J N RISC-Linz
Research Institute for Symbolic Computation

N / Johannes Kepler University
A-4040 Linz, Austria, Europe

Analyzing Web Server Performance

Models with the Probabilistic Model
Checker PRISM

Tamas BERCZES, Gabor GUTA, Gabor KUSPER,
Wolfgang SCHREINER, Janos SZTRIK

(November 2008)

RISC-Linz Report Series No. 08-17

Editors: RISC-Linz Faculty
B. Buchberger, R. Hemmecke, T. Jebelean, M. Kauers, T. Kutsia, G. Landsmann,

F. Lichtenberger, P. Paule, H. Rolletschek, J. Schicho, C. Schneider, W. Schreiner,
W. Windsteiger, F. Winkler.

Supported by: Austrian-Hungarian Scientific/ Technical Cooperation Contract HU 13/2007

Analyzing Web Server Performance Models
with the Probabilistic Model Checker PRISM*

Tamds Bérczes’ Gébor Guta*
tberczes @1inf.unideb.hu Gabor.Guta@risc.uni-linz.ac.at

Gabor Kusper®
gkusper@aries.ektf.hu

Wolfgang Schreiner*
Wolfgang.Schreiner @risc.uni-linz.ac.at

Janos Sztrik’
jsztrik @inf.unideb.hu

November 14, 2008

TFaculty of Informatics, University of Debrecen, Hungary, http://www.inf.unideb.hu

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Aus-
tria, http://www.risc.uni-linz.ac.at

SEsterhazy Karoly College, Eger, Hungary, http://www.ektf.hu

*Supported by the Austrian-Hungarian Scientific/Technical Cooperation Contract HU 13/2007.

1

Abstract

We report our experience with formulating and analyzing in the prob-
abilistic model checker PRISM various closely related web server perfor-
mance models that were previously described in literature in terms of classi-
cal queuing theory. By our work various ambiguities and deficiencies (also
errors) are revealed; in particular, the PRISM models which combine state
machines descriptions with performance characteristics show that the origi-
nal descriptions used slightly differed assumptions for their analysis.

Furthermore, while the queuing models are typically based on infinite
queues, the state spaces of the PRISM models have to be finite for an auto-
mated analysis. While this forces us to explicitly deal with buffer overflows,
it also gives us the possibility to investigate appropriate buffer sizes for con-
crete implementations of the models. Although also one of the previously
reported models used a finite queue in some place, our investigations reveal
that the size of that queue is actually not critical, while another (previously
not constrained) one is.

Based on these observations, we argue that nowadays performance mod-
eling should make use of (at least be accompanied by) state machine descrip-
tions such as those used by PRISM. On the one hand, this helps to more
accurately describe the systems whose performance are to be modeled (by
making hidden assumptions explicit) and give more useful information for
the concrete implementation of these models (appropriate buffer sizes). On
the other hand, since probabilistic model checkers such as PRISM are fur-
thermore able to analyze such models automatically, analytical models can
be validated by corresponding experiments which helps to increase the trust
into the adequacy of these models and their real-world interpretation.

Contents
1 Introduction

2 Performance Model of a Web Server
2.1 AFirstPRISMModel
2.2 The PRISM Model Corrected
2.3 The PRISM Model Simplified

3 Performance Model of a Proxy Cache Server
3.1 The Model withoutPCS
3.2 The Analytical Model Corrected
3.3 The Model withPCS

4 Performance Model of a Proxy Cache Server with External Users
4.1 The Analytical Model Corrected
4.2 PRISM Implementation
43 TestResults

5 Conclusions

A PRISM Model of a Web Server
A.1 AFirstPRISMModel
A.2 The PRISM Model Corrected
A.3 The PRISM Model Simplified

B PRISM Model of a Proxy Cache Server
B.1 The Model withoutPCS
B.2 The Model withPCS

C PRISM Model of a Proxy Cache Server with External Users
C.1 The Model with No Acceptance Reward
C.2 The Model with Acceptance Rewards

23
25
28
31

41
43
45

50

53
53
56
59

61
61
63

1 Introduction

The two originally distinct areas of the qualitative analysis (verification) and quan-
titative analysis (performance modeling) of computing systems have in the last
decade started to converge by the arise of stochastic/probabilistic model check-
ing [6]. In [1], we have shown how the probabilistic model checker PRISM [7, 5]
compares favorably with a classical performance modeling environment for mod-
eling and analyzing retrial queueing systems, especially with respect to the ex-
pressiveness of the models and the queries that can be performed on them. In the
present paper, we are making one step forward by applying PRISM to re-assess
various web server performance models that have been previously described and
analyzed in literature.

The starting point of our work is the seminal paper [8] which for the first time
presented a performance model for a system of a web server and a web client and
analyzed the model with respect to various parameters. This has stimulated further
research: e.g. in [3], the model is generalized to an environment where a “proxy
cache server” receives all the requests from the clients of a local network; with a
certain probability the data requested by a client are already cached on the proxy
server and can be returned without contacting the web server from which the data
originate. In [2], two of the authors of the present paper have further generalized
this model by allowing the proxy cache server to receive also requests from exter-
nal sources. All these models were first informally sketched in the corresponding
papers (referring to their respective predecessors) and then manually analyzed on
the basis of classical queueing theory [4].

