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§Esterházy Károly College, Eger, Hungary, http://www.ektf.hu
∗Supported by the Austrian-Hungarian Scientific/Technical Cooperation Contract HU 13/2007.

1



Abstract

We report our experience with formulating and analyzing in the prob-

abilistic model checker PRISM various closely related web server perfor-

mance models that were previously described in literature in terms of classi-

cal queuing theory. By our work various ambiguities and deficiencies (also

errors) are revealed; in particular, the PRISM models which combine state

machines descriptions with performance characteristics show that the origi-

nal descriptions used slightly differed assumptions for their analysis.

Furthermore, while the queuing models are typically based on infinite

queues, the state spaces of the PRISM models have to be finite for an auto-

mated analysis. While this forces us to explicitly deal with buffer overflows,

it also gives us the possibility to investigate appropriate buffer sizes for con-

crete implementations of the models. Although also one of the previously

reported models used a finite queue in some place, our investigations reveal

that the size of that queue is actually not critical, while another (previously

not constrained) one is.

Based on these observations, we argue that nowadays performance mod-

eling should make use of (at least be accompanied by) state machine descrip-

tions such as those used by PRISM. On the one hand, this helps to more

accurately describe the systems whose performance are to be modeled (by

making hidden assumptions explicit) and give more useful information for

the concrete implementation of these models (appropriate buffer sizes). On

the other hand, since probabilistic model checkers such as PRISM are fur-

thermore able to analyze such models automatically, analytical models can

be validated by corresponding experiments which helps to increase the trust

into the adequacy of these models and their real-world interpretation.
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1 Introduction

The two originally distinct areas of the qualitative analysis (verification) and quan-

titative analysis (performance modeling) of computing systems have in the last

decade started to converge by the arise of stochastic/probabilistic model check-

ing [6]. In [1], we have shown how the probabilistic model checker PRISM [7, 5]

compares favorably with a classical performance modeling environment for mod-

eling and analyzing retrial queueing systems, especially with respect to the ex-

pressiveness of the models and the queries that can be performed on them. In the

present paper, we are making one step forward by applying PRISM to re-assess

various web server performance models that have been previously described and

analyzed in literature.

The starting point of our work is the seminal paper [8] which for the first time

presented a performance model for a system of a web server and a web client and

analyzed the model with respect to various parameters. This has stimulated further

research: e.g. in [3], the model is generalized to an environment where a “proxy

cache server” receives all the requests from the clients of a local network; with a

certain probability the data requested by a client are already cached on the proxy

server and can be returned without contacting the web server from which the data

originate. In [2], two of the authors of the present paper have further generalized

this model by allowing the proxy cache server to receive also requests from exter-

nal sources. All these models were first informally sketched in the corresponding

papers (referring to their respective predecessors) and then manually analyzed on

the basis of classical queueing theory [4].

In this paper, we have from each of the informal model sketches constructed a

formal model in the language of PRISM [7]. This language essentially allows

to construct in a modular manner a finite state transition system (thus modeling

the qualitative aspects of the system) and to associate rates to the individual state

transitions (thus modeling the quantitative aspects); the mathematical core of such

a system is a Continuous Time Markov Chain (CTMC) which can be analyzed

by the PRISM tool with respect to queries that are expressed in the language of

Continuous Stochastic Logic (CSL) [6].

On the one hand, this work shows again that PRISM is an effective tool for model-

ing and analyzing systems of the type investigated by the performance evaluation

community. Moreover, while constructing the PRISM models requires some ef-

fort, the results are much more specific than the informal model sketches given in

the reported papers. Most important, by this effort we have revealed various am-

biguities, deficiencies, and even plain errors in the previously published models

(and the corresponding analysis results). The use of a tool like PRISM therefore
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is able to increase the confidence in a performance model much beyond what has

been previously possible by classical means.

The remainder of this paper is structured according to the papers mentioned above:

in Section 2, we investigate the model described in [8]; in Section 3, we address

the model of [3]; in Section 4, we handle the model published in [2]. Section 5

summarizes our findings and conclusions. Appendices A–C list all the PRISM

models and the corresponding CSL queries used in this paper.

5



2 Performance Model of a Web Server

In this section, we investigate the web server performance model reported in [8]

on which (directly or indirectly) the models in [3] and [2] are based. Referring

to an illustration redrawn in Figure 1, the core description in that paper reads as

follows (we have renamed the constants for consistency with the constant names

used in the other papers):

This network consists of four nodes (i.e. single-server queues): two model

the Web server itself, and two model the Internet communication network.

File requests (i.e. “jobs”) arrive at the web server with frequency λ . All

one-time “initialization” processing is performed at node SI . The job then

proceeds to node SR where a single buffer’s worth of data is read from the

file, processed, and passed on to the network. At node SS this block of data

is transmitted to the Internet at the server’s transfer rate (e.g. 1.5 Mbits on

a T1 line). This data travels via the Internet and is received by the client’s

browser, represented by node SC. If the file has not been fully transmit-

ted, the “job” branches and returns back to node SR for further processing.

Otherwise, the job is complete, and exits the network.

Notice that the branch is a probabilistic one; given an average file size of F

and buffer size Bs, the probability that the file has been fully transmitted is

q = Bs/F . Also, the arrival rate at node SR (λ ′) is the sum of the network’s

arrival rate (λ ), and the rate of the jobs flowing from SC back to SR. λ ′ is

derived using an operational law of queuing theory: the rate of jobs leaving

any stable node must equal its arrival rate.

The complete list of parameters defining the performance of the model (with de-

fault values stated in parameters) is given as

• Network Arrival Rate (λ )

• Average File Size (F = 5275)

• Buffer Size (Bs = 2000)

• Initialization Time (Is = 0.004) (*)

• Static Server Time (Ys = 0.000016) (*)

• Dynamic Server Rate (Rs = 1310720) (*)

• Server Network Bandwidth (Ns = 193000)

• Client Network Bandwidth (Nc = 88375)

Unfortunately, in [8] no values for the parameters marked as (*) are given for the

calculations reported in that paper; we substitute in our experiments the corre-

sponding values that were used in [3] and [2] for their models.
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Figure 1: Queueing Network Model of a Web Server (redrawn from [8])

2.1 A First PRISM Model

The verbal descriptions above gives rise to the following (core of) the PRISM

code which introduces by the keyword stochastic a continuous time Markov

chain (CTMC) model [6] (the full code is given in Appendix A.1):

stochastic

...

module jobs

[accept] true -> lambda : true ;

endmodule

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

module S_R

irwaiting: [0..IR] init 0;

iraccepted: bool init false;
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[forward] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

[repeat] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[repeat] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

[isforward] irwaiting > 0 -> 1/(Ys+Bs/Rs):

(irwaiting’ = irwaiting-1) ;

endmodule

module S_S

iswaiting: [0..IS] init 0;

isaccepted: bool init false;

[isforward] iswaiting = IS -> 1 :

(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1 :

(isaccepted’ = true) &

(iswaiting’ = iswaiting+1) ;

[icforward] iswaiting > 0 -> (Ns/Bs) :

(iswaiting’ = iswaiting-1) ;

endmodule

module S_C

icwaiting: [0..IC] init 0;

icaccepted: bool init false;

[icforward] icwaiting = IC -> 1 :

(icaccepted’ = false) ;

[icforward] icwaiting < IC -> 1 :

(icaccepted’ = true) &

(icwaiting’ = icwaiting+1) ;

[repeat] (icwaiting > 0) & (1-q > 0) -> (Nc/Bs)*(1-q) :

(icwaiting’ = icwaiting-1) ;

[done] (icwaiting > 0) & (q > 0) -> (Nc/Bs)*q :

(icwaiting’ = icwaiting-1) ;

endmodule

The model consists of one process (“module”) jobs generating requests and four
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processes SI , SR, SS, SC as described above. Each process contains declarations of

its state variables (bounded integers or booleans) and state transitions of form

[label] guard -> rate : update ;

A transition is enabled to execute if its guard condition evaluates to true; it ex-

ecutes with a certain (exponentially distributed) rate and performs an update on

its state variables. Transitions in different processes with the same label execute

synchronously as a single combined transition whose rate is the product of the

rates of the individual transitions. Since a product of rates rarely makes sense in

a model, it is a common technique to give all but one of the individual transitions

the rate 1 and let the remaining transition alone determine the combined rate (we

follow this practice in all our PRISM models).

Each node has a counter (waiting, irwaiting, iswaiting, icwaiting) that denotes the

number of jobs waiting in the corresponding queue. If a new job arrives and the

queue is not full (the counter has not yet reached its upper bound), this counter is

increased and an “acceptance” flag (accepted, iraccepted, isaccepted, icaccepted)

is set to “true”; otherwise, the job is dropped and the flag is set to “false”.

