AP and ST-phases on the threshold functigi(g/;, d,) for the second
server. The matrices for th&/ AP are varied in the same way as for the system
MAP/M/K (pictures labeled by letters "a" and "b").

For this type of system the threshold sequence has the form

0=yq; <¢(di,drs1) < @3(dy,do,dryr) < -+ < qp(dr,...,dr—1,dK+1)

The incentive to make an assignment to the second servesasegrn state: =
(01,0, %, ay) than in statec = (5, 52,0, B4) if ax < Bk, k= 1,2 andv,, > vg,,
that is in case of greater residual service time and armehiity.

6 Conclusions

In this paper retrial queues withf AP arrivals and phase—type service time distri-
butions have been investigated. It has been shown that tireadontrol policy
for this class of queueing systems is of threshold type aerdhheshold func-
tion depends on the phases of the arrival and service pege#ishas the same
monotonicity properties as for the corresponding ordirtprgueing systems.

It should be noted that it is very difficult to obtain expliétrmulas for the
threshold levels. Nevertheless, the numerical analysimipeto investigate the
behaviour of optimal control policies when the values of slgstem parameters
are varied. We have presented a novel use of Howard’s wergtiocedure for
retrial queueing systems with heterogeneous servers.pftcedure allows us to
obtain numerical results and analyze the qualitative ptagseof optimal control
policies for the systems under consideration.

The numerical results show that the threshold level forgiie server in the
NJM-problem has a weak dependence on the condition of tinesleervers, i.e.
threshold levels depend mainly on the states of faster serivoreover, threshold
curves for different states of arrival and service procge$isealong the threshold
curve for the simpleV/ /M /K retrial queue with mean inter-arrival and service
time characteristics of the systems with phases. Therefeeesuspect that in
practice the threshold levels for the simple Markovian guean be quite a good
approximation for optimal thresholds for the queues withg#s.
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The investigation of optimal policy structures and thrddharoperties can
facilitate an implementation of these policies. For eaciviag job, a decision
maker only has to maintain the information about the numbgolss in the orbit
and the collection of busy servers in order to use the optsmaler. The decision
to switch on some other server can be made via a control tabkeip.
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7.1 Appendix 1. The threshold functions forM /M /K queue.
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7.2 Appendix 2. The influence of retrial intensity on thresholds

functions for different queues.
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7.3 Appendix 3. The influence of theM AP and Erlang ST-
distribution on the threshold functions.

Fig.3.1. (a) (b)

10 T T
* B R}
8 %
x e
5 J
N F H
4
—
2
0 .
0 5 10 15

10
8
6
It
4
1,=0.05,%=(1,0, *) —+—
, -
1,=0.10,
1,70.15, 2
15=0.20,
1;=0.25,
oL i
o 5 10 15 20 25