In this paper, we have from each of the informal model sketches constructed a
formal model in the language of PRISM [7]. This language essentially allows
to construct in a modular manner a finite state transition system (thus modeling
the qualitative aspects of the system) and to associate rates to the individual state
transitions (thus modeling the quantitative aspects); the mathematical core of such
a system is a Continuous Time Markov Chain (CTMC) which can be analyzed
by the PRISM tool with respect to queries that are expressed in the language of
Continuous Stochastic Logic (CSL) [6].

On the one hand, this work shows again that PRISM is an effective tool for model-
ing and analyzing systems of the type investigated by the performance evaluation
community. Moreover, while constructing the PRISM models requires some ef-
fort, the results are much more specific than the informal model sketches given in
the reported papers. Most important, by this effort we have revealed various am-
biguities, deficiencies, and even plain errors in the previously published models
(and the corresponding analysis results). The use of a tool like PRISM therefore

is able to increase the confidence in a performance model much beyond what has
been previously possible by classical means.

The remainder of this paper is structured according to the papers mentioned above:
in Section 2, we investigate the model described in [8]; in Section 3, we address
the model of [3]; in Section 4, we handle the model published in [2]. Section 5
summarizes our findings and conclusions. Appendices A—C list all the PRISM
models and the corresponding CSL queries used in this paper.

2 Performance Model of a Web Server

In this section, we investigate the web server performance model reported in [8]
on which (directly or indirectly) the models in [3] and [2] are based. Referring
to an illustration redrawn in Figure 1, the core description in that paper reads as
follows (we have renamed the constants for consistency with the constant names
used in the other papers):

This network consists of four nodes (i.e. single-server queues): two model
the Web server itself, and two model the Internet communication network.
File requests (i.e. “jobs”) arrive at the web server with frequency A. All
one-time “initialization” processing is performed at node S;. The job then
proceeds to node Sk where a single buffer’s worth of data is read from the
file, processed, and passed on to the network. At node Sg this block of data
is transmitted to the Internet at the server’s transfer rate (e.g. 1.5 Mbits on
a T1 line). This data travels via the Internet and is received by the client’s
browser, represented by node Sc. If the file has not been fully transmit-
ted, the “job” branches and returns back to node S for further processing.
Otherwise, the job is complete, and exits the network.

Notice that the branch is a probabilistic one; given an average file size of F
and buffer size B;, the probability that the file has been fully transmitted is
q = B;/F. Also, the arrival rate at node Sg (A') is the sum of the network’s
arrival rate (1), and the rate of the jobs flowing from S¢ back to Sg. A’ is
derived using an operational law of queuing theory: the rate of jobs leaving
any stable node must equal its arrival rate.

The complete list of parameters defining the performance of the model (with de-
fault values stated in parameters) is given as

e Network Arrival Rate (1)

e Average File Size (F = 5275)

e Buffer Size (B; = 2000)

e Initialization Time (/; = 0.004) (*¥)

e Static Server Time (Y; = 0.000016) (*)

e Dynamic Server Rate (R; = 1310720) (*)
e Server Network Bandwidth (Vg = 193000)
e Client Network Bandwidth (N, = 88375)

Unfortunately, in [8] no values for the parameters marked as (*) are given for the
calculations reported in that paper; we substitute in our experiments the corre-
sponding values that were used in [3] and [2] for their models.

6

Web Server

L e 'E@L—A—’le@

pL'=pL/(1-p) L

Internet

q:fﬂEL ; L <:>[Ij| L <::§Djw‘<*__

Figure 1: Queueing Network Model of a Web Server (redrawn from [8])

2.1 A First PRISM Model

The verbal descriptions above gives rise to the following (core of) the PRISM
code which introduces by the keyword stochastic a continuous time Markov
chain (CTMC) model [6] (the full code is given in Appendix A.1):

stochastic

module jobs
[accept] true -> lambda : true ;
endmodule

module S_T
waiting: [O0..IA] init O;
accepted: bool init false;

[accept] waiting = IA -> 1
(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &

(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

module S_R
irwaiting: [0..IR] init O;
iraccepted: bool init false;

[forward] irwaiting = IR -> 1

(iraccepted’ = false) ;
[forward] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;
[repeat] irwaiting = IR —> 1
(iraccepted’ = false) ;
[repeat] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

[isforward] irwaiting > 0 —-> 1/ (Ys+Bs/Rs):

(irwaiting’ = irwaiting-1) ;
endmodule
module S_S
iswaiting: [0..IS] init O;

isaccepted: bool init false;

[isforward] iswaiting = IS -> 1
(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1
(isaccepted’ = true) &
(iswaiting’ = iswaiting+l) ;

[icforward] iswaiting > 0 —-> (Ns/Bs)
(iswaiting’ = iswaiting-1) ;
endmodule

module S_C
icwaiting: [0..IC] init O0;
icaccepted: bool init false;