As indicated by the verbal description, jobs may “branch back” with a probabil-

ity q. As indicated by the illustration, the branching occurs after a server block has

been transferred to the client; i.e. the client requests from the server the transfer

of the next block. This “branching back” is modeled above by a transition repeat

in SC that forwards with probability 1− q a request back to SR while the tran-

sition done completes the request with probability q. Since CTMC models use

rates rather than probabilities, we scale the basic rate (Nc/Bs) of the transitions

(which models the forwarding of a block of size Bs over the client network with

bandwidth Nc) with factors q respectively 1−q. Since both transitions are simul-

taneously enabled, they “compete” for execution, and are consequently executed

in proportion to their respective rates, i.e. in proportion q/(1−q), as intended.

We can define in PRISM the “reward structure”

rewards "allaccepted"

accepted : 1;

iraccepted : 1;

isaccepted : 1;

icaccepted : 1;

endrewards

which assigns to every state of a system run the number of acceptance flags that

are set to true. Using the CSL query
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R{"allaccepted"}=? [ S ]

we can compute the long term average of this value and use it as an “indicator”

(not a reliable approximation) for the probability P that a request is “rejected” (i.e.

dropped from the system because it encounters some full buffer).

Likewise, we can define the reward structure

rewards "pending"

true : waiting + irwaiting + iswaiting + icwaiting;

endrewards

which assigns to every state the number N of requests “pending” in the system

and can compute by a CSL query its long term average.

Having determined N and P, we can apply “Little’s Law” from queueing the-

ory [4] to determine the average response time T for a request

T =
N

(1−P)λ

i.e. T ≃ N
λ

for P ≃ 0.

In the following, we present the results of the corresponding experiments per-

formed with PRISM (choosing the Jacobi method for the solution of the equation

systems and a relative termination epsilon of 10−3).

Using the default values for the model parameters described above, we detect that

the capacities of the queues of SI,SR,SS have only little influence on the rejection

rate; thus we choose the smallest queue capacities (IA = IR = IS = 3) for which

the acceptance ratios of the corresponding queues is very close to 1.

However, the situation is different with the capacity IC of the queue in SC model-

ing the client network. As depicted in Figure 2, even if we increase IC very much,

the acceptance ratio of this queue drops significantly for arrival rates λ ≥ 20. The

number of pending requested in Figure 3 is therefore only for λ < 20 (where

P ≃ 0) linearly related to the average response time of a request; for λ ≥ 20, it has

to be adjusted by the factor 1
1−P

to give the estimated response time. Neverthe-

less, we give in Figure 4 the ratio N/λ without adjustments; the curve for IC = 35

represents in the range λ ≤ 20 time rather accurately.

We see that response times increase exponentially with the request arrival rate in

accordance with the predictions of [8]; beyond a certain bound, the server be-

comes “saturated” and cannot serve requests in an acceptable time any more.

10



Figure 2: Estimated Acceptance Ratio for SC

Figure 3: Average Number of Pending Requests
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Figure 4: Estimated Response Time (N/λ )

2.2 The PRISM Model Corrected

While the response times derived in the previous section show the overall ex-

pected behavior, the absolute numbers are much larger than predicted in [8] by

the formula

T =
F

Nc
+

Is

1−λ Is
+

F

Ns −λF
+

F(Bs +RsYs)

BsRs −λF(Bs +RsYs)

for the average response time T of a request; see Figure 5 for the graph depict-

ing T for the default values of the constants given in the previous section and for

growing values of λ . Since [8] does not give all parameter values, we cannot accu-

rately reproduce the figures given there; however, the curve in our Figure 5 closely

resembles the curve in Figure 4 in that paper: for λ = 30, we have a response time

of T ≃ 0.2 s; the time becomes prohibitively large for λ ≥ 35.

The major culprit of the discrepancy is that the client network bandwidth Nc (de-

termining the processing rate of SC) only shows up in the term F
Nc

i.e. it is only

used to contribute to the total response time the time for the transfer of the file

over the client network. If indeed, as suggested by the verbal description, after

the transfer of every block the client would with probability q request the transfer

of another block, the maximum transfer rate of blocks (Nc/B ≃ 44) should also

impose a limit on the number of “repetition” requests.

A little inspection reveals the problem: while the PRISM model above is a faith-

ful translation of the diagram and of the verbal description, it does not match the

12



Figure 5: Response Time (Analytical Model)

model that was actually analyzed in [8]. In fact, the client network is not consid-

ered part of the queueing model but just used to contribute the file transfer time

to the formula for T given above. The actually analyzed queuing model thus con-

sists only of three nodes SI , SR, and SS where the “branching back” of jobs occurs

at/after SS (rather than at/after SC)! Figure 6 presents an updated illustration that

describes the model analyzed in [8] is a more accurate way.

A little introspection reveals that we should actually have anticipated this. The

node SC does actually not represent a single client with network bandwidth Nc

but a whole class of clients each of which is connected to the network with an

average bandwidth Nc; thus also the rate for the generation of repetition requests

is not constrained by a single client queue since the requests are generated from

multiple clients simultaneously.

The PRISM version of this updated model is given below (the full code is given

in Appendix A.2):

stochastic

...

module jobs

[accept] true -> lambda : true ;

endmodule

module S_I

13
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S_R
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S_S
L’

L’pL’=pL/(1−p)

Client Network
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Figure 6: Corrected Network Model of a Web Server

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

module S_R

irwaiting: [0..IR] init 0;

iraccepted: bool init false;

[forward] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

[repeat] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[repeat] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

[isforward] irwaiting > 0 -> 1/(Ys+B/Rs):

(irwaiting’ = irwaiting-1) ;

14



endmodule

module S_S

iswaiting: [0..IS] init 0;

isaccepted: bool init false;

[isforward] iswaiting = IS -> 1 :

(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1 :

(isaccepted’ = true) &

(iswaiting’ = iswaiting+1) ;

[repeat] (iswaiting > 0) & (1-q > 0) -> (Ns/Bs)*(1-q) :

(iswaiting’ = iswaiting-1) ;

[done] (iswaiting > 0) & (q > 0) -> (Ns/Bs)*q :

(iswaiting’ = iswaiting-1) ;

endmodule

Performing the same analysis of acceptance ratios as above, we can determine

that now the capacity of SS becomes the critical factor. However, as can be seen

in Figure 7 (computed with PRISM’s JOR Jacobi Overrelaxation method and a

relative termination epsilon of 10−4), even for IS = 3, the acceptance rate remains

larger than 87% up to a request rate of λ = 40; by increasing the capacity to

IQ = 33, we get an acceptance of 99% up to λ = 35.

The corresponding numbers of pending requests are shown in Figure 8; in Fig-

ure 9, the curve for IS = 33 represents in the range λ ≤ 30 the average response

time rather accurately (compare with Figure 5); for λ ≥ 35, the values become

unreliable (they underestimate the request time by the factor 1
1−P

).

2.3 The PRISM Model Simplified

While the model of the previous section gives adequate results, its analysis by

PRISM starts to take some non-negligible amount of computation time (a couple

of seconds for each parameter set), which might cause a problem for larger models

as those considered later in this paper. In this section, we therefore investigate

whether we can streamline the model to a simpler one that gives the same results

at lower costs by reducing the number of states and the number of transitions.

According to our intuition, it should suffice to model only the initial node SI by a

queue that, if full, rejects further requests and monitor the acceptance ratio for this

queue; however, we simplify the behavior of every other nodes such that it blocks

incoming requests that find the queue full until some request leaves the queue.
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Figure 7: Estimated Acceptance Ratio for SS (Corrected Model)

Figure 8: Number of Pending Requests N (Corrected Model)
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Figure 9: Estimated Response Time N/λ (+F/Nc) (Corrected Model)
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Thus we can save transitions and states (for the handling of acceptance flags);

furthermore, it might be possible to reduce the capacities of the queues in SR

and SS compared to those in the original model without harming the adequacy

of the analysis. We then have to test the adequacy of our idea by investigating

(for varying arrival rates of requests) the capacities of the queues, start with small

initial capacities and increasing them until the number of pending requests (and

thus the average response times) remain invariant.

