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Abstract

Retrial queues are important stochastic models for many telecommuni-
cation systems. In order to construct competitive networks it is necessaryto
investigate problems related to optimal control of queueing systems. This
paper considersK -server retrial systems with Markovian arrival process,
heterogeneous service time distributions of general phase-type and expo-
nentially distributed retrial times. It is shown that the optimal policy which
minimizes the mean number of customers in the system is of a threshold
type with threshold levels depending on the states of the arrival, retrial and
service processes. Based on the Howard’s iteration algorithm a numerical
procedure for an optimal control is proposed. Finally, some numerical re-
sults are given to illustrate the system’s dynamics.

AMS subject classification:60K25, 93E20
Key words: Optimal control,MAP , PH, retrial queueing system, control-
lable queueing systems, monotonicity of optimal policies, threshold levels,
numerical analysis

1 Introduction

Retrial queueing models are effective tools to describe the operation of many
telecommunication networks. Since the theory of controllable queueing systems
has many applications involving the control of admission, servicing, routing and

1The research is supported by the Austro-Hungarian Cooperation Grant No. 61öu16, 2005.
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scheduling of jobs in queue and networks it seems to be very promising to match
these two approaches. This paper deals with retrial queues with multiple hetero-
geneous servers where the arriving customers form a Markovian arrival process
(MAPs, see [13] and [10]), service time distributions are assumed to be of general
phase type (PH, see [14]) and the retrial times are supposed to be exponentially
distributed random variables. As usual, the arrivals, retrials and service times are
assumed to be independent random variables.

Recent investigations for retrialMAP/PH/K systems with homogeneous
servers are available (e.g. [4, 2, 12]), as well as statistical model fitting forMAPs
andPH distributions (see [1] and [3]). Since results in the analysis of these tra-
ditional or so called non-controllable retrial queueing models, where the arriving
customer is directed to the orbit if and only if all servers are busy, have already
been achieved, our aim is to combine the traditional and the controlled retrial
queues with heterogeneous servers and to find some optimal control policies.

Controlled queues are assumed to involve a so-called decision maker or con-
troller. Looking at the state of the system the controller may considerably improve
the system’s performance by reducing the queue length or increasing the through-
put, whereas in the absence of a controller the system’s behaviour may get quite
erratic, exhibiting periods of high load and long queues followed by periods dur-
ing which the servers remain idle. Therefore, it is clear that it may be better, e.g.
in terms of average number of jobs in the system, not to start aservice on a slow
server whenever the current number of customers in the orbitis not too large, so
that the waiting customer can anticipate being serviced on the fast server within
a short delay. The theoretical foundations of controlled queueing systems have
been developed within the theory of Markov, semi-Markov andsemi-regenerative
decision processes [7, 8, 17, 22, 20, 24].

The problem of an optimal allocation of jobs between heterogeneous servers
aiming to minimize the mean number of jobs in the ordinary queueing system
was considered in [5, 9, 11, 16, 18, 21, 23]. It was shown that the optimal policy
belongs to a class of structured policies, i.e. threshold policies, which use a slow
server only when the queue length exceeds a certain threshold.
To the best knowledge of the authors no paper on controlled retrial queueing sys-
tems has been published, thus our goal in this paper is to showthat a threshold
policy is optimal for retrial queues as well, furthermore analgorithm is proposed
which allows us to construct these optimal policies. Several numerical examples
are given to illustrate the effect of different input parameters on threshold func-
tions by the help of which the optimal control policies are obtained.
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2 Problem description

Consider a retrialMAP/PH/K queueing system withK heterogeneous servers.
The service time (ST) distributions are supposed to be of phase type with rep-
resentations(ηk,Mk). The dimension of thePH-distribution for thek-th server
is denoted bymk. The vectorsηk = (η1

k, . . . , η
mk

k ) are the initial states of the
phase-type service processes and the irreducible matricesMk = [µij

k ] contain
those transition intensities which do not lead to service completion. The inten-
sities of transitions, which lead to service completion, are defined by the vectors
~µk = −Mk

~1.
The Markovian arrival process is parametrized by the rate matrices Λ = [λij]
(which specifies intensities of phase transitions without arrivals) andN = [νij]
(which specifies intensities of phase transitions accompanied by an arrival), whose
sumΛ + N is an irreducible infinitesimal generator of ordermK+1. The average
arrival rateλ is defined asλ = ~πN~1, where~π is the invariant vector of the sta-
tionary distribution of the arrival process.
The vector~π is a unique solution to the system~π(Λ + N) = ~0, ~π~1 = 1. Here
~1 is the column-vector of appropriate size consisting of onesand~0 is the row-
vector of appropriate size consisting of zeros. For more information onMAPs
andPH-distributions, see [10] and [14], respectively.

It is assumed that the times between the successive retrialsof each jobs are
exponentially distributed with parameterγ, thus the total retrial rateγi depend on
the current numberi of customers in the orbit, that isγi = iγ (cf. [4], section 6).
Denote byB < ∞ the maximal possible number of customers in the orbit.

The control epochs are the arrival times of new or retrial customers. At the
arrival times of new customers the control consists in sending them to one of the
idle servers or to the orbit if it is not full. When retrial arrivals take place the
control consists in either sending a customer to some idle server or leaving all
customers in the orbit. An arriving customer is rejected only in the case if at the
time of its arrival the orbit is full and all servers are busy.A customer starting
service on a slow server has to complete service there slow, even when a faster
server may become available during its service time.

We assume there areK servers with mean service times

0 < µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K , (1)

whereµ−1
j = −ηT

j M−1
j

~1, i.e. the fastest (in average) server has the lowest index.
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To model the system dynamics consider the controllable process

{Z(t)} = {X(t), U(t)}.

Here, the process

{X(t)}t≥0 = {D0(t), D1(t), . . . , DK(t), DK+1(t)}

denotes the observed process and it is a vector with the following components:

D0(t) is the number of customers in the orbit at timet,
D1(t), . . . , DK(t) describe the phases of the servers at this time,

Dj(t) =

{

0, if the j-th server is idle at timet and

dj = 1,mj, if the j-th server is in phasedj,

DK+1(t) = {dK+1 = 1,mK+1} describes the phase of the arrival process.
Denote the state space of the observed process by

E = N ×
K∏

k=1

{0, . . . ,mk} × {1, . . . ,mK+1}

with N := {0, 1, . . . , B}. For each statex = (d0, d1, . . . , dK , dK+1) denote by
q(x) := d0(x), dj(x) anddK+1(x) the number of jobs in the orbit, the states of
ST-phases for each server (j = 1, K) and theMAP in system statex, respectively.
Also, denote byJ0(x) andJ1(x) the sets of indicesj for which dj(x) = 0 and
dj(x) > 0, respectively, i.e.