[icforward] icwaiting = IC -> 1
(icaccepted’ = false) ;

[icforward] icwaiting < IC -> 1
(icaccepted’ = true) &
(icwaiting’ = icwaiting+l) ;

[repeat] (icwaiting > 0) & (l1-g > 0) —-> (Nc/Bs)=*(1-q)
(icwaiting’ = icwaiting-1) ;

[done] (icwaiting > 0) & (g > 0) -> (Nc/Bs)xqg

(icwaiting’ = icwaiting-1) ;
endmodule

The model consists of one process (“module”) jobs generating requests and four

8

processes Sy, Sg, Ss, Sc as described above. Each process contains declarations of
its state variables (bounded integers or booleans) and state transitions of form

[label] guard -> rate : update ;

A transition is enabled to execute if its guard condition evaluates to true; it ex-
ecutes with a certain (exponentially distributed) rate and performs an update on
its state variables. Transitions in different processes with the same label execute
synchronously as a single combined transition whose rate is the product of the
rates of the individual transitions. Since a product of rates rarely makes sense in
a model, it is a common technique to give all but one of the individual transitions
the rate 1 and let the remaining transition alone determine the combined rate (we
follow this practice in all our PRISM models).

Each node has a counter (waiting, irwaiting, iswaiting, icwaiting) that denotes the
number of jobs waiting in the corresponding queue. If a new job arrives and the
queue is not full (the counter has not yet reached its upper bound), this counter is
increased and an “acceptance” flag (accepted, iraccepted, isaccepted, icaccepted)
is set to “true”’; otherwise, the job is dropped and the flag is set to “false”.

As indicated by the verbal description, jobs may “branch back™ with a probabil-
ity g. As indicated by the illustration, the branching occurs after a server block has
been transferred to the client; i.e. the client requests from the server the transfer
of the next block. This “branching back” is modeled above by a transition repeat
in Sc¢ that forwards with probability 1 — g a request back to Sg while the tran-
sition done completes the request with probability g. Since CTMC models use
rates rather than probabilities, we scale the basic rate (N./By) of the transitions
(which models the forwarding of a block of size B, over the client network with
bandwidth N,.) with factors g respectively 1 — g. Since both transitions are simul-
taneously enabled, they “compete” for execution, and are consequently executed
in proportion to their respective rates, i.e. in proportion ¢/(1 — g), as intended.

We can define in PRISM the “reward structure”

rewards "allaccepted"

accepted 1
iraccepted 1;
isaccepted : 1;
icaccepted 1;
endrewards

which assigns to every state of a system run the number of acceptance flags that
are set to true. Using the CSL query

R{"allaccepted"}=? [S]

we can compute the long term average of this value and use it as an “indicator”
(not a reliable approximation) for the probability P that a request is “rejected” (i.e.
dropped from the system because it encounters some full buffer).

Likewise, we can define the reward structure

rewards "pending"
true : waiting + irwaiting + iswaiting + icwaiting;
endrewards

which assigns to every state the number N of requests “pending” in the system
and can compute by a CSL query its long term average.

Having determined N and P, we can apply “Little’s Law” from queueing the-
ory [4] to determine the average response time 7 for a request

N

"=

1.€. T:%’forP:O.

In the following, we present the results of the corresponding experiments per-
formed with PRISM (choosing the Jacobi method for the solution of the equation
systems and a relative termination epsilon of 1073).

Using the default values for the model parameters described above, we detect that
the capacities of the queues of S7, Sg, Ss have only little influence on the rejection
rate; thus we choose the smallest queue capacities (/A = IR = IS = 3) for which
the acceptance ratios of the corresponding queues is very close to 1.

However, the situation is different with the capacity I/C of the queue in S¢ model-
ing the client network. As depicted in Figure 2, even if we increase /C very much,
the acceptance ratio of this queue drops significantly for arrival rates A > 20. The
number of pending requested in Figure 3 is therefore only for A < 20 (where
P ~ 0) linearly related to the average response time of a request; for A > 20, it has
to be adjusted by the factor ﬁ to give the estimated response time. Neverthe-
less, we give in Figure 4 the ratio N/A without adjustments; the curve for IC = 35
represents in the range A < 20 time rather accurately.

We see that response times increase exponentially with the request arrival rate in
accordance with the predictions of [8]; beyond a certain bound, the server be-
comes “‘saturated” and cannot serve requests in an acceptable time any more.