The simplified model essentially looks as follows (the full code is given in Ap-

pendix A.3):

module jobs

[accept] true -> lambda : true ;

endmodule

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/I_s) :

(waiting’ = waiting-1) ;

endmodule

module S_R

irwaiting: [0..IR] init 0;

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[repeat] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[isforward] (irwaiting > 0) -> 1/(Y_s+B/R_s) :

(irwaiting’ = irwaiting-1) ;

endmodule

module S_S

iswaiting: [0..IS] init 0;

[isforward] iswaiting < IS -> 1 :

(iswaiting’ = iswaiting+1) ;

[repeat] (iswaiting > 0) & (1-q > 0) -> (N_s/B_s)*(1-q) :

(iswaiting’ = iswaiting-1) ;

[done] (iswaiting > 0) & (q > 0) -> (N_s/B_s)*q :

(iswaiting’ = iswaiting-1) ;

18



endmodule

Our original assumption was that it should suffice to choose IR and IS as 1, i.e.

each node can only have states “empty” and “full”; any further increase should

have no further effect on the average number of pending requests (and thus the

average response time). We tested this hypothesis for IA = 50 and varying values

of IR and IS. The results depicted in Figure 10 show that the assumption was

not completely correct: we actually need for IR and IS a minimum value of 2 to

keep the number of pending requests invariant for arrival rates λ > 25; the reason

is probably the repetition “loop” between IR and IS which makes it essential that

when sending a request in one direction, a node is still able to receive a request

from the other direction.

Thus we use in the following the simplified model with IR = IS = 2 and varying

values of IA. Figures 11, 12, and 13 give the corresponding estimated acceptance

ratio, the number of pending requests, and the estimated response time (computed

with PRISM’s JOR Jacobi Overrelaxation method and a relative termination ep-

silon of 10−4). We see that in the range λ ≤ 30, the results are virtually identical to

the original model (an average response time of less than 0.2 s) and get unreliable

only for λ ≥ 35.

The time that PRISM needs for the analysis of the simplified model is signifi-

cantly smaller than the one required for the original one; the simplification may

thus serve also as a “blueprint” for the investigations performed in the following

sections. We must, however, not forget to perform a careful analysis to show that

the results are also adequate for higher arrival rates.
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Figure 10: Number of Pending Requests N (Simplified Model)
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Figure 11: Estimated Acceptance Ratio for SS (Simplified Model)

Figure 12: Number of Pending Requests N (Simplified Model)
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Figure 13: Estimated Response Time N/λ (+F/Nc) (Simplified Model)
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3 Performance Model of a Proxy Cache Server

The article [3] describes the model of a “proxy cache server” (PCS) to which the

clients of a firm are connected such that web requests of the clients are first routed

to the PCS. Referring to an illustration redrawn in Figure 14, the authors describe

their model as follows:

If the requested files are already stored in the PCS, the requested Web pages

or files will be directly delivered to the user from the PCS. When the re-

quested files cannot be found in the PCS, it initiates the process of fetching

the desired files from the remote Web site. These new files will be stored in

the firm’s PCS, while a copy will be sent to the requesting user. . . .

The probability that the PCS can fulfill a request is p. . . . We define λ1 and

λ2 such that λ = λ1 +λ2 where λ1 = pλ and λ2 = (1− p)λ . . . .

It is not unusual for the size of the requested file, F , to exceed the remote

Web server’s output buffer size, Bs. In this case, it may take several loops of

retrieving and delivering smaller files to complete the PCS’s request. This

looping phenomenon is inherent in the Hyper Text Transfer Protocol (HTTP)

where retrieval of the home page is followed by retrieval of embedded inline

images. To model this looping, let q be the branching probability that a

request from the PCS can be fulfilled at the first try; or q = min{1,(Bs/F)}.

Consequently, a (1 − q) proportion of the requests will loop back to the

remote Web server for further processing. In equilibrium, the traffic coming

out of the remote Web server toward the PCS after branching should equal

the original incoming traffic, λ2. Hence qλ ′
2 equals λ2 . . . where λ ′

2 is the

traffic leaving server network bandwidth before branching. . . .

The performance of the model is characterized by the parameters (in addition to

those already listed in Section 2)

• PCS buffer size (Bxc = αBs)

• Static PCS time (Yxc = βYs)

• Dynamic PCS rate (Rxc = βRs)

• PCS initialization time (Ixc = γIs)

with default values α = β = γ = 1 (and, different from the values listed in Sec-

tion 2, F = 5000 and Nc = 16000).
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The overall response time in the presence of the PCS is given as

Txc = 1
1

Ixc
−λ

+ p

{

1
1

F
Bxc

[Yxc+ Bxc
Rxc

]
−λ1

+ F
Nc

}

+(1− p)

{

1
1
Is
−λ2

+ 1
1

F
Bs

[Ys+
Bs
Rs

]
−λ2/q

+ F
Ns

+ 1
1

F
Bxc

[Yxc+ Bxc
Rxc

]
−λ2

+ F
Nc

}

In this formula, the first term denotes the lookup time to see if the desired files

are available from the PCS, the second term (with factor p) describes the time for

the content to be delivered to the requesting user, and the third term (with factor

1− p) indicates the time required from the time the PCS initiates the fetching of

the desired files to the time the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

T =
1

1
Is
−λ

+
1

1
F
Bs

[Ys+
Bs
Rs

]
−λ/q

+
F

Ns
+

F

Nc

The response times for the PCS model with various arrival rates λ and probabil-

ities p as well as the response time for the model without PCS, are depicted in

Figure 15.

3.1 The Model without PCS

It is claimed in [3] that the equation for T given above represents the special case

reported in [8], but this is actually not the case. In [3], the only term where the

server bandwidth Ns plays a role is

F

Ns

which indicates the time for the transfer of the file over the server network. In [8],

instead the term
F

Ns −λF

is used which can be transformed to

1
Ns

F
−λ

which indicates the time that a request spends in a queue with arrival rate λ and

departure rate Ns

F
. In other words, while [8] did not treat the client network as a
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Figure 15: Response Times With and Without PCS (Analytical Model)
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Figure 16: Corrected Queueing Network Model of Web Server
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Figure 17: Estimated Acceptance Ratio

queue, it nevertheless treated the server network as such. However, in [3], neither

the client network nor the server network are treated as queues; they are just used

to give additional time constants for file transfers.

In Figure 16, we therefore depict the model without PCS by using only two queues

rather than three. The PRISM formulation of this model is given below (for the

full code see Appendix B.1):

module jobs

[accept] true -> lambda : true ;

endmodule

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;
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Figure 18: Number of Pending Requests (N)

endmodule

module S_R

irwaiting: [0..IR] init 0;

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[done] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1) ;

endmodule

For this model, it suffices to take IA = 10 and IR = 3 to get stable results for λ ≤
90. Figure 17 shows the acceptance ratio, Figure 18 shows the average number

of requests N pending in the system, and Figure 19 gives the derived estimated

response times.

3.2 The Analytical Model Corrected

As it turns out, the numerical results produced by the analysis in PRISM do not

accurately correspond to those depicted as “No PCS” in Figure 15, in particular
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Figure 19: Estimated Response Time N/λ (+ F
Nc

+ F
Ns

)
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Figure 20: Response Time Without PCS (Modified Analytical Model)

for λ ≥ 50. Actually the results are better described by the equation

T ′ =
1

1
Is
−λ

+

(

F

Bs

)

1
1

Ys+
Bs
Rs

−λ/q
+

F

Ns
+

F

Nc

depicted in Figure 20 where the second term (modeling the “repetition loop” in

the generation of the web server output) has been modified. Indeed, a closer

inspection substantiates the correctness of this formulation: F/Bs represents the

number of “iterations” of the corresponding queue which has arrival rate λ/q and

departure rate 1/(Ys + Bs

Rs
); this term now also equals the last term of the equation

for T of [8] given in Section 2.2 (taking q = Bs

F
).

Actually the same problem also affects the corresponding terms in the equation

for Txc modeling repetition loops; the correct formulation apparently is

T ′
xc = 1

1
Ixc

−λ
+ p

{

(

F
Bxc

)

1
1

Yxc+ Bxc
Rxc

−λ/pxc
+ F

Nc

}

+(1− p)

{

1
1
Is
−λ2

+
(

F
Bs

)

1
1

Ys+
Bs
Rs

−λ2/q
+ F

Ns
+

(

F
Bxc

)

1
1

Yxc+ Bxc
Rxc

−λ/pxc
+ F

Nc

}
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Figure 21: Response Times With and Without PCS (Modified Analytical Model)

where pxc = Bxc/F is the probability that the repetition loop is terminated (please

note also the changes in the arrival rates of the corresponding terms). The corre-

sponding numerical results are depicted in Figure 21, compare with the original

results in Figure 15. However, here the difference plays only a minor role (for

p ≥ 0.2 only the third digit after the comma is affected).

3.3 The Model with PCS

Also in the model with PCS, the server network is not modelled by a queue but

just by an additive constant for the transfer of the file over the network. This fact

is made clear by rewriting the equation for the average response time as

T ′
xc = 1

1
Ixc

−λ
+ p

{

(

F
Bxc

)

1
1

Yxc+ Bxc
Rxc

−λ/pxc

}

+(1− p)

{

1
1
Is
−λ2

+
(

F
Bs

)

1
1

Ys+
Bs
Rs

−λ2/q
+

(

F
Bxc

)

1
1

Yxc+ Bxc
Rxc

−λ/pxc

}

+
{

F
Nc

+(1− p) F
Ns

}
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Here each fraction of form 1
µ−λ

indicates an occurrence of a queue with arrival

rate λ and departure rate µ . We can see clearly that neither the server bandwidth

Ns nor the client bandwidth Nc play a role in such fractions.