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) > 0}, j ∈ 1, K.

As a controlling process consider the process{U(t)}t≥0, whereU(t) is a decision
which should be taken at the next decision epoch. LetA = {0, 1, . . . , K} be the
set of available controls and

A(x) =

{

J0(x) ∪ {0}, for x with q(x) < B,

J0(x), for x with q(x) = B,

be the set of admissible controls when the system state isx.
Suppose at a certain time instantt the system stateX(t) = x. Then the controller
chooses an admissible controlU(t) = a ∈ A(x), wherea = k ≥ 1 has the
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meaning "switch on serverk", whereasa = 0 has the meaning "send the job to
the orbit".

Under the considered assumptions, the process{Z(t)} = {X(t), U(t)} is a
Markov decision one with finite state spaceE and finite control spaceA(x) ⊂ A
depending on the statex ∈ E.

Denote byei = (0, . . . , 0
︸ ︷︷ ︸

i

, 1, 0, . . . , 0
︸ ︷︷ ︸

K+1−i

) theK+2 - dimensional vector for which

thei-th component (beginning from 0-th) is one and all others arezeros. Consider
the shift operatorsS0, S

dj

j when arrivals of new customers take place in the queue

S0x = x + e01{q(x)<B},

S
dj

j x = x + djej1{j∈J0(x)},

otherwise, ifq(x) = B andj ∈ J1(x), S0x = S
dj

j x = x. In case of exponential
servers when a customer arrives the upper index of the operator Sj will be omit-
ted. When a retrial arrival and a service completion take place one considers the
inverse shift operatorsS−1

0 andS
−dj

j for the pointsx ∈ E, for which they exist,
i.e.

S−1
0 x = x − e01{q(x)>0},

S
−dj

j x = x − djej1{j∈J1(x)},

otherwise, ifq(x) = 0 andj ∈ J0(x), S−1
0 x = x andS

−dj

j x = x. The same

operatorSdj

j is used to represent a phase change without service completion and
modulating phase change

S
dj

j x = x + [dj − dj(x)]ej1{j∈J1(x)},

S
dK+1

K+1 x = x + [dK+1 − dK+1(x)]eK+1.

Using the above notations we can represent the transition intensitiesλxy(a) of
the process{Z(t)} to go from statex to statey, when actiona is selected, in the
form

λxy(a) =







λdK+1(x)dK+1(y), y = S
dK+1(y)
K+1 x,

νdK+1(x)dK+1(y)[1{a=0}

+η
da(y)
a 1{a 6=0}], y = Sda

a S
dK+1(y)
K+1 x, a ∈ A(S

dK+1(y)
K+1 x),

µ
dj(x)
j , y = S

−dj

j x, j ∈ J1(x),

µ
dj(x)dj(y)
j , y = S

dj(y)
j x, j ∈ J1(x) ∩ J1(y),

q(x)γη
da(y)
a 1{a 6=0}, y = Sda

a S−1
0 x, a ∈ A(S−1

0 x),
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whereµ
dj(x)
j are the components of the vector~µj = −Mj

~1. The diagonal entries
are the negative sums of the non–diagonal entries in the samerow, and all positions
not specified above are zero.
In this matrix

• the first row corresponds to a transition of an arrival phase without a new
job arrival

• the second row corresponds to an arrival of a new job in the system and
sending it in the orbit or to some server in accordance with the decision rule

• the third row corresponds to the service completion

• the fourth row corresponds to the service phase changing

• the fifth row corresponds to the retrial arrival and sending one of jobs from
the orbit to one of available servers in accordance with decision rule.

3 Optimality of threshold policies

3.1 Problem statement

In the present section we consider the problem of a mean Number of Jobs Mini-
mization (NJM-problem). The total number of jobs in the system equals the sum
of the jobs in the orbit and under service. For the NJM-problem the quantity
functional underlying the minimization problem takes the form

Y (t) =

∫ t

0

(

D0(u) +
∑

1≤k≤K

1{Dk(u)>0}

)

du.

Let l(x) = q(x) +
∑

1≤k≤K 1{dk(x)>0} denote the number of jobs in statex
(which does not depend on the controla). This number represents the sum of jobs
in the orbit plus the number of busy servers.

A strategy (or a policy) is a rule for choosing control actions a ∈ A. In gen-
eral it may depend on the history of system states and may be randomized. As
usual in Markov decision theory (see [7, 17, 25]), we define a strategyδ and a
probability distributionPδ

x0
(.) = P(.|X(0) = x0, δ) which is a measure on the set

of the trajectories(the sequence of the states and controls during the observation
period) of the process{Z(t)}, given an initial statex0 and a strategyδ. Further,
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let Eδ
x0

[.] = E[.|X(0) = x0, δ] denotes the expectation with respect to this distri-
bution. Then the problem of minimizing the long-run averagenumber of jobs in
the system can be represented as follows: Minimize

g(x0; δ) = lim sup
t→∞

1

t
E

δ
x0

[Y (t)] (2)

with respect to all admissible strategiesδ.
As it is well known (see, for example [7, 19, 22, 25] ) for a Markov decision

problem with respect to the long-run average minimization criterion an optimal
strategy is a stationary Markov one, i.e. it is determined bythe optimal policy
f = {f(x) : x ∈ E} which can be found from the optimality equation for the
process as a minimizer of its right-hand side, and the gaininfδ g(x0; δ) exists and
for ergodic Markov process it is independent of the initial statex0; that is, there is
a real numberg = infδ g(x0; δ).

To specify the optimality equation for the model let us denote by

V (x, t) = inf
δ

E
δ
x[Y (t)]

the minimal expected total sojourn time of all customers in the system until time
t. Then the obvious relation is

lim
t→∞

1

t
V (x, t) = inf

δ
lim
t→∞

1

t
E

δ
x[Y (t)] = g

for all x. The last relation motivates the relation (for a proof see e.g. [6]) that a
functionv : E → R exists such that for eachx ∈ E

V (x, t) = tg + v(x) + o(1), for large t.