10

o -
© o

o
~

Expected icaccepted
Soo0o0 0o
= N W A~ U

o
o

351

30 1

Expected pending

o
o0

o
o

- |C=5

- |C=15
IC=25
IC=35

10 15 20 25 30 35 40
lambda

Figure 2: Estimated Acceptance Ratio for S¢

- IC=5

- |C=15
IC=25
IC=35

10 15 20 25 30 35 40
lambda

Figure 3: Average Number of Pending Requests

11

1,25 -
1,00 -
()
£
= 0,75
8 - |IC=5
g - |C=15
L%. 0,50 1 IC=25
IC=35
0,25 -
™ * e o+ .
0,00 — ' ' ' ' . ' '
5 10 15 20 25 30 35 40
lambda

Figure 4: Estimated Response Time (N/1)

2.2 The PRISM Model Corrected

While the response times derived in the previous section show the overall ex-
pected behavior, the absolute numbers are much larger than predicted in [8] by
the formula

T_F+ I N F F(B; + RyY;)
" N, 1—AI; Ny—AF BgR;— AF(By+RYy)

for the average response time T of a request; see Figure 5 for the graph depict-
ing T for the default values of the constants given in the previous section and for
growing values of A. Since [8] does not give all parameter values, we cannot accu-
rately reproduce the figures given there; however, the curve in our Figure 5 closely
resembles the curve in Figure 4 in that paper: for A = 30, we have a response time
of T ~ 0.2 s; the time becomes prohibitively large for A > 35.

The major culprit of the discrepancy is that the client network bandwidth N, (de-
termining the processing rate of S¢) only shows up in the term % i.e. it is only
used to contribute to the total response time the time for the transfer of the file
over the client network. If indeed, as suggested by the verbal description, after
the transfer of every block the client would with probability g request the transfer
of another block, the maximum transfer rate of blocks (N./B ~ 44) should also
impose a limit on the number of “repetition” requests.

A little inspection reveals the problem: while the PRISM model above is a faith-
ful translation of the diagram and of the verbal description, it does not match the

12

0.7

"T(a)

0.6
0.5 /
0.4

0.3

0.2

0.1

Figure 5: Response Time (Analytical Model)

model that was actually analyzed in [8]. In fact, the client network is not consid-
ered part of the queueing model but just used to contribute the file transfer time
to the formula for 7' given above. The actually analyzed queuing model thus con-
sists only of three nodes S;, Sg, and S where the “branching back” of jobs occurs
at/after Sg (rather than at/after Sc)! Figure 6 presents an updated illustration that
describes the model analyzed in [8] is a more accurate way.

A little introspection reveals that we should actually have anticipated this. The
node S¢ does actually not represent a single client with network bandwidth N,
but a whole class of clients each of which is connected to the network with an
average bandwidth N.; thus also the rate for the generation of repetition requests
is not constrained by a single client queue since the requests are generated from
multiple clients simultaneously.

The PRISM version of this updated model is given below (the full code is given
in Appendix A.2):

stochastic

module jobs
[accept] true -> lambda : true ;
endmodule

module S_T

13

Web Server

L e |E@L—A—>le

pL'=pL/(1-p)

L

Client Network Server Network

- (1-pL=L @4 L @ Ijl -

Figure 6: Corrected Network Model of a Web Server

waiting: [0..IA] init O0;
accepted: bool init false;

[accept] waiting = IA —> 1
(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &

(waiting’ = waiting+1l)

[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1)
endmodule

4

module S_R
irwaiting: [0..IR] init O;
iraccepted: bool init false;

[forward] irwaiting = IR -> 1
(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

[repeat] irwaiting = IR -> 1

(iraccepted’ = false) ;
[repeat] irwaiting < IR -> 1

(iraccepted’ = true) &

(irwaiting’ = irwaiting+l) ;

[isforward] irwaiting > 0 -> 1/ (Ys+B/Rs):

(irwaiting’ = irwaiting-1) ;

14

endmodule

module S_S
iswaiting: [0..IS] init O0;
isaccepted: bool init false;

[isforward] iswaiting = IS -> 1
(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1
(isaccepted’ = true) &
(iswaiting’ = iswaiting+l) ;

[repeat] (iswaiting > 0) & (l-g > 0) -> (Ns/Bs)«*(l-q)

(iswaiting’ = iswaiting-1) ;
[done] (iswaiting > 0) & (g > 0) —-> (Ns/Bs)=*qg :
(iswaiting’ = iswaiting-1) ;
endmodule

Performing the same analysis of acceptance ratios as above, we can determine
that now the capacity of Sg becomes the critical factor. However, as can be seen
in Figure 7 (computed with PRISM’s JOR Jacobi Overrelaxation method and a
relative termination epsilon of 10_4), even for IS = 3, the acceptance rate remains
larger than 87% up to a request rate of A = 40; by increasing the capacity to
1Q = 33, we get an acceptance of 99% up to A = 35.

The corresponding numbers of pending requests are shown in Figure 8; in Fig-
ure 9, the curve for IS = 33 represents in the range A < 30 the average response
time rather accurately (compare with Figure 5); for A > 35, the values become
unreliable (they underestimate the request time by the factor ﬁ).

2.3 The PRISM Model Simplified

While the model of the previous section gives adequate results, its analysis by
PRISM starts to take some non-negligible amount of computation time (a couple
of seconds for each parameter set), which might cause a problem for larger models
as those considered later in this paper. In this section, we therefore investigate
whether we can streamline the model to a simpler one that gives the same results
at lower costs by reducing the number of states and the number of transitions.
According to our intuition, it should suffice to model only the initial node S; by a
queue that, if full, rejects further requests and monitor the acceptance ratio for this
queue; however, we simplify the behavior of every other nodes such that it blocks
incoming requests that find the queue full until some request leaves the queue.