Figure 14 is therefore highly misleading; neither the server network bandwidth

nor the client network bandwidth are in the model actually represented by queues;

thus the queues labelled as “server network bandwidth” and “client network band-

width” should be removed (i.e. replaced by other visual elements indicating sim-

ple delays). Furthermore, similar to the “branching” discussed in Section 2, the

“branching” in this picture should not start after the “server network” but di-

rectly after the “web server output”, because the repetition rate of requests is not

bounded by the network bandwidth in the model.

However, on the other side actually a queue is missing (also from the description

in the text); this is the one that models the repeated requests for blocks of size

Bxc which are sent by the clients to the PCS (analogous to the repeated requests

for blocks of size Bs sent by the client to the web server in the basic web server

model); therefore the client indeed needs to be modeled by a queue (whose output

is redirected with probability 1 − pxc to its input), but because of the looping

process, not because of the client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually

wrong; the corresponding requests do not flow to the PCS queue (where, since the

queue cannot distinguish its inputs, they might generate new requests for the web

server) but directly to the client queue.

Summarizing, the actual queueing network modeled in [3] contains only four

nodes in contrast to the five ones shown in Figure 14 (no queue for modeling

the server bandwidth) and one of these queues does not model the “client network

bandwidth” but the repetition of block requests (it could be labelled in the figure

as “client output” because it plays for the repetition the same role as the queue

labeled “web server output”).

Figure 22 shows a revised picture that describes the model as outlined above.

We implement this model in PRISM as shown below (for the full code see Ap-

pendix B.2):

module jobs

[accept] true -> lambda : true ;

endmodule

module PCS

pxwaiting: [0..IP] init 0;

pxaccepted: bool init true;
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[accept] pxwaiting = IP -> 1 :

(pxaccepted’ = false) ;

[accept] pxwaiting < IP -> 1 :

(pxaccepted’ = true) &

(pxwaiting’ = pxwaiting+1) ;

[sforward] (pxwaiting > 0) & (1-p > 0) -> (1/Ixc)*(1-p) :

(pxwaiting’ = pxwaiting-1) ;

[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)*p :

(pxwaiting’ = pxwaiting-1) ;

endmodule

module S_C

icwaiting: [0..IC] init 0;

[panswer] icwaiting < IC -> 1 :

(icwaiting’ = icwaiting+1) ;

[sanswer] icwaiting < IC -> 1 :

(icwaiting’ = icwaiting+1) ;

[done] (icwaiting > 0) & (pxc > 0) -> 1/(Yxc+Bxc/Rxc)*pxc :

(icwaiting’ = icwaiting-1) ;

endmodule

module S_I

waiting: [0..IA] init 0;

[sforward] waiting < IA -> 1 :

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

module S_R

irwaiting: [0..IR] init 0;

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[sanswer] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1) ;

endmodule

Module PCS models the proxy cache server, module SC the client, module SI the

initialization queue of the web server, module SR the output queue of the web

server with the following behavior:

• PCS returns with probability q an answer to the client (transition canswer)

and forwards with probability 1 − q the request to the server (transition

sforward). The corresponding transitions “carry” the initialization time Ixc

of the server.
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• SI buffers the incoming server request and forwards it after the initialization

for further processing (transition forward); the transition carries the initial-

ization time Is of the server.

• SR generates an output buffer with rate 1/(Ys + Bs

Rs
) according to the model.

However, since the request is repeated with probability 1− q (where q =
F/Bs), the final result is only produced with probability q which contributes

as a factor to the rate of the corresponding transition (transition sanswer).

• SS models the repetition behavior of the client; a buffer of size Bxc is re-

ceived from the PCS with rate 1/(Ypx + Bxc

Rxc
). However, the request for a

buffer is repeated with probability 1 − pxc such that only with probabil-

ity pxc the final buffer is received and the request is completed (transition

done).

While it would be tempting to model the repetition in SC by generating a new

request for PCS, this is actually wrong (as already discussed above for the model

of [3]): since such a repetition request is only triggered after the PCS has already

received the complete file from the web server, it is not to be treated like the in-

coming requests (that with probability 1− p generate requests for the web server);

rather we just consider the probability pxc with which the final block is received

from the PCS in the rate of the termination transition done.

We describe in above PRISM model the actual queueing model analyzed in [3]

where neither the client network nor the server network are actually modelled by

queues; the response time determined of this model has to be correspondingly

increased by the network transfer times F/Nc + F/Ns to give the total response

time. If we would, however, nevertheless like to model the server network by a

queue, above model would have to be changed as follows:

module S_R

irwaiting: [0..IR] init 0;

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[repeat] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

[isforward] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs) :

(irwaiting’ = irwaiting-1) ;

endmodule

module S_S

iswaiting: [0..IS] init 0;

[isforward] iswaiting < IS -> 1 :

(iswaiting’ = iswaiting+1) ;
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[repeat] (iswaiting > 0) & (1-q > 0) -> (Ns/Bs)*(1-q) :

(iswaiting’ = iswaiting-1) ;

[sanswer] (iswaiting > 0) & (q > 0) -> (Ns/Bs)*q :

(iswaiting’ = iswaiting-1) ;

endmodule

Here the module SS represents the server network which receives file blocks of

size Bs from the server such that after a delay Bs/Ns (with a probability 1− q)

either a new block can be requested (transition repeat) or (with a probability q)

the total server answer is available to the PCS (transition sanswer); the rates of

the transitions reflect this behavior.

In the following, we present the results of analyzing our (unmodified) model in

PRISM (choosing the Jacobi method for the solution of the equation systems and a

relative termination epsilon of 10−4; the analysis only takes a couple of seconds).

As it turns out, it suffices to take the queue capacities IP = 5, IC = 3, IA = IR = 1

to keep the response times essentially invariant.

Figure 23 gives the acceptance ratio for various arrival rates λ and proxy hit

rates p; Figure 23 depicts the corresponding average number of requests N in the

system. From this, we can estimate the time that a requests spends in the system

as N/λ and the total time including the file transfer as N/λ + F
Nc

+(1− p) F
Ns

, see

Figure 25 and compare with the curve given from the equation of T ′
xc in Figure 21.

The results are virtually identical; only for arrival rates λ > 70 and p = 0, we can

see differences (because the web server gets saturated and the request rejection

rate starts to get significant).
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Figure 23: Estimated Acceptance Ratio

Figure 24: Number of Pending Requests (N)
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Figure 25: Estimated Response Time N/λ (+ F
Nc

+(1− p) F
Ns

)
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4 Performance Model of a Proxy Cache Server with

External Users

The article [3] describes the model of a “proxy cache server” (PCS) to which the

clients of a firm are connected such that web requests of the clients are first routed

to the PCS. If the requested file cannot be served by the PCS, then it downloads

it from the remote Web servers and forwards to the clients. This model is refined

in the article [2] by the following two issues: (1) external visits (from the rest

of the Internet) are also allowed to the remote Web servers, (2) the Web servers

have limited buffer. Referring to an illustration redrawn in Figure 26, the authors

describe their model as follows:

In this paper a modification of the performance model of Bose and Cheng [3]

is given to deal with a more realistic case when external visitors are allowed

to the remote Web servers and the Web servers have a limited buffer. For

the easier understanding of the basic model and comparisons we follow the

structure of the cited work.

Using proxy cache server, if any information or file is requested to be down-

loaded, first it is checked whether the document exists on the proxy cache

server. (We denote the probability of this existence by p). If the document

can be found on the PCS then its copy is immediately transfered to the user.

In the opposite case the request will be sent to the remote Web server. After

the requested document arrived to the PCS then the copy of it is delivered to

the user. . . .

We assume that the requests of the PCS users arrive according to a Poisson

process with rate λ , and the external visits at the remote web server form a

Poisson process with rate Λ

Let F be the average of the requested file size. We define λ1, λ2, λ3 and λ5

such that: λ1 = p∗λ , λ2 = (1− p)∗λ , λ3 = λ2 +Λ, and λ5 = (1−Pb)∗λ2

. . .

In our model we assume that the Web server has a buffer of capacity K. Let

Pb be the probability that a request will be denied by the Web server. As it is

well-known from basic queueing theory the blocking probability Pb for the

M/M/1/K queueing system: Pb = P(N = K) = (1−ρ)∗ρK

1−ρK+1 . . .