In fact the functionv(x) indicates the transient effect of the initial state on the
expected sojourn time of the customers under the given strategy. We often refer
to v(x) as the loss in statex.

For small time interval of lengthh according to common Markov process ar-
guments the following equation can be obtained

V (x, t + h) = l(x)h + V (x, t)

+

(

λdK+1(x)dK+1(x) +
∑

j∈J1(x)

µ
dj(x)dj(x)
j − q(x)γ

)

hV (x, t)

+

mK+1∑

dK+1=1

νdK+1(x)dK+1
h min

k∈A(S
dK+1
K+1 x)

{

V (S0S
dK+1

K+1 x, t),

mk∑

dk=1

ηdk

k V (Sdk

k S
dK+1

K+1 x, t)

}
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+ q(x)γh min
k∈A(S−1

0 x)

{

V (x, t),

mk∑

dk=1

ηdk

k V (Sdk

k S−1
0 x, t)

}

+

mK+1∑

dK+1=1

dK+1 6=dK+1(x)

λdK+1(x)dK+1
h V (S

dK+1

K+1 x, t) +
∑

j∈J1(x)

mj∑

dj=1

dj 6=dj(x)

µ
dj(x)dj

j h V (S
dj

j x, t)

+
∑

j∈J1(x)

µ
dj

j h V (S
−dj

j x, t).

The first term on the right hand side represents the sojourn time ofl(x) customers
resident in the system during a time interval of durationh, the second term repre-
sents the total sojourn time of all customers being in the system during the subse-
quent time interval of durationt in case that there are no state changes, the next
term represents the total sojourn time of all customers being in the system during
time t in case that a new customer arrives before the next retrial customer arrives.
The following term represents the total sojourn time of the customers in the sys-
tem in case of a retrial arrival before a new customer arrival, the next two terms
deal with the total sojourn time in the system in case of a phase change without
arrival or service completion, and the remaining term represents the total sojourn
time in the system during timet in case that one of the serviced customers leaves
the system before some customer arrives.

After some elementary algebra, and passing to the limith → 0 the above
equation leads to a differential optimality equation. Now by substituting the above
asymptotic expansion fort → ∞ in the differential equation, after canceling out
common terms, the optimality equation assumes the following form

v(x) =
1

λx

[

l(x) + C1(x) + C2(x) − g + (3)

+

mK+1∑

dK+1=1

νdK+1(x)dK+1
Tv(S

dK+1

K+1 x) + 1{a∈A(S−1
0 x)\{0}}q(x)γTv(S−1

0 x)

]

= Bv(x),

whereBv(x) denotes the transform operator for the functionv(x), (see [21]).
In this representation

λx = −

(

λdK+1(x)dK+1(x) +
∑

j∈J1(x)

µ
dj(x)dj(x)
j − 1{a∈A(S−1

0 x)\{0}}q(x)γ

)
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is the total transition intensity out of statex;

C1(x) =
∑

dK+1 6=dK+1(x)

λdK+1(x)dK+1
v(S

dK+1

K+1 x) +
∑

j∈J1(x)

∑

dj 6=dj(x)

µ
dj(x)dj

j v(S
dj

j x)

is called the loss rate due to a transition of the MAP or the service phase without
decision making;

C2(x) =
∑

j∈J1(x)

µ
dj(x)
j v(S

−dj

j x)

is the loss rate due to a service completion;

Tv(x) = min

{

v(S0x),

mk∑

dk=1

ηdk

k v(Sdk

k x) : k = 1, K

}

(4)

is called the minimal loss in the case of a new arrival to statex. The same operator
at the pointS−1

0 x represents the minimal loss in case of a retrial job.

As in case of a classic queue (see [5, 21]) the form of the optimality equation
shows that the optimal policyf = {f(x) : x ∈ E} is completely determined by
the value functionv = {v(x) : x ∈ E} which in turn is a solution of the optimality
equation (3), namely

f(x) = argmin







v(Sax), exponential service,

1{a=0}v(S0x) + 1{a=k>0}v(S1
kx), Erlangian service,

1{a=0}v(S0x) + 1{a=k>0}

∑mk

dk=1 ηdk

k v(Sdk

k x), PH-type service.
(5)

Thus the functionf(x) specifies the optimal decision rule which has to be taken
in case of a new or retrial request’s arrival in the statex.

3.2 Assignment to the fastest available server

Our objective in this section is to prove that it is optimal touse the fastest avail-
able server. As shown in the previous section the optimal policy is completely
determined by the value functionv(x), therefore, it is necessary to investigate the
properties of this function. The form of the optimality equation (3) shows that for
retrial queueing systems all the properties of the functionv(x) for ordinary queues
also should hold in this case, see for details [5]. Since these assertions can only
be partially proved, they are formulated as conjectures.
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Conjecture 1: The value function of the modelv = {v(x) : x ∈ E} satisfies
the following monotonicity properties

1.

mj∑

dj=1

η
dj

j v(S
dj

j x) ≤
mi∑

di=1

ηdi

i v(Sdi

i x), i, j ∈ J0(x), µ−1
j ≤ µ−1

i ,

2.

m1∑

d1=1

ηd1
1 v(Sd1

1 x) ≤ v(S0x),

3. v(x) ≤ v(S0x), v(x) ≤ v(Sdi

i x), di = 1,mi,

4. v(Sα
i x) ≤ v(Sβ

i x), i ∈ J0(x), µα
i ≥ µβ

i ,

5. v(Sα
K+1x) ≤ v(Sβ

K+1x), να ≤ νβ.

Property 1 means that the controller has to activate only thefastest server available
in statex. According to property 2, whenever the fastest (the first) server is idle it
is always optimal to allocate a job to this server. The next property 3 describes the
monotonicity condition of the value function with respect to the shiftsS0 andSdi

i .
The last two properties 4 and 5, whereµdi

i is the total service rate from phasedi

andνdK+1
denotes the total arrival rate from the modulating phasedK+1, show the

monotonicity of the value function with respect to the different states of arrival
and service processes.