15

Expected isaccepted

Expected pending

1,01
0,9
0,8
0,7 1
0,6 -
0,5 -
0,4 -
0,3
0,2 -
0,1

0,0

5 10 15 20 25 30 35 40
lambda

- |S=3

- |S=13
IS=23
IS=33

Figure 7: Estimated Acceptance Ratio for Sg (Corrected Model)

22,5

20,0 1
17,5 1
15,0 -
12,5 1
10,0 -
7,5 1
5,0 1
2,5
0,0-

5 10 15 20 25 30 35 40
lambda

Figure 8: Number of Pending Requests N (Corrected Model)

16

——1S=3

= [S=13
IS=23
IS=33

Expected time0

Expected time
e
w

.

- 1S=3

-8 |S=13
IS=23
IS=33

5 10 15 20 25 30 35 40
lambda

——1S=3

= [S=13
IS=23
IS=33

5 10 15 20 25 30 35 40
lambda

Figure 9: Estimated Response Time N/A(+F /N,) (Corrected Model)

17

Thus we can save transitions and states (for the handling of acceptance flags);
furthermore, it might be possible to reduce the capacities of the queues in Sg
and Sg compared to those in the original model without harming the adequacy
of the analysis. We then have to test the adequacy of our idea by investigating
(for varying arrival rates of requests) the capacities of the queues, start with small
initial capacities and increasing them until the number of pending requests (and
thus the average response times) remain invariant.

The simplified model essentially looks as follows (the full code is given in Ap-
pendix A.3):

module jobs
[accept] true -> lambda : true ;
endmodule

module S_T
waiting: [0..IA] init O0;
accepted: bool init false;

[accept] waiting = IA —> 1
(accepted’ = false) ;

[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+1l) ;

[forward] waiting > 0 -> (1/I_s)
(waiting’ = waiting-1) ;

endmodule

module S_R
irwaiting: [0..IR] init O0;

[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;
[repeat] irwaiting < IR -> 1

(irwaiting’ = irwaiting+l) ;
[isforward] (irwaiting > 0) -> 1/(Y_s+B/R_s)
(irwaiting’ = irwaiting-1) ;
endmodule
module S_S
iswaiting: [0..IS] init O;

[isforward] iswaiting < IS -> 1

(iswaiting’ = iswaiting+l) ;

[repeat] (iswaiting > 0) & (l1-g > 0) —-> (N_s/B_s)x*(1-q)
(iswaiting’ = iswaiting-1) ;

[done] (iswaiting > 0) & (g > 0) -> (N_s/B_s) *qg
(iswaiting’ = iswaiting-1) ;

18

endmodule

Our original assumption was that it should suffice to choose /R and IS as 1, i.e.
each node can only have states “empty” and “full”’; any further increase should
have no further effect on the average number of pending requests (and thus the
average response time). We tested this hypothesis for /A = 50 and varying values
of IR and IS. The results depicted in Figure 10 show that the assumption was
not completely correct: we actually need for /R and IS a minimum value of 2 to
keep the number of pending requests invariant for arrival rates A > 25; the reason
is probably the repetition “loop” between Iz and I which makes it essential that
when sending a request in one direction, a node is still able to receive a request
from the other direction.

Thus we use in the following the simplified model with /R = IS = 2 and varying
values of IA. Figures 11, 12, and 13 give the corresponding estimated acceptance
ratio, the number of pending requests, and the estimated response time (computed
with PRISM’s JOR Jacobi Overrelaxation method and a relative termination ep-
silon of 10~#). We see that in the range A < 30, the results are virtually identical to
the original model (an average response time of less than 0.2 s) and get unreliable
only for A > 35.

The time that PRISM needs for the analysis of the simplified model is signifi-
cantly smaller than the one required for the original one; the simplification may
thus serve also as a “blueprint” for the investigations performed in the following
sections. We must, however, not forget to perform a careful analysis to show that
the results are also adequate for higher arrival rates.

19

H A U
o v O

Expected pending
N m w w

= e
[@ XV, |

w w
o wv

= N
vl O

Expected pending
o

101

o wvi

o

- |R=1
-8 |[R=2
IR=3

o wvi

20 25 30 35 40

- [S=1

= [S=2

IS=3

5 10 15
lambda
5 10 15 20 25 30 35 40

Figure 10: Number of Pending Requests N (Simplified Model)

lambda

20

I
/

o ©o
N ®

o
o

- 1A=10
- |A=20
IA=30
IA=40

o
N

Expected accepted
o
w

o
w

o o
— N

o
e

5 10 15 20 25 30 35 40
lambda

Figure 11: Estimated Acceptance Ratio for Sg (Simplified Model)

35
30 1
[®)]
£ 254
©
@
e 207 - 1A=10
o
% 15 - - |[A=20
1) IA=30
Qo
X 10 IA=40
5 4
0L—= : i
5 10 15 20 25 30 35 40
lambda