Now we get ρ = λ3F(YsRs+Bs)
RsBs

Now we can see that the requests arrive to the buffer of the Web server

according to a Poisson process with rate λ4 = (1−Pb)∗λ3 . . .

If the size of the requested file is greater then the Web server’s output buffer

it will start a looping process until the delivery of all requested file’s is com-

pleted. Let q = min
(

1, Bs

F

)

be the probability that the desired file can be
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Figure 26: Queueing Network Model of a Proxy Cache Server (redrawn from [2])

delivered at the first attempt. Let λ
′

4 be the rate of the requests arriving at the

Web service considering the looping process. According to the conditions

of equilibrium and the flow balance theory of queueing networks λ4 = q∗λ
′

4

. . .

The performance of the model is characterized by the parameters (in addition to

those already listed in Section 2 and in Section 3).

• Visit rates for external users (Λ)

• Cache hit rate probability (p)

• Buffer size of the Web server given in requests (K = 100)

with default values α = β = γ = 1 (and, different from the values listed in Sec-

tion 2, F = 5000 and Nc = 16000).
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The overall response time in the presence of the PCS is given as

Txc = 1
1

Ixc
−λ

+ p

{

1
Bxc

F∗(Yxc+ Bxc
Rxc )

−λ1
+ F

Nc

}

+(1− p)







1
1
Is
−λ3

+ 1
Bs

F∗(Ys+
Bs
Rs )

−
λ4
q

+ F
Ns

+ 1
Bxc

F∗(Yxc+ Bxc
Rxc )

−λ5
+ F

Nc

}

In this formula, the first term denotes the lookup time to see if the desired files

are available from the PCS, the second term (with factor p) describes the time for

the content to be delivered to the requesting user, and the third term (with factor

1− p) indicates the time required from the time the PCS initiates the fetching of

the desired files to the time the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

T =
1

1
Is
−λ

+
1

F
Bs

(Ys+
Bs
Rs

)
−λ/q

+
F

Ns
+

F

Nc

4.1 The Analytical Model Corrected

We have to notice that neither the client network nor the server network are treated

as queues; thus the queues labelled as “server network bandwidth” and “client

network bandwidth” should be removed and replaced by other visual elements

indicating simple delays, that are just used to give additional time constants for

file transfers as it is described in Section 3).

The error of the “repetition loop” that is described in Section 3 appears in the

overall response time in the article [2] too.

So, actually a queue is missing; this is the one that models the repeated requests

for blocks of size Bxc which are sent by the clients to the PCS (analogous to the

repeated requests for blocks of size Bs sent by the client to the web server in

the basic web server model); therefore the client indeed needs to be modeled by

a queue (whose output is redirected with probability 1− pxc is redirected to its

input), but because of the looping process, not because of the client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually

wrong; the corresponding requests do not flow to the PCS queue (where, since the

queue cannot distinguish its inputs, they might generate new requests for the web

server) but directly to the client queue.
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Figure 27: Corrected Model of Web Server with External Users

Summarizing, the actual, corrected queueing network modeled in [2] contains

four nodes as shown in Figure 27: there are no queues for modeling the server and

client network bandwidth but one for the repetition of block requests (it could be

labelled in the figure as “client output” because it plays for the repetition the same

role as the queue labeled “web server output”).

So, the corrected overall response time in the presence of the PCS is given as

Txc = 1
1

Ixc
−λ

+ p

{

F
Bxc

1

(Yxc+ Bxc
Rxc )

− λ
qxc

+ F
Nc

}

+(1− p)







1
1
Is
−λ3

+
F
Bs

1

(Ys+
Bs
Rs )

−
λ4
q

+ F
Ns

+
F

Bxc

1

(Yxc+ Bxc
Rxc )

−
λ1+λ5

qxc

+ F
Nc







where
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λ1 = p∗λ , λ2 = (1− p)∗λ , λ3 = λ2 +Λ,

ρ = λ3RS

YSRS+BS
, Pb = P(N = K) = (1−ρ)∗ρK

1−ρK+1 , λ4 = (1−Pb)∗λ3,

λ5 = (1−Pb)∗λ2.

The corrected overall response time without a PCS is given as

T =
1

1
Is
−λ

+
F
Bs

1

(Ys+
Bs
Rs

)
−λ/q

+
F

Ns
+

F

Nc

4.2 PRISM Implementation

The PRISM implementation of this model can be found in Appendix C.1. It is

based on the one given in Appendix B.2, which is referred as the “original” or

“base” implementation in this subsection. We are now going to explain the differ-

ences of the two implementations.

We have seen that the new model has two new issues: (1) external visits (from

the rest of the Internet) are also allowed to the remote Web servers, (2) the Web

servers have limited buffer. In PRISM any queue must have a buffer limit. This

means that we have to deal only with the first issue, i.e., we have to simulate

external users. We simulate external users by the following new module:

module external

[extaccept] true -> capitallambda : true ;

endmodule

This module generates external requests with rate Λ, which is called in the PRISM

code capitallambda. The requests are sent to the Web servers input queue, i.e., we

have to synchronize with the SI module, therefore, the corresponding transactions

have the same label, which is ”extaccept”. We show only those lines from the SI

module, which are not included in the base implementation:

module S_I

...

[extaccept] waiting < IA -> 1 :

(waiting’ = waiting+1) ;

...

endmodule
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After an external request has arrived, it is processed and the answer is placed in the

output queue, which is simulated by the SR module. Here one cannot distinguish

between answers to external requests and answers to PCS requests (requests from

the proxy cache server), but the two kind of answers have different impact on

the system (answers to external requests have to send to the rest of the Internet,

answers to PCS requests have to send to the proxy cache server).

So we do not know which answer belongs to which kind of answers, but we know

the incoming rate of the two kind of requests: We know that external requests

arrive with rate Λ, PCS requests arrive with rate (1− p)∗λ . Let λ2 = (1− p)∗λ ,

and let λ3 = λ2 +Λ. So we know that λ3 is the number of all the incoming requests

per time unit, and λ2 is the number of the incoming PCS requests per time unit,

therefore, λ2/λ3 is the probability that a request is a PCS one. Since for each

request we have an answer, we obtain that λ2/λ3 is the probability that an answer

belongs to a PCS request.

We used this observation in the SR module. We show only those lines from the SR

module, which are altered or not included in the base implementation:

module S_R

...

[sanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(lambda2/lambda3):

(irwaiting’ = irwaiting-1) ;

[extanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(1-(lambda2/lambda3)):

(irwaiting’ = irwaiting-1) ;

endmodule

Finally we had to rewrite the timing rewards. The original time reward was

rewards "time"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda;

endrewards

This is a very nice and concise form, but this hides the inner structure. A more

verbose form of the original time reward could be this one:

rewards "time"

true : 1 * pxwaiting / lambda +

p * icwaiting / lambda1 +

(1-p) * waiting /lambda2 +

(1-p) * irwaiting / lambda2;

endrewards

44



Here lambda1 = p∗ lambda and lambda2 = (1− p)∗ lambda. Each part of this

reward has the form “probability of this branch times the actual size of the queue

divided by the incoming rate”. One can see that the two rewards are the same, but

the second one helps us to write the new “time” and “time0” rewards:

rewards "time"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3;

endrewards

rewards "time0"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3 +

(FS/Nc) + (1-p)*(FS/Ns);

endrewards

Here we have lambda3 = lambda2 + capitallambda. The new time reward is

based on the fact that with probability (1− p) the proxy cache server forwards

the requests to the Web server’s input queue. Since each request is served, the

probability that the answer is placed in the output queue of the Web server is the

same: (1− p). For both queues the incoming rate is lambda3, because the Web

server gets requests from the proxy cache server (with rate lambda2) and from

external users (with rate capitallambda).

4.3 Test Results

Of course one has to counter-check the implementation against numerical results.

Unfortunately we cannot use the diagrams in [2], because the article contains

errors as we shown above. But we can use the results of the previous chapter.

If we choose Λ to be a very small number then our implementation has to give

virtually the same results as the base implementation. To check this we recall the

Estimated Response Time of the PRISM code of Appendix B.2 in Figure 28 as

the first diagram. The second one is the Estimated Response Time of the new

implementation in case Λ = 1. We can see that the diagrams are virtually the

same, except that in the new implementation we cannot simulate the case p = 1.