To prove these inequalities it is necessary to show that the operatorsB andT ,
introduced by (3) and (4), respectively, preserve them for the function which is
monotone with respect to the partial order introduced on thestate spaceE, see [5,
21]. Then the inequalities follow from the monotone convergence lim

n→∞
Bnl(x) =

v(x), as shown in Howard [6], and the fact that the functionl(x) preserves the
mentioned monotonicity properties.
A rigorous proof of these inequalities has been pursued onlyfor simplified queues
(e.g. with exponential servers) and is analogous to a proof for ordinary queueing
systems, as investigated in [5].

As an example we prove the first inequality of the Conjecture 1 for the M/M/K
retrial queue.
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Proof: To study the monotonicity properties of the value function we exploit
a partial ordering of the state spaceE, and the complete ordering of the setA
of controls. For that purpose the servers are arranged in theorder of decreasing
service intensities (increasing mean service times)

0 ≤ µ−1
1 ≤ µ−1

2 ≤ · · · ≤ µ−1
K (6)

and the components of the vectord = (d1, . . . , dK) are numbered accordingly.
Assume, that the operatorsS0 andSi shift the points ofE in positive direction,
that is,

S0x ≥ x and Six ≥ x, i ∈ J0(x). (7)

Shifted points are ordered with respect to increasing mean service times, i.e.

Six ≥ Sjx, if i ≥ j, i, j ∈ J0(x) (that isµ−1
i ≥ µ−1

j ). (8)

PointsS0x andSjx, (j 6= 0) are not comparable.
In the setA of controls a complete ordering is given according to the numbering

1 < 2 < · · · < K (with respect to servers1, . . . , K). Clearly, this induces the
corresponding ordering in any subsetA(x).
To prove e.g. the first property in Conjecture 1 for the queueing system under
consideration we have to prove that the following is true foreach valuex ∈ E

Tv(Six) ≥ Tv(x), i ∈ A(x), T v(Six) ≥ Tv(Sjx), i, j ∈ J0(x), i ≥ j.

Let the functionv(x) be nondecreasing with respect to the introduced ordering,
namely

v(Six) ≥ v(x), i ∈ A(x); v(Six) ≥ v(Sjx), i, j ∈ J0(x), i ≥ j.

For the first inequality we have fori ∈ A(x)

Tv(Six) = min
k∈A(Six)

v(SkSix) ≥ min
k∈A(Six)

v(Skx) ≥ min
k∈A(x)

v(Skx) = Tv(x),

where the first item follows from assumption that the function v(x) is nondecreas-
ing and the second item follows from relationA(Six) ⊂ A(x) together with the
fact that the minimum does not increase upon expanding the minimization set.

Finally, we prove that upon passing fromSj to Si, i, j ∈ J0(x), i ≥ j, the
operatorT0 preserves the property to be nondecreasing. Leti, j ∈ J0(x). Then

11



the setA(x) can be represented asA(x) = B(x) ∪ {i} ∪ {j} with someB(x) so
thatA(Six) = B ∪ {j} , A(Sjx) = B(x) ∪ {i} and the relations

Tv(Six) = min
k∈A(Six)

v(SkSix) =

min

{

min
k∈B(x)

v(SkSix), v(SiSjx)

}

≥ min

{

min
k∈B(x)

v(SkSjx), v(SiSjx)

}

= Tv(Sjx)

are valid by virtue of inequalityv(Six) ≥ v(Sjx).

Now we show that the operatorB defined by (3) also retains monotonicity upon
passing fromSjx to Six, i, j ∈ J0(x), i ≥ j.
Let us multiply each side of equation (3) for the stateSix by λSix and add

(µj + 1{a∈A(S−1
0 Sjx)\{0}}q(Sjx)γ)v(Six)

to each side.
Analogously, for the stateSjx we multiply the optimality equation byλSjx and
add

(µi + 1{a∈A(S−1
0 Six)\{0}}q(Six)γ)v(Sjx)

to each side.
To simplify the form of an optimality equation we make the following notation

(λSix+µj+1{a∈A(S−1
0 Sjx)\{0}}q(Sjx)γ)) = (λSjx+µi+1{a∈A(S−1

0 Six)\{0}}q(Six)γ)) = w.

Finally, for nondecreasing functionv(x) for anyi, j ∈ J0(x) such thati ≥ j,
taking into account thatq(Six) = q(Sjx) = q(x), we get

Bv(Six) − Bv(Sjx) =
1

w

(

[l(Six) − l(Sjx)] + λ[Tv(Six) − Tv(Sjx)]

+
∑

l∈J1(x)

µl[v(SiS
−1
l x) − v(SjS

−1
l x)]

+ µj[v(Six) − v(x)] − µi[v(Sjx) − v(x)]

+ 1{a∈A(S−1
0 Six)\{0}}q(x)γ[Tv(S−1

0 Six) − v(Sjx)]

− 1{a∈A(S−1
0 Sjx)\{0}}q(x)γ[Tv(S−1

0 Sjx) − v(Six)]

)

≥ 0,
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where the first three items in the right-hand side are nonnegative by virtue of the
constancy of the functionl(x) upon passing fromSjx to Six, i, j ∈ J0(x), i ≥ j
and the fact that operatorT retains the monotonicity of the functions.
For the next item we obtain

µj[v(Six) − v(x)] − µi[v(Sjx) − v(x)] =

µiµj

[
v(Six) − v(x)

µi

−
v(Sjx) − v(x)

µj

]

≥ 0,

since
v(Six) − v(x) ≥ v(Sjx) − v(x) ≥ 0

andµi ≤ µj, owing to the monotonicity assumption.
For the last item we consider several subcases. If a controla = 0 in statesS−1

0 Six
andS−1

0 Sjx then this item is equal to zero. In casea 6= 0 in both of states we get

q(x)γ[[Tv(S−1
0 Six) + v(Six)] − [Tv(S−1

0 Sjx) + v(Sjx)]] ≥ 0

owing to the monotonicity assumption and property of the operatorT . In case if
a 6= 0 in stateS−1