Figure 12: Number of Pending Requests N (Simplified Model)

21

S
o N o ©

o
[%

- 1A=10
- |A=20
IA=30
IA=40

O
N

Expected time

o
w

o o
— N

o
o

5 10 15 20 25 30 35 40
lambda

S e o9
O N o L

- |A=10
- |A=20
IA=30
IA=40

o o
E NV, |

Expected time0

o
w

o ©
— N

o
o

5 10 15 20 25 30 35 40
lambda

Figure 13: Estimated Response Time N/A(+F /N,) (Simplified Model)

22

3 Performance Model of a Proxy Cache Server

The article [3] describes the model of a “proxy cache server” (PCS) to which the
clients of a firm are connected such that web requests of the clients are first routed
to the PCS. Referring to an illustration redrawn in Figure 14, the authors describe
their model as follows:

If the requested files are already stored in the PCS, the requested Web pages
or files will be directly delivered to the user from the PCS. When the re-
quested files cannot be found in the PCS, it initiates the process of fetching
the desired files from the remote Web site. These new files will be stored in
the firm’s PCS, while a copy will be sent to the requesting user. ...

The probability that the PCS can fulfill a request is p. ... We define A; and
Az such that A = A; + A, where 4 = pA and 4, = (1 —p)A. ...

It is not unusual for the size of the requested file, F, to exceed the remote
Web server’s output buffer size, By. In this case, it may take several loops of
retrieving and delivering smaller files to complete the PCS’s request. This
looping phenomenon is inherent in the Hyper Text Transfer Protocol (HTTP)
where retrieval of the home page is followed by retrieval of embedded inline
images. To model this looping, let g be the branching probability that a
request from the PCS can be fulfilled at the first try; or ¢ = min{1, (B;/F)}.
Consequently, a (1 —¢g) proportion of the requests will loop back to the
remote Web server for further processing. In equilibrium, the traffic coming
out of the remote Web server toward the PCS after branching should equal
the original incoming traffic, A,. Hence gAj equals A, ...where 4] is the
traffic leaving server network bandwidth before branching. ...

The performance of the model is characterized by the parameters (in addition to
those already listed in Section 2)

e PCS buffer size (By. = atBy)
e Static PCS time (Yy. = BY;)
e Dynamic PCS rate (R, = BRy)

e PCS initialization time (1. = YI;)

with default values oo = 8 = v =1 (and, different from the values listed in Sec-
tion 2, F = 5000 and N, = 16000).

23

Client Network

Bandwidth
11
- -
DR CH
12 |
2 |n
Proxy Cache 3
Arrival of | Server 1
Users’ » Q ————————————— ’ 12
Requests — !
v I 3
gz =12 }
oV 1
O L - 1
Server :
Network R i
Bandwidth |
i
(M=% O
12’ 12’ 12
Web Server Web
Output Initialization

Figure 14: Queueing Network Model of a Proxy Cache Server (redrawn from [3])

24

The overall response time in the presence of the PCS is given as

1 1 F
T = T3 +p { — T + JVC}
Ixe ﬁ[yxﬁ'%]

1 1 F 1 F
tl-P\T Tt n Tt
s BL§ [Ys+%§] BLxc [ychrg’“:]

XC

In this formula, the first term denotes the lookup time to see if the desired files
are available from the PCS, the second term (with factor p) describes the time for
the content to be delivered to the requesting user, and the third term (with factor
1 — p) indicates the time required from the time the PCS initiates the fetching of
the desired files to the time the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

S N 1 L FLF
-l 1 —A/C[Ns Nc

I BLS[Y3+%§]

The response times for the PCS model with various arrival rates A and probabil-
ities p as well as the response time for the model without PCS, are depicted in
Figure 15.

3.1 The Model without PCS

It is claimed in [3] that the equation for 7" given above represents the special case
reported in [8], but this is actually not the case. In [3], the only term where the
server bandwidth Ny plays a role is

F

N

which indicates the time for the transfer of the file over the server network. In [8],
instead the term

N, —AF
18 used which can be transformed to
1

Ny
7 —A

which indicates the time that a request spends in a queue with arrival rate A and
departure rate % In other words, while [8] did not treat the client network as a

25

0.39

no PCS
0.385 7 — .
p=0.2 - S/
0.38 [
p=0.6 -4~
0.375 p=00 -]
p=107"
0.37 =
0.365 L s
0.36 i — I B
N [I B
5 0355 [
0.345
0.34
0.335 o S M BN SRSy
0.33 e T N N
0.325
10 20 30 40 50 60 70 50 9%

lambda

Figure 15: Response Times With and Without PCS (Analytical Model)

Client _
Network Bandwidth Arrival of
Users’
- I Requests
I I
Server |
Network
Bandwidth
A
4 gl =1
-

Web Server Web
Output Initialization

Figure 16: Corrected Queueing Network Model of Web Server

26

—o— New Series

Expected accepted
© o o o
(9]

0,31

0,1

0,0 -— ' ' ' ' ' . ' '
10 20 30 40 50 60 70 80 90
lambda

Figure 17: Estimated Acceptance Ratio

queue, it nevertheless treated the server network as such. However, in [3], neither
the client network nor the server network are treated as queues; they are just used
to give additional time constants for file transfers.