We have also numerical results based on the corrected equation in the subsection

4.1. The numerical results are as follows:

Parameters:

p = 0.25

capitallamba = 100
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Figure 28: Estimated Response Time

46



F = 5000

Y_s = 0.000016, Y_xc = 0.000016

B_s = 2000, B_xc = 2000

R_s = 1250 * 1000 * 8, R_xc = 1250 * 1000 * 8

I_s = 0.004, I_xc = 0.004

Ns = 1544 * 100, Nc = 128 * 100

mu_pcs = 1 / (Y_xc + (B_xc / R_xc))

mu_web = 1 / (Y_s + (B_s / R_s))

Results:

lambda: 10 0,425314728333584

lambda: 20 0,425792543375320

lambda: 30 0,426321265032608

lambda: 40 0,426909696486849

lambda: 50 0,427568831459086

lambda: 60 0,428312592318381

lambda: 70 0,429158892980198

lambda: 80 0,430131208973998

lambda: 90 0,431260965835961

In Figure 29 we can see the Estimated Response Time of the new implementation

using the “time0” reward and the parameters shown above. The cache sizes are

set as follows: IP = 7, IC = 3, IA = 19, IR = 8. With these, the test results are the

same up to the 4-5th digit as the numerical results.

The next question was, how big should the queues be? If the queues are small then

lot of requests are refused. If the queues are big then the running time of a PRISM

experiment is to long. We did lot of experiments with cash sizes. The goal was to

find the minimal cache size for which the acceptance ratio for all queue is at least

0.99 with incoming rates lambda = 70 and capitallambda = 100. We have found

that the following cache sizes are the best choice: IP = 7, IC = 3, IA = 19, IR = 8

in case of p = 0.2. For this test we used the PRISM implementation which can be

found in in Appendix C.2. We show only the acceptance ratio for the queues IC,

IA, and IR in Figure 30, because the acceptance ratio for the queue IP is always

more than 0.999.

We can see an interesting phenomenon that the acceptance ratio grows for IC as

capitallambda grows, but this is the opposite one would expect. The explanation

of this phenomenon is that the acceptance ratio for queues IA and IR gets lower and

lower as capitallambda grows, and hence, more and more PCS request are lost.

In case lambda = 90 and capitallambda = 150 around 90∗0.99∗0.95 = 84,645

PCS requests are served, but in case lambda = 90 and capitallambda = 200 only

around 90 ∗ 0.9 ∗ 0.91 = 73,71 PCS requests are served and, of course, lower

number of requests means bigger acceptance ratio.
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Figure 29: Estimated Response Time
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Figure 30: Estimated Response Time
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5 Conclusions

The work described in this paper seems to justify the following conclusions:

• The informal models used in literature for the performance analysis of com-

puting systems are often ambiguous. This may lead to misunderstandings

of other researchers that build on top of prior work; e.g. [3] and [2] describe

their results as to be based on the model presented in [8], but actually [8]

models the server network by a delay element rather than by a queue which

gives different results in the performance evaluation.

• The use of diagrams of queue networks is an insufficient substitute for a

formal specification of a system model and a constant source of pitfalls.

In [8], the diagram depicts a queue where the actual performance model uses

a constant delay; likewise [3] and [2] depict queues for the server network

but also use delays in their analysis. Furthermore, in all three papers there

is an apparent confusion of the roles of the “loop-back” arrows which are

shown in the diagrams in places that are misleading with respect to the role

that they actually play in the analyzed models.

• Two of the papers [3, 2] have errors in the analytical models; these errors

were only detected after trying to reproduce the results with the PRISM

models. This demonstrates that performance evaluation results published in

literature cannot be blindly trusted without further validation.

• Most important, after correcting the diagrams to match the actually ana-

lyzed models, a question mark has to be put on the adequacy of the models

with respect to real implementations. All three [8, 3, 2] model the client net-

work bandwidth outside the “loop” for the repeated transfer of blocks from

the web (respectively proxy cache) server to the client. While the informal

descriptions seem to suggest that this is intended to model the underlying

network protocol, i.e. presumedly TCP, the “sliding windows” implemen-

tation of TCP lets the client interact with the server to control the flow of

packets; this interaction is not handled in the presented performance models

(because then the network delay must be an element of the interaction loop).

• The PRISM modeling language can be quite conveniently used to describe

queueing networks by representing every network node as an automaton

(“module”) with explicit (qualitative and quantitative) descriptions of the

interactions between automata. This forces us to be much more precise

about the system model, which may first look like a nuisance, but shows its

advantage when we want to argue about the adequacy of the model.
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• The major limitation of a PRISM model is that it can be only used to

model finitely bounded queues, while typical performance models use infi-

nite queues. However, by careful experiments with increasing queue sizes

one may determine appropriate bounds where the finite models do not sig-

nificantly differ from the infinite models any more. Furthermore, since ac-

tual implementations typically use (for performance reasons) finite buffers

anyway, such models more adequately describe the real-world situation; the

work performed for the analysis may be therefore used to determine appro-

priate bounds for the implementations and reason about the expected losses

of requests for these bounds.

In the future, we intend to continue this line of work by progressing towards the

modeling and analysis of more complex systems that are derived from real im-

plementations rather than from models published in literature. By this work, we

hope to gain further insight into the real-world applicability of probabilistic model

checking to the performance analysis of computing systems.
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A PRISM Model of a Web Server

A.1 A First PRISM Model

// --------------------------------------------------------------------------

// webServer0.sm

//

// a bounded queue approximation of the web server model presented in

//

// Louis P. Slothouber "A Model of Web Server Performance"

//

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"

//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time (Bose/Cheng)

const double Ys = 0.000016; // static server time (Bose/Cheng)

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values

const double q = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA = 3; // capacity of server arrival queue

const int IR = 3; // capacity of server output queue

const int IS = 3; // capacity of internet queue of server

const int IC; // capacity of internet queue of client

// --------------------------------------------------------------------------

// system model

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// server arrival queue

module S_I
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waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

iraccepted: bool init false;

// request from arrival queue

[forward] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

// repetition request from client

[repeat] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[repeat] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

// forwarding of full block

[isforward] irwaiting > 0 -> 1/(Ys+Bs/Rs) :

(irwaiting’ = irwaiting-1) ;

endmodule

// internet queue of server

module S_S

iswaiting: [0..IS] init 0;

isaccepted: bool init false;

[isforward] iswaiting = IS -> 1 :

(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1 :

(isaccepted’ = true) &

(iswaiting’ = iswaiting+1) ;

[icforward] iswaiting > 0 -> (Ns/Bs) :

(iswaiting’ = iswaiting-1) ;

endmodule

// internet queue of client

module S_C

icwaiting: [0..IC] init 0;

icaccepted: bool init false;

// accept answer

[icforward] icwaiting = IC -> 1 :

(icaccepted’ = false) ;

[icforward] icwaiting < IC -> 1 :

(icaccepted’ = true) &

(icwaiting’ = icwaiting+1) ;

54



// request is repeated with probability 1-p

[repeat] (icwaiting > 0) & (1-q > 0) -> (Nc/Bs)*(1-q) :

(icwaiting’ = icwaiting-1) ;

// request is completed with probability p

[done] (icwaiting > 0) & (q > 0) -> (Nc/Bs)*q :

(icwaiting’ = icwaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "allaccepted"

accepted : 1;

iraccepted : 1;

isaccepted : 1;

icaccepted : 1;

endrewards

rewards "accepted"

accepted : 1;

endrewards

rewards "iraccepted"

iraccepted : 1;

endrewards

rewards "isaccepted"

isaccepted : 1;

endrewards

rewards "icaccepted"

icaccepted : 1;

endrewards

rewards "pending"

true : waiting + irwaiting + iswaiting + icwaiting;

endrewards

rewards "time"

true : (waiting + irwaiting + iswaiting + icwaiting)/lambda;

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-3, and model constants

//

// lambda = 5..40, IA = 3, IR = 3, IS = 3, IC = 5..35

//

// gives reliable results for lambda <= 20

// estimated percentage of requests accepted by queues

R{"allaccepted"}=? [ S ]

R{"accepted"}=? [ S ]

R{"iraccepted"}=? [ S ]

R{"isaccepted"}=? [ S ]

R{"icaccepted"}=? [ S ]
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// number of requests pending in system

R{"pending"}=? [ S ]

// average request response time

R{"time"}=? [ S ]

A.2 The PRISM Model Corrected

// --------------------------------------------------------------------------

// webServer1.sm

//

// a bounded queue approximation of the web server model presented in

//

// Louis P. Slothouber "A Model of Web Server Performance"

//

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"

//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time (Bose/Cheng)

const double Ys = 0.000016; // static server time (Bose/Cheng)

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values

const double q = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA = 3; // capacity of server arrival queue

const int IR = 3; // capacity of server output queue

const int IS; // capacity of internet queue of server

// --------------------------------------------------------------------------

// system model: client bandwidth is ignored

// (file transfer time to be added to total request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs
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[accept] true -> lambda : true ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

iraccepted: bool init false;

// request from arrival queue

[forward] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

// repetition request from client

[repeat] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[repeat] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

// forwarding of block

[isforward] (irwaiting > 0) -> 1/(Ys+Bs/Rs) :