0 Six anda = 0 in stateS−1
0 Sjx we obtain

q(x)γ[Tv(S−1
0 Six) − v(Sjx)] ≥ 0,

since in each state the decision has been made if necessary and optimality equation
(3) is defined only for the sTable statesx. It means that this function satisfies a
condition

v(Sjx) = min
k∈A(S−1

0 Sjx)
v(SkS

−1
0 Sjx) ≤ min

k∈A(S−1
0 Six)\{0}

v(SkS
−1
0 Six) = Tv(S−1

0 Six).

Finally, if a = 0 in stateS−1
0 Six anda 6= 0 in stateS−1

0 Sjx then analogously we
get

q(x)γ[Tv(S−1
0 Sjx) − v(Six)] ≤ 0,

due to the properties of the functionv(x)

v(Six) ≥ v(Sjx) ≥ min
k∈A(S−1

0 Sjx)\{0}
v(SkS

−1
0 Sjx) = Tv(S−1

0 Sjx).

It should be noted that the operatorB retains inequalities in the sense that if
v(x) ≥ v(y) then Bv(x) ≥ Bv(y). Therefore the theorem follows from the
mentioned above monotonicity convergence of the sequenceBnl(x) to the value
v(x) and the fact, that the functionl(x) is constant relative to shifts fromSi to Sj.
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3.3 The optimal policy is of threshold type

Based on the properties of the value functionv(x) the following strengthened
conjecture can be formulated:

Conjecture 2: Under the conditions of Conjecture 1 the value functionv =
{v(x) : x ∈ E} of the model satisfies the following monotonicity propertiesof
the increments:

1. v(S0x) −

mk∑

dk=1

ηdk

k v(Sdk

k x) ≤ v(S2
0x) −

mk∑

dk=1

ηdk

k v(Sdk

k S0x),

2. v(S0S
α
i x) −

mk∑

dk=1

ηdk

k v(Sdk

k Sα
i x) ≤ v(S0S

β
i x) −

mk∑

dk=1

ηdk

k v(Sdk

k Sβ
i x),

µα
i ≥ µβ

i ,

3. v(S0S
α
K+1x) −

mk∑

dk=1

ηdk

k v(Sdk

k Sα
K+1x) ≤ v(S0S

β
K+1x) −

mk∑

dk=1

ηdk

k v(Sdk

k Sβ
K+1x),

να ≤ νβ.

Property 1 of this conjecture means that if in some state it isoptimal to keep a
customer in the orbit, then this control action is also optimal in all states with
the same collection of busy servers and less number of jobs being in the orbit.
Properties 2 and 3 show that the incentive to make an assignment to thek-th
slower server is greater in the stateSβ

K+1x with larger arrival intensityνβ ≥ να and
smaller service intensityµβ

i ≤ µα
i of somei-th faster server. These inequalities

can be proved in the same way as in [5, 21].

As before we consider the simplified queue M/M/K to prove the first assertion in
Conjecture 2.

Proof: Regarding to the servers switching rule we show that an optimal policy
has a threshold type, i.e. if in some statex ∈ E with q(x) jobs in the orbit
at the decision epoch it is optimal to leave a job in the orbit then this control
action will be optimal in all statesy with the same collection of busy servers and
q(y) ≤ q(x). In other words, the equalityf(x) = 0 leads to the equalityf(y) = 0
if q(y) ≤ q(x). For this it is sufficient that

f(S0x) = 0 ⇒ f(x) = 0.
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It is possible to rewrite the last relation in accordance with the definition of optimal
policy (5) in the form

v(S2
0x) ≥ v(S0Skx) ⇒ v(S0x) ≥ v(Skx) for all k ∈ J0(x)

or as inequality

v(S0x) − v(Skx) − v(S2
0x) + v(S0Skx) ≤ 0. (9)

According to the inequality 1 in Conjecture 1 only two solutions are possible in
each statex: f(x) = 0 (not to serve the job) orf(x) = k (to use the fastest
free server), so that here the familyA(x) of controls is independent on the shift
S0. We set out to prove that the operatorT retains the above inequality. Thus it is
necessary to check whether this property is satisfied for thefunctionv̂(x) = Tv(x)
if it is satisfied for some functionv(x). That is we have to prove

v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

min{v(SlS0x) : l ∈ J0(x)} − min{v(SlSkx) : l ∈ J0(Skx)}−

min{v(SlS
2
0x) : l ∈ J0(x)} + min{v(SlS0Skx) : l ∈ J0(Skx)} ≤ 0.

To prove this assertion for each pointx ∈ E we divide it into several cases
1. First we consider the case when the optimal solutions coincide at the

points Skx and S2
0x (where v̂(x) is involved in inequality with negative sign),

andf(Skx) = f(S2
0x) = f . Obviously, by replacing the optimal solution at the

rest of the points byf , we obtain that

v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S0x) − v(SfSkx) − v(SfS
2
0x) + v̂(S0Skx) ≤

v(SfS0x) − v(SfSkx) − v(SfS
2
0x) + v(SfS0Skx) ≤ 0.

2. The case of different optimal solutions at the pointsSkx andS2
0x (where

v̂(x) is involved in inequality with negative sign) should be divided into two sub-
cases:f(S2

0x) = 0, f(Skx) = l 6= 0, wherel is the index of the fastest available
server, andf(S2

0x) = k 6= 0, f(Skx) = 0.
In the first subcase, by summing the inequalities (9) at the points Skx andS0x,
respectively,

v(S0Skx) − v(SlSkx) − v(S2
0Skx) + v(S0SlSkx) ≤ 0,
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and
v(S2

0x) − v(S0Skx) − v(S3
0x) + v(S2

0Skx) ≤ 0,

we get the inequality

v(S2
0x) − v(SkSlx) − v(S3

0x) + v(SkSlS0x) ≤ 0,

which shows that the inequality (9) is satisfied for the function v̂(x) at the pointx
since

v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(SkS0x) =

v(S2
0x) − v(SkSlx) − v(S3

0x) + v(SkSlS0x) ≤ 0.

In the second subcase, the relation has the form

v̂(S0x) − v̂(Skx) − v̂(S2
0x) + v̂(S0Skx) =

v̂(S2
0x) − v(S0Skx) − v(SkS

2
0x) + v̂(S0Skx) ≤

v(SkS0x) − v(S0Skx) − v(SkS
2
0x) + v(S0S0Skx) = 0.