In Figure 16, we therefore depict the model without PCS by using only two queues
rather than three. The PRISM formulation of this model is given below (for the
full code see Appendix B.1):

module jobs
[accept] true —-> lambda : true ;
endmodule
module S_T
waiting: [0..IA] init O0;
accepted: bool init false;

[accept] waiting = IA —> 1

(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;

27

1,1
1,0 -
0,9 1
o 0,8
£
20,7
()
0,6 1

0,5 - —o— New Series

Expected p

0,4
0,31
0,2
0,11
0,0

10 20 30 40 50 60 70 80 90
lambda

Figure 18: Number of Pending Requests (N)

endmodule

module S_R
irwaiting: [0..IR] init O0;

[forward] irwaiting < IR -> 1

(irwaiting’ = irwaiting+l) ;
[done] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)x*q :
(irwaiting’ = irwaiting-1) ;
endmodule

For this model, it suffices to take IA = 10 and IR = 3 to get stable results for A <
90. Figure 17 shows the acceptance ratio, Figure 18 shows the average number
of requests N pending in the system, and Figure 19 gives the derived estimated
response times.

3.2 The Analytical Model Corrected

As it turns out, the numerical results produced by the analysis in PRISM do not
accurately correspond to those depicted as “No PCS” in Figure 15, in particular

28

Expected timeO

Expected time

0,350
0,325 1
0,300 1
0,275 1
0,250 1
0,225 |
0,200 1
0,175 |
0,150 1
0,125 |
0,100 1
0,075 |
0,050 1
0,025 |

0,000

0,013

0,012 1
0,011 1
0,010 1
0,009 1
0,008 1
0,007 1
0,006 |
0,005
0,004 -
0,003 1
0,002 1
0,001 1

0,000

)
b
4
®

—o— New Series

10 20 30 40 50 60 70 80 90
lambda

—o— New Series

10 20 30 40 50 60 70 80 90
lambda

Figure 19: Estimated Response Time N /A (—1—1% + 1%)

29

0.375 |
T
L
0.37
0.365
V
£ 0.36
0.355
0.35
// .
| ——— [I [
0.345
10 20 30 40 50 p” - " .

lambda

Figure 20: Response Time Without PCS (Modified Analytical Model)

for A > 50. Actually the results are better described by the equation

] +(F> I FF
%_l B Ysi%_l/q Ny Ne

depicted in Figure 20 where the second term (modeling the “repetition loop” in
the generation of the web server output) has been modified. Indeed, a closer
inspection substantiates the correctness of this formulation: F/B; represents the
number of “iterations” of the corresponding queue which has arrival rate A /¢ and
departure rate 1/(Ys + 1%); this term now also equals the last term of the equation

for T of [8] given in Section 2.2 (taking g = %).

Actually the same problem also affects the corresponding terms in the equation
for Ty, modeling repetition loops; the correct formulation apparently is

T — 1 (L) 1 F
Xc ﬁ_l +p{ By lB —ﬂ«/pxc—i—Nf

Yxc+ﬁ

1 F 1 F F 1 F
+H1-p) { T (%) = — 7R () = “Alpw +E}

Yo+ g

30

0.365 |
no PCS ——
p=0.0. ===
" EEEE p=0.2 - u
T =04
p=0.6 ———--
e o p=0.8 -
p=1.0, e
0.35 o / -
0.345
N
0.34
0.335 | I R e
0.33
0.325
10 20 30 40 50 50 - ")

lambda

Figure 21: Response Times With and Without PCS (Modified Analytical Model)

where py. = By./F is the probability that the repetition loop is terminated (please
note also the changes in the arrival rates of the corresponding terms). The corre-
sponding numerical results are depicted in Figure 21, compare with the original
results in Figure 15. However, here the difference plays only a minor role (for
p > 0.2 only the third digit after the comma is affected).

3.3 The Model with PCS

Also in the model with PCS, the server network is not modelled by a queue but
just by an additive constant for the transfer of the file over the network. This fact
is made clear by rewriting the equation for the average response time as

Te = Tatp {(;) ! 1—A/pxc}

_ Lo (EY 1 (F)y 1
+(1 P){,Hz+<3s> lgsxz/q+<3xc> lgmz/pm}

Y5t Yee+ g
H{E+0-nk}

31

Here each fraction of form ﬁ indicates an occurrence of a queue with arrival
rate A and departure rate yt. We can see clearly that neither the server bandwidth

N; nor the client bandwidth N, play a role in such fractions.

Figure 14 is therefore highly misleading; neither the server network bandwidth
nor the client network bandwidth are in the model actually represented by queues;
thus the queues labelled as “server network bandwidth” and “client network band-
width” should be removed (i.e. replaced by other visual elements indicating sim-
ple delays). Furthermore, similar to the “branching” discussed in Section 2, the
“branching” in this picture should not start after the “server network™ but di-
rectly after the “web server output”, because the repetition rate of requests is not
bounded by the network bandwidth in the model.