(irwaiting’ = irwaiting-1) ;

endmodule

// internet queue of server

module S_S

iswaiting: [0..IS] init 0;

isaccepted: bool init false;

[isforward] iswaiting = IS -> 1 :

(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1 :

(isaccepted’ = true) &

(iswaiting’ = iswaiting+1) ;

// request is repeated with probability 1-q

[repeat] (iswaiting > 0) & (1-q > 0) -> (Ns/Bs)*(1-q) :

(iswaiting’ = iswaiting-1) ;

// request is completed with probability q

[done] (iswaiting > 0) & (q > 0) -> (Ns/Bs)*q :

(iswaiting’ = iswaiting-1) ;

endmodule

// --------------------------------------------------------------------------
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// system rewards

// --------------------------------------------------------------------------

rewards "allaccepted"

accepted : 1;

iraccepted : 1;

isaccepted : 1;

endrewards

rewards "accepted"

accepted : 1;

endrewards

rewards "iraccepted"

iraccepted : 1;

endrewards

rewards "isaccepted"

isaccepted : 1;

endrewards

rewards "pending"

true : waiting + irwaiting + iswaiting;

endrewards

rewards "time"

true : (waiting + irwaiting + iswaiting)/lambda;

endrewards

rewards "time0"

true : (waiting + irwaiting + iswaiting)/lambda+(FS/Nc);

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-3, and model constants

//

// lambda = 5..40, IA = 3, IR = 3, IS = 3..33

//

// gives reliable results for lambda <= 35

// estimated percentage of requests accepted by queues

R{"allaccepted"}=? [ S ]

R{"accepted"}=? [ S ]

R{"iraccepted"}=? [ S ]

R{"isaccepted"}=? [ S ]

// number of requests pending in system

R{"pending"}=? [ S ]

// time request spends in system

R{"time"}=? [ S ]

// time request spends in system plus file transfer time

R{"time0"}=? [ S ]
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A.3 The PRISM Model Simplified

// --------------------------------------------------------------------------

// webServer2.sm

//

// a bounded queue approximation of the web server model presented in

//

// Louis P. Slothouber "A Model of Web Server Performance"

//

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"

//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time (Bose/Cheng)

const double Ys = 0.000016; // static server time (Bose/Cheng)

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values

const double q = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA; // capacity of server arrival queue

const int IR = 2; // capacity of server output queue

const int IS = 2; // capacity of internet queue of server

// --------------------------------------------------------------------------

// system model: client bandwidth is ignored

// (file transfer time to be added to total request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;
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[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

// request from arrival queue

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

// repetition request from client

[repeat] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

// forwarding of block

[isforward] (irwaiting > 0) -> 1/(Ys+Bs/Rs) :

(irwaiting’ = irwaiting-1) ;

endmodule

// internet queue of server

module S_S

iswaiting: [0..IS] init 0;

[isforward] iswaiting < IS -> 1 :

(iswaiting’ = iswaiting+1) ;

// request is repeated with probability 1-q

[repeat] (iswaiting > 0) & (1-q > 0) -> (Ns/Bs)*(1-q) :

(iswaiting’ = iswaiting-1) ;

// request is completed with probability q

[done] (iswaiting > 0) & (q > 0) -> (Ns/Bs)*q :

(iswaiting’ = iswaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "accepted"

accepted : 1;

endrewards

rewards "pending"

true : waiting + irwaiting + iswaiting;

endrewards

rewards "time"

true : (waiting + irwaiting + iswaiting)/lambda;

endrewards

rewards "time0"

true : (waiting + irwaiting + iswaiting)/lambda+(FS/Nc);

endrewards
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CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-3, and model constants

//

// lambda = 5..40, IA = 10..40, IR = 2, IS = 2

//

// gives reliable results for lambda <= 30

// estimated percentage of requests accepted by queues

R{"accepted"}=? [ S ]

// number of requests pending in system

R{"pending"}=? [ S ]

// time request spends in system

R{"time"}=? [ S ]

// time request spends in system plus file transfer time

R{"time0"}=? [ S ]

B PRISM Model of a Proxy Cache Server

B.1 The Model without PCS

// --------------------------------------------------------------------------

// webServer3.sm

//

// a bounded queue approximation of the web server model without proxy used in

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"

//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time

const double Ys = 0.000016; // static server time

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 16000; // client network bandwidth (128 kbps)
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// web server and proxa cache server blocks

const double q = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue

// --------------------------------------------------------------------------

// system model: server and client bandwidth is ignored

// (file transfer time has to be added to total request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

accepted: bool init false;

[accept] waiting = IA -> 1 :

(accepted’ = false) ;

[accept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server processing queue

module S_R

irwaiting: [0..IR] init 0;

// request from arrival queue

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

// request is completed with probability p

[done] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "accepted"

accepted : 1;

endrewards

rewards "pending"

true : waiting + irwaiting;

endrewards

rewards "time"

true : (waiting + irwaiting)/lambda;

endrewards

rewards "time0"

true : (waiting + irwaiting)/lambda + (FS/Nc)+(FS/Ns);
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endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-4, and model constants

//

// lambda = 10..90, IA = 10, IR = 3

//

// gives reliable results for all lambda

// estimation of acceptance ratio

R{"accepted"}=? [ S ]

// number of requests pending in system

R{"pending"}=? [ S ]

// time request spends in queue

R{"time"}=? [ S ]

// total time including network transfer

R{"time0"}=? [ S ]

B.2 The Model with PCS

// --------------------------------------------------------------------------

// webProxy.sm

//

// a bounded queue approximation of the web server proxy model presented in

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"

//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

const double p; // probability that file is on PCS

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs

const double beta = 1; // beta = Rxc/Rs = Yxc/Ys

const double gamma = 1 ; // gamma = Ixc/Is;

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time
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const double Ys = 0.000016; // static server time

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alpha*Bs; // proxy buffer size

const double Yxc = beta*Ys; // static proxy time

const double Rxc = beta*Rs; // dynamic proxy rate

const double Ixc = gamma*Is; // proxy initialization time

// web server and proxa cache server blocks

const double q = func(min, 1, Bs/FS); // probability of last server block

const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue

// --------------------------------------------------------------------------

// system model: client/server network is not considered

// (hence network transfer time has to be added to average request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// proxy cache server

module PCS

pxwaiting: [0..IP] init 0;

pxaccepted: bool init true;

// request from arrival queue

[accept] pxwaiting = IP -> 1 :

(pxaccepted’ = false) ;

[accept] pxwaiting < IP -> 1 :

(pxaccepted’ = true) &

(pxwaiting’ = pxwaiting+1) ;

// with probability (1-p), request is forwarded to server

[sforward] (pxwaiting > 0) & (1-p > 0) -> (1/Ixc)*(1-p) :

(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client

[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)*p :

(pxwaiting’ = pxwaiting-1) ;

endmodule

// client queue

module S_C

icwaiting: [0..IC] init 0;

// accept answer found on proxy cache server

[panswer] icwaiting < IC -> 1 :

(icwaiting’ = icwaiting+1) ;

// accept answer found on web server

[sanswer] icwaiting < IC -> 1 :
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(icwaiting’ = icwaiting+1) ;

// request is completed with probability pxc by transfer of block

[done] (icwaiting > 0) & (pxc > 0) -> 1/(Yxc+Bxc/Rxc)*pxc :

(icwaiting’ = icwaiting-1) ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

[sforward] waiting < IA -> 1 :

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

// request from arrival queue

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

// forwarding of block to internet queue

[sanswer] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "accepted"

pxaccepted: 1;

endrewards

rewards "pending"

true : waiting + irwaiting + pxwaiting + icwaiting;

endrewards

rewards "time"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda;

endrewards

rewards "time0"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda

+ (FS/Nc) + (1-p)*(FS/Ns);

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-4, and model constants

//

// lambda = 10..90, IP = 5, IC = 3, IA = 1, IR = 1

//

// gives reliable results up to lambda = 70
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// estimation of acceptance ratio

R{"accepted"}=? [ S ]

// number of requests pending in system

R{"pending"}=? [ S ]

// time spent in system

R{"time"}=? [ S ]

// time spent in system including network transfer time

R{"time0"}=? [ S ]

C PRISM Model of a Proxy Cache Server with Ex-

ternal Users

C.1 The Model with No Acceptance Reward

// --------------------------------------------------------------------------

// webProxyWithExternalUsers.sm

//

// a bounded queue approximation of the web server proxy model presented in

//

// Bérczes and Sztrik "Performance Modeling of Proxy Cache Servers"

//

// (c) 2008 Gábor Kusper

// Mathematics and Informatics Institute

// Eszterházy Károly College

// http://www.ektf.hu/

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

const int capitallambda; // visit rate for external users

const double p; // probability that file is on PCS

// helper constans

const double lambda1 = lambda * p;

const double lambda2 = lambda * (1-p);

const double lambda3 = lambda2 + capitallambda;