For the boundary pointsq(x) = B, J0(x) = ∅, the inequality (9) for the
function v̂(x) is also satisfied due to the definition of the shift operators.Now the
first assertion of Conjecture 2 follows from the fact that property of (9) is retained
for linear operations defining the operatorB, the functionl(x) satisfies (9) and the
successive approximationsBnl(x) converge monotonously to the value function
v(x).

Thus for some simplified retrial queues we can prove and for general system we
may expect that the optimal policy is of threshold type, as stated below:
Corollary: The optimal policy for the controlled retrial systemMAP/PH/K is
of threshold type with finite thresholdsq∗j (d1, . . . , dK , dK+1), di > 0, i = 1, j − 1,
for each arrival and service phase and it is necessary to switch on thej-th server
only if q(x) ≥ q∗j . In case of the NJM-problem the decision maker has to use the
fastest available server.

It is obvious that if the orbit is nonempty and the first serverwith mean service
time µ̄−1

1 = min
k∈J0(x)

{µ̄−1
k } is available (idle), then the idleness of the fastest server

is never optimal, i.e. the threshold level for the first server q∗1 = 0.
We note that for the NJM-problem the threshold level for thej-th serverq∗j (d1,
..., dK , dK+1) depends on the states of arrival and service processes, i.e.it can
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depend on the states of slower servers. Numerical results show that such influence
may arise only in case of a large arrival intensity and the threshold levels can vary
by at most 1 when the states of slower servers change.

Now assume that in our system there aren jobs and no future arrivals take
place. The jobs must be served as soon as possible. This problem is known as
"scheduling problem".

In caseK = 2 servers it is possible to obtain the threshold level explicitly.
Indeed, in this caseg = 0. Now using the equation (3), taking into account
the above statement, we just want to clear a system which already contains the
customers. Solving recursively the optimality equation wecan find the threshold
levels q∗2(d1) for the second server. By virtue of the threshold property of the
optimal policy if the finite statex = (0, 0, 0) we get












v(S
q∗2(1)−1
0 S1

1x)

v(S
q∗2(2)−1
0 S2

1x)
.
.
.

v(S
q∗2(m1)−1
0 Sm1

1 x)












= −M−1
1

~1q∗2 + ~1

[
q∗2(q

∗
2 + 1)

2µ1

+
(q∗2 − 1)

γ

]

.

If q∗2(d1) is a threshold for using the second server the following inequality holds

m2∑

d2=1

ηd2
2 v(S

q∗2(d1)−1
0 Sd1

1 Sd2
2 x) ≤ v(S

q∗2(d1)
0 Sd1

1 x)

For the last inequality we get

m2∑

d2=1

ηd2
2 v(S

q∗2(d1)−1
0 Sd1

1 Sd2
2 x) = ~1

1

µ2

+ v(S
q∗2(d1)−1
0 Sd1

1 x) ≤ v(S
q∗2(d1)
0 Sd1

1 x)

and now we obtain the vector of thresholds for the second server for each service
phase











q2(1)
q2(2)

.

.

.
q2(m1)











≤











q∗2(1)
q∗2(2)

.

.

.
q∗2(m1)











=

⌊

~1

(
µ1

µ2

−
µ1

γ

)

+ M−1
1

~1µ1

⌋

.
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For the value of "mean" threshold we have

q∗2 =

⌊ m1∑

d1=1

ηd1
1 q∗2(d1)

⌋

=

⌊(
1

µ2

−
1

γ

)

µ1 − 1

⌋

.

In caseK > 2 it can be shown that for the threshold levels

q∗j =

⌊ m1∑

d1=1

· · ·

mj−1∑

dj−1=1

ηd1
1 . . . η

dj−1

j−1 q∗j (d1, . . . , dj−1)

⌋

, j = 2, . . . , K

the bounds can be obtained, namely
⌊(

1

µj

−
1

γ

) j−1
∑

k=1

µk − (j − 1)

⌋

≤ q∗j ≤

⌊
1

µj

j−1
∑

i=1

µi − (j − 1)

⌋

.

We expect that this values represent the bounds for the threshold levels also in
a so-called light traffic case, whenλ ∈ [0, µK). Finally, when the retrial intensity
γ is large then the model turns to be the classical queueing model. In this case the
bounds for the threshold levels coincide.

4 An Algorithm

The following algorithm is based on Howard’s iteration algorithm [6] but it has
been modified with respect to specific properties of the problem. The algorithm
consists of two basic steps:Value function evaluationandPolicy improvement.

Value function evaluation. For a given policyf = {fn(x) : x = 0, I}, where
I is defined below, starting fromn = 0 solve the equation (3) by a successive
approximation method with given accuracyε

vn(x) =
1

λx

(

l(x) + C1(x) + C2(x) − gn

)

+

1

λx

mK+1∑

dK+1=1

νdK+1(x)dK+1

(

1
{fn(S

dK+1
K+1 x)=0}

vn(S0S
dK+1

K+1 x) + 1
{fn(S

dK+1
K+1 x)=k}

mk∑

dk=1

ηdk

k vn(Sdk

k S
dK+1

K+1 x)

)

+

1

λx

1{fn(S−1
0 x)=k 6=0}

mk∑

dk=1

ηdk

k vn(Sdk

k S−1
0 x)
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for all x ∈ E under the conditionvn(0) = 0.

Policy improvement. For a given solutionvn = {vn(x) : x ∈ E} find a new
policy fn+1 = {fn+1(x) : x ∈ E} (5):

fn+1(x) = argmin
k∈A(x)

{∑mk

dk=1 ηdk

k vn(x + dkek), k = 1, K,

vn(x + e0), k = 0.

The algorithm stops when two successive iterations yield the same policy.

To describe the system state changes we consider the one-to-one correspon-
dence between the multi-dimensional representation of thesystem statex and the
index of such a state. Namely,

#(x) =
K∏

i=1

(mi+1)(d0(x)mK+1+dK+1(x)−1)+
K∑

j=1

dj(x)1{j>1}

j−1
∏

i=1

(mi+1) ≡ x,

wherex = 0, I, I =
∏K

i=1(mi + 1)mK+1(B + 1) − 1.
Now, if yj is the state after a possible transition from thej-th coordinate it can

be obtained with respect to the formula

yj = x +
(dj − dj(x))

∏K

i=1(mi + 1)1{j=0}mK+1

1{1≤j≤K}

∏K

i=j(mi + 1)
.