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs

const double beta = 1; // beta = Rxc/Rs = Yxc/Ys

const double gamma = 1 ; // gamma = Ixc/Is;

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size

const double Bs = 2000; // buffer size
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const double Is = 0.004; // initialization time

const double Ys = 0.000016; // static server time

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alpha*Bs; // proxy buffer size

const double Yxc = beta*Ys; // static proxy time

const double Rxc = beta*Rs; // dynamic proxy rate

const double Ixc = gamma*Is; // proxy initialization time

// web server and proxa cache server blocks

const double q = func(min, 1, Bs/FS); // probability of last server block

const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue

// --------------------------------------------------------------------------

// system model: client/server network is not considered

// (hence network transfer time has to be added to average request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// proxy cache server

module PCS

pxwaiting: [0..IP] init 0;

// request from arrival queue

[accept] pxwaiting < IP -> 1 :

(pxwaiting’ = pxwaiting+1) ;

// with probability (1-p), request is forwarded to server

[sforward] (pxwaiting > 0) & (1-p > 0) -> (1/Ixc)*(1-p) :

(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client

[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)*p :

(pxwaiting’ = pxwaiting-1) ;

endmodule

// client queue

module S_C

icwaiting: [0..IC] init 0;

// accept answer found on proxy cache server

[panswer] icwaiting < IC -> 1 :

(icwaiting’ = icwaiting+1) ;

// accept answer found on web server

[sanswer] icwaiting < IC -> 1 :

(icwaiting’ = icwaiting+1) ;

// request is completed with probability pxc by transfer of block
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[done] (icwaiting > 0) & (pxc > 0) -> 1/(Yxc+Bxc/Rxc)*pxc :

(icwaiting’ = icwaiting-1) ;

endmodule

// generate external requests at rate capitallambda

module external

[extaccept] true -> capitallambda : true ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

// requests from the PCS

[sforward] waiting < IA -> 1 :

(waiting’ = waiting+1) ;

// requests from external users

[extaccept] waiting < IA -> 1 :

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

// request from arrival queue

[forward] irwaiting < IR -> 1 :

(irwaiting’ = irwaiting+1) ;

// forwarding of block to internet queue

[sanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(lambda2/lambda3):

(irwaiting’ = irwaiting-1) ;

// forwarding of block to external users, it is not synchronized

[extanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(1-(lambda2/lambda3)):

(irwaiting’ = irwaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "pending"

true : waiting + irwaiting + pxwaiting + icwaiting;

endrewards

rewards "time"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3;

endrewards

rewards "time0"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3 +

(FS/Nc) + (1-p)*(FS/Ns);
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endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-4, and model constants

//

// lambda = 10..90, capitallambda = 100, IP = 7, IC = 3, IA = 19, IR = 8

//

// gives reliable results up to lambda = 70 and capitallambda = 100

// number of requests pending in system

R{"pending"}=? [ S ]

// time spent in system

R{"time"}=? [ S ]

// time spent in system including network transfer time

R{"time0"}=? [ S ]

C.2 The Model with Acceptance Rewards

// --------------------------------------------------------------------------

// webProxyWithExternalUsers2.sm

//

// a bounded queue approximation of the web server proxy model presented in

//

// Bérczes and Sztrik "Performance Modeling of Proxy Cache Servers"

//

// Acceptance rewards are added.

//

// (c) 2008 Gábor Kusper

// Mathematics and Informatics Institute

// Eszterházy Károly College

// http://www.ektf.hu/

// --------------------------------------------------------------------------

// continuous time markov chain (ctmc) model

stochastic

// --------------------------------------------------------------------------

// system parameters

// --------------------------------------------------------------------------

// variable parameters

const int lambda; // network arrival rate

const int capitallambda; // visit rate for external users

const double p; // probability that file is on PCS

// helper constans

const double lambda1 = lambda * p;

const double lambda2 = lambda * (1-p);

const double lambda3 = lambda2 + capitallambda;

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs

const double beta = 1; // beta = Rxc/Rs = Yxc/Ys

const double gamma = 1 ; // gamma = Ixc/Is;
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// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size

const double Bs = 2000; // buffer size

const double Is = 0.004; // initialization time

const double Ys = 0.000016; // static server time

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alpha*Bs; // proxy buffer size

const double Yxc = beta*Ys; // static proxy time

const double Rxc = beta*Rs; // dynamic proxy rate

const double Ixc = gamma*Is; // proxy initialization time

// web server and proxa cache server blocks

const double q = func(min, 1, Bs/FS); // probability of last server block

const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue

// --------------------------------------------------------------------------

// system model: client/server network is not considered

// (hence network transfer time has to be added to average request time)

// --------------------------------------------------------------------------

// generate requests at rate lambda

module jobs

[accept] true -> lambda : true ;

endmodule

// proxy cache server

module PCS

pxwaiting: [0..IP] init 0;

pxaccepted: bool init true;

// request from arrival queue

[accept] pxwaiting = IP -> 1 :

(pxaccepted’ = false) ;

[accept] pxwaiting < IP -> 1 :

(pxaccepted’ = true) &

(pxwaiting’ = pxwaiting+1) ;

// with probability (1-p), request is forwarded to server

[sforward] (pxwaiting > 0) & (1-p > 0) -> (1/Ixc)*(1-p) :

(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client

[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)*p :

(pxwaiting’ = pxwaiting-1) ;

endmodule

// client queue

module S_C

icwaiting: [0..IC] init 0;

icaccepted: bool init true;
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// accept answer found on proxy cache server

[panswer] icwaiting = IC -> 1 :

(icaccepted’ = false) ;

[panswer] icwaiting < IC -> 1 :

(icaccepted’ = true) &

(icwaiting’ = icwaiting+1) ;

// accept answer found on web server

[sanswer] icwaiting = IC -> 1 :

(icaccepted’ = false) ;

[sanswer] icwaiting < IC -> 1 :

(icaccepted’ = true) &

(icwaiting’ = icwaiting+1) ;

// request is completed with probability pxc by transfer of block

[done] (icwaiting > 0) & (pxc > 0) -> 1/(Yxc+Bxc/Rxc)*pxc :

(icwaiting’ = icwaiting-1) ;

endmodule

// generate external requests at rate capitallambda

module external

[extaccept] true -> capitallambda : true ;

endmodule

// server arrival queue

module S_I

waiting: [0..IA] init 0;

accepted: bool init true;

// requests from the PCS

[sforward] waiting = IA -> 1 :

(accepted’ = false) ;

[sforward] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

// requests from external users

[extaccept] waiting = IA -> 1 :

(accepted’ = false) ;

[extaccept] waiting < IA -> 1 :

(accepted’ = true) &

(waiting’ = waiting+1) ;

[forward] waiting > 0 -> (1/Is) :

(waiting’ = waiting-1) ;

endmodule

// server output queue

module S_R

irwaiting: [0..IR] init 0;

iraccepted: bool init true;

// request from arrival queue

[forward] irwaiting = IR -> 1 :

(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1 :

(iraccepted’ = true) &

(irwaiting’ = irwaiting+1) ;

// forwarding of block to internet queue

[sanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(lambda2/lambda3):
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(irwaiting’ = irwaiting-1) ;

// forwarding of block to external users, it is not synchronized

[extanswer] (irwaiting > 0) &

(q > 0) -> 1/(Ys+Bs/Rs)*q *(1-(lambda2/lambda3)):

(irwaiting’ = irwaiting-1) ;

endmodule

// --------------------------------------------------------------------------

// system rewards

// --------------------------------------------------------------------------

rewards "ipaccepted"

pxaccepted: 1;

endrewards

rewards "icaccepted"

icaccepted: 1;

endrewards

rewards "iaaccepted"

accepted: 1;

endrewards

rewards "iraccepted"

iraccepted: 1;

endrewards

rewards "pending"

true : waiting + irwaiting + pxwaiting + icwaiting;

endrewards

rewards "time"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3;

endrewards

rewards "time0"

true : (pxwaiting + icwaiting)/lambda +

(1-p) * (waiting + irwaiting)/lambda3 +

(FS/Nc) + (1-p)*(FS/Ns);

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10ˆ-4, and model constants

//

// lambda = 10..90, capitallambda = 100, IP = 7, IC = 3, IA = 19, IR = 8

//

// gives reliable results up to lambda = 70 and capitallambda = 100

// number of requests pending in system

R{"pending"}=? [ S ]

// time spent in system

R{"time"}=? [ S ]

// time spent in system including network transfer time

R{"time0"}=? [ S ]
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R{"ipaccepted"}=? [ S ]

R{"icaccepted"}=? [ S ]

R{"iaaccepted"}=? [ S ]

R{"iraccepted"}=? [ S ]
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