Thus, in the one-dimensional case we have

S0x = x + mK+1

K∏

i=1

(mi + 1),

S−1
0 x = x − mK+1

K∏

i=1

(mi + 1),

S
dj

j x = x + (dj − dj(x))

j−1
∏

i=1

(mi + 1),

S
−dj

j x = x − dj(x)

j−1
∏

i=1

(mi + 1),

S
dK+1

K+1 = x + (dK+1 − dK+1(x))
K∏

i=1

(mi + 1).

Using this algorithm one can construct explicit forms of optimal policies for the
retrial queueing systemMAP/PHhet/K and any particular case of this system.
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5 Numerical Examples

For numerical results of optimal policies we will consider the retrial queueing
systemsM/M/K, MAP/M/K, M/E/K andMAP/E/K and investigate the
results for different system parameters. The numerical analysis is based on a
series of experiments. The optimal control policies will berepresented by means
of control tablesandcontrol diagrams. Before we discuss the obtained results we
give some necessary comments. In all these examples the servers are arranged
in increasing order of their mean service times (1) and the queueing systems are
considered withB = 100.

The control tables show the optimal control policiesf(x) for each system
state in case ofK = 5 heterogeneous servers when the values of system parame-
ters are fixed. The left column represents the list of serverst’ states and the upper
row represents the number of jobs in the orbit. The optimal control actions that
correspond to the threshold levels (critical number of jobsin the orbit) are under-
lined. As it was mentioned above, the optimal decision rule for using some server
j shows a weak dependence on the states of slower servers, therefore the states of
slower servers are labeled as "*", that means 0 ordi > 0 for i > j.

By means ofcontrol diagrams we investigate the queues withK = 3 servers.
The diagrams show the behaviour of threshold functionsq∗j when the values of
system parameters are varied. In this section we investigate the threshold function
q∗2 for the second server with varying service intensities of the first two servers,
i.e. the thresholds which occur in the statesx = (d1, 0, ∗), d1 > 0. In fact, the
threshold functionq∗3 for the third server in the statesx = (d1, d2, 0), d1, d2 > 0,
have the same structure and illustrate the same properties as for the second server,
but depending on the service intensities of all three servers. The service intensity
for the third server in control diagrams for all systems is fixed, i.e.µ3 = 0.05.

5.1 M/M/K system

The following Table gives the optimal policies for the system with K = 5 servers
and parameter valuesλ = 0.01,µi = {2.50, 0.63, 0.52, 0.40, 0.30}, γ = 2.90.
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Table 1: Optimal control in each system state
System Statex Number of jobs in the orbitq(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 0 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 5 5 5 5 5 5
(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the Tables the optimal control actions which correspond to the threshold levels
are underlined. The Table shows that while the fastest server is always activated,
each slower server has a threshold that prescribes when to switch on this server.
Therefore, the optimal control rule can be described by means of the threshold
sequence0 = q∗1 ≤ q∗2 ≤ · · · ≤ q∗K , whereq∗1 = 0, q∗2 = 2, q∗3 = 3, q∗4 = 5 and
q∗5=8.

Some results for this system are summarized in the diagrams,shown in the
Figures 1.1(a,b)-1.3(a,b) in Appendix 1. In these diagramsthe changing of the
threshold levelsq∗2 for second server represents the threshold function under the
variation of the first service intensity for different values of the second service
intensity.

Different types of curves are used to show the threshold levels behavior for
different values of the second service intensity. The legend of the diagrams repre-
sents the states where threshold levels occur, i.e. for the second server the states
arex = (1, 0, ∗).

The retrial intensityγ and input intensityλ are varied over the Figures:

• γ=0.3 in Fig.1.1,

• γ=0.5 in Fig.1.2,

• γ=0.9 in Fig.1.3,

• λ=0.01 (pictures labeled by letter "b").

• λ=0.51 (pictures labeled by letter "a"),

From these diagrams one can see that the curves have a step structure which shows
the threshold phenomenon of the optimal policies for the model under consider-
ation. The threshold behavior depends on service intensities, and the threshold
levels for the slower second server monotically increases when the first service
intensity increases, and/or the second service intensity decreases. The retrial and
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arrival intensities also influence the threshold behavior.Namely, the threshold
level decreases when the arrival intensity increases, and/or the retrial intensity
decreases.

5.2 MAP/M/K system

The following Table shows that the optimal thresholds can depend on the modu-
lating state. The parameter values are the same as before with mean arrival rate
λ = 0.01. We select elements of the matrixN of dimensionmK+1 = 5 such that
να ≤ νβ, α ≥ β.

Table 2: Optimal control in each system state
System Statex Number of jobs in the orbitq(x)

(d1, d2, d3, d4, d5, d6) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,*,*,1) 0 0 0 0 0 4 4 4 4 4 4 4 4 4
(1,1,1,*,*,5) 0 0 0 0 0 0 4 4 4 4 4 4 4 4
(1,1,1,1,0,*) 0 0 0 0 0 0 0 0 5 5 5 5 5 5
(1,1,1,1,1,*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now the threshold sequence0 = q∗1 ≤ q∗2(dK+1) ≤ · · · ≤ q∗K(dK+1) depends on
the state of the arrival process. In this exampleq∗k(α) ≥ q∗k(β) if να ≤ νβ.
The influence of the retrial intensity on the threshold behavior for this model is
illustrated in Appendix 2 in Figure 2.1:

• γ=0.9 (pictures labeled by letter "b").

• γ=0.3 (pictures labeled by letter "a"),

The rate matrices forMAP are the following

N =

(
0.00 0.34
1.00 0.00

)

, Λ =

(
−0.34 0.00
0.00 −1.00

)

,

with average arrival rateλ = 0.51.

Different types of curves are also used to show the behavior of the threshold levels
for varied service intensities but now for different systemstates with respect to the
MAP . These diagrams show an analogous behavior of threshold levels as in the
previous system when the intensityγ changes, i.e. threshold levels increase if the
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retrial intensityγ increases. But now it is possible to see that thresholds in these
examples depend also on the states of theMAP . Such an influence is illustrated
in the examples shown in Figure 3.1 of Appendix 3. We investigated the system
with different rate matrices for theMAP :

• Fig.3.1 a

N =

(
0.00 0.34
1.00 0.00

)

, Λ =

(
−0.34 0.00
0.00 −1.00

)

.

• Fig.3.1 b

N =

(
0.30 0.34
0.36 0.00

)

, Λ =

(
−0.64 0.00
0.00 −0.36

)

.

The results show that for this system the incentive to make anassignment to the
second server is greater in the statex = (1, 0, ∗, α) than in statex = (1, 0, ∗, β)
and to the third server is greater in statex = (1, 1, 0, α) than in statex =
(1, 1, 0, β) if να ≥ νβ.

5.3 M/E/K system

The following Table gives the optimal policies for the system with K = 5 Erlan-
gian servers withmj = 5, j = 1, K. To compare the results with the previous
models, the mean service intensitiesµi have been chosen to be equal to the corre-
sponding service intensities for the model with exponential servers.

Table 3: Optimal control in each system state
System Statex Number of jobs in the orbitq(x)

(d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 3 3 3 3 3 3 3 3 3 3 3 3
(2,4,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(5,5,0,*,*) 0 0 0 0 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4
(4,3,1,0,*) 0 0 0 0 0 4 4 4 4 4 4 4 4 4
(5,5,4,0,*) 0 0 0 0 0 0 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 5 5 5 5 5 5 5
(3,2,1,1,0) 0 0 0 0 0 0 0 0 5 5 5 5 5 5
(4,5,2,1,0) 0 0 0 0 0 0 0 0 0 5 5 5 5 5
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Because of the large state space only selected states are shown in this Table. The
fastest server is always activated, whereas all other slower servers have a number
of thresholds, which depend on the current service states offaster busy servers.
Thus for some fixed phases(d1, d2, . . . , dK+1) the threshold sequence looks like
0 = q∗1 ≤ q∗2(d1) ≤ q∗3(d1, d2) ≤ · · · ≤ q∗K(d1, d2, . . . , dK+1).

As in previous examples the influence of the retrial intensity on the threshold
behavior for this model is illustrated in Appendix 2, Figure2.2:

• γ=0.9 (pictures labeled by letter "b").

• γ=0.3 (pictures labeled by letter "a"),

These diagrams show that the optimal policy has also threshold structure with
an analogous behavior as in the previous systems when the intensityγ changes.
The thresholds depend on service intensitiesµdk

k which are different for different
phasesdk of the service time distribution.

Some more results for this system withλ = 0.01 are summarized in the diagrams
shown in Figure 3.2 of Appendix 3. The number of phasesmk, k = 1, K is varied:

• mk=5 (picture labeled by letter "a"),

• mk=10 (picture labeled by letter "b").

The stepped curves in these diagrams show that when the residual service time of
the faster server decreases, then the incentive to make an assignment to the second
server is greater in statex = (α1, 0, ∗) than in statex = (β1, 0, ∗) and to the third
server is greater in statex = (α1, α2, 0) than in statex = (β1, β2, 0) if αk ≤ βk,
k = {1, 2}. We can see that the lower and upper bounds always correspondto the
states with the largest residual service time and the smallest residual service time,
respectively. The curves for all other possible residual service times lie between
these two bounds.

5.4 MAP/E/K/B + K system

The thresholds for this system represent the combined results of the previous sys-
tems, it is investigated with the same parameters for theMAP and the Erlang
ST-distributions. As in the previous examples the results which are shown in Fig-
ure 2.3 of Appendix 2 show the influence of the retrial intensity on the threshold
behavior for this model:
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• γ=0.9 (pictures labeled by letter "b").

• γ=0.3 (pictures labeled by letter "a"),

The results which are shown in Figure 3.3 of Appendix 3 represent the influ-
ence ofMAP and ST-phases on the threshold functionsq∗2(d1, d4) for the second
server. The matrices for theMAP are varied in the same way as for the system
MAP/M/K (pictures labeled by letters "a" and "b").

For this type of system the threshold sequence has the form

0 = q∗1 ≤ q∗2(d1, dK+1) ≤ q∗3(d1, d2, dK+1) ≤ · · · ≤ q∗K(d1, . . . , dK−1, dK+1)

The incentive to make an assignment to the second server is greater in statex =
(α1, 0, ∗, α4) than in statex = (β1, β2, 0, β4) if αk ≤ βk, k = 1, 2 andνα4 ≥ νβ4,
that is in case of greater residual service time and arrival intensity.

6 Conclusions

In this paper retrial queues withMAP arrivals and phase–type service time distri-
butions have been investigated. It has been shown that the optimal control policy
for this class of queueing systems is of threshold type and the threshold func-
tion depends on the phases of the arrival and service processes. It has the same
monotonicity properties as for the corresponding ordinaryqueueing systems.

It should be noted that it is very difficult to obtain explicitformulas for the
threshold levels. Nevertheless, the numerical analysis permits to investigate the
behaviour of optimal control policies when the values of thesystem parameters
are varied. We have presented a novel use of Howard’s iteration procedure for
retrial queueing systems with heterogeneous servers. Thisprocedure allows us to
obtain numerical results and analyze the qualitative properties of optimal control
policies for the systems under consideration.

The numerical results show that the threshold level for using the server in the
NJM-problem has a weak dependence on the condition of the slower servers, i.e.
threshold levels depend mainly on the states of faster servers. Moreover, threshold
curves for different states of arrival and service processes lie along the threshold
curve for the simpleM/M/K retrial queue with mean inter-arrival and service
time characteristics of the systems with phases. Therefore, we suspect that in
practice the threshold levels for the simple Markovian queue can be quite a good
approximation for optimal thresholds for the queues with phases.
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The investigation of optimal policy structures and threshold properties can
facilitate an implementation of these policies. For each arriving job, a decision
maker only has to maintain the information about the number of jobs in the orbit
and the collection of busy servers in order to use the optimalserver. The decision
to switch on some other server can be made via a control table lookup.
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7 Appendices

7.1 Appendix 1. The threshold functions forM/M/K queue.

Fig.1.1. (a) (b)
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7.2 Appendix 2. The influence of retrial intensity on thresholds
functions for different queues.

Fig.2.1. (a) (b)
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7.3 Appendix 3. The influence of theMAP and Erlang ST-
distribution on the threshold functions.

Fig.3.1. (a) (b)
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