However, on the other side actually a queue is missing (also from the description
in the text); this is the one that models the repeated requests for blocks of size
B, which are sent by the clients to the PCS (analogous to the repeated requests
for blocks of size Bs sent by the client to the web server in the basic web server
model); therefore the client indeed needs to be modeled by a queue (whose output
is redirected with probability 1 — py. to its input), but because of the looping
process, not because of the client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually
wrong; the corresponding requests do not flow to the PCS queue (where, since the
queue cannot distinguish its inputs, they might generate new requests for the web
server) but directly to the client queue.

Summarizing, the actual queueing network modeled in [3] contains only four
nodes in contrast to the five ones shown in Figure 14 (no queue for modeling
the server bandwidth) and one of these queues does not model the “client network
bandwidth” but the repetition of block requests (it could be labelled in the figure
as “client output” because it plays for the repetition the same role as the queue
labeled “web server output”).

Figure 22 shows a revised picture that describes the model as outlined above.
We implement this model in PRISM as shown below (for the full code see Ap-
pendix B.2):

module jobs
[accept] true —-> lambda : true ;
endmodule

module PCS

pxwaiting: [0..IP] init O;
pxaccepted: bool init true;

32

Client Network

Bandwidth Client Loop
|
-
(I-p_xc)I’
} Proxy Cache
Arrival of i Server
rrival o | !
Users' i - ©—>P """ |
Requests 12 ! < e j
i i
Server 1
Network i
Bandwidth i
1 1
i gl2’=12 v
4 *
VTNl @ |
i s ‘
12" . j
| '\A\‘ I
l_._._. _O 4._,'_‘®<,,,© 477,,1‘
12’ 12’ 12
Web Server Web
Output Initialization

Figure 22: Corrected Queueing Network Model of Proxy Cache Server

33

[accept] pxwaiting = IP -> 1
(pxaccepted’ = false) ;
[accept] pxwaiting < IP -> 1
(pxaccepted’ = true) &
(pxwaiting’ = pxwaiting+l) ;
[sforward] (pxwaiting > 0) & (1-p > 0)
(pxwaiting’ = pxwaiting-1) ;
[panswer] (pxwaiting > 0) & (p > 0) —->
(pxwaiting’ = pxwaiting-1) ;
endmodule
module S_C
icwaiting: [0..IC] init O;
[panswer] icwaiting < IC -> 1
(icwaiting’ = icwaiting+l) ;
[sanswer] icwaiting < IC -> 1
(icwaiting’ = icwaiting+l) ;
[done] (icwaiting > 0) & (pxc > 0) -—>
(icwaiting’ = icwaiting-1) ;
endmodule

module S_T

waiting: [O0..IA] init O;
[sforward] waiting < IA -> 1
(waiting’ = waiting+l) ;

[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

module S_R

irwaiting: [0..IR] init O0;
[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;
[sanswer] (irwaiting > 0) & (g > 0)
(irwaiting’ = irwaiting-1) ;
endmodule

Module PCS models the proxy cache server, module S¢ the client, module S7 the
initialization queue of the web server, module Sg the output queue of the web

server with the following behavior:

e P(CS returns with probability g an answer to the client (transition canswer)
and forwards with probability 1 — g the request to the server (transition
sforward). The corresponding transitions “carry” the initialization time /.

of the server.

34

-> (1/Ixc)=*(1-p)

(1/Ixc)*p

1/ (Yxc+Bxc/Rxc) *pxc

-> 1/ (Ys+Bs/Rs) xq

e §; buffers the incoming server request and forwards it after the initialization
for further processing (transition forward); the transition carries the initial-
ization time I of the server.

e Sk generates an output buffer with rate 1/(¥; + %) according to the model.
However, since the request is repeated with proi)ability 1 —¢g (where g =
F / By), the final result is only produced with probability ¢ which contributes
as a factor to the rate of the corresponding transition (transition sanswer).

e S¢ models the repetition behavior of the client; a buffer of size B, is re-
ceived from the PCS with rate 1/(Y),+ %). However, the request for a
buffer is repeated with probability 1 — p,. such that only with probabil-
ity pxc the final buffer is received and the request is completed (transition
done).

While it would be tempting to model the repetition in Sc by generating a new
request for PCS, this is actually wrong (as already discussed above for the model
of [3]): since such a repetition request is only triggered after the PCS has already
received the complete file from the web server, it is not to be treated like the in-
coming requests (that with probability 1 — p generate requests for the web server);
rather we just consider the probability p,. with which the final block is received
from the PCS in the rate of the termination transition done.

We describe in above PRISM model the actual queueing model analyzed in [3]
where neither the client network nor the server network are actually modelled by
queues; the response time determined of this model has to be correspondingly
increased by the network transfer times F /N, + F /Ns to give the total response
time. If we would, however, nevertheless like to model the server network by a
queue, above model would have to be changed as follows:

module S_R

irwaiting: [0..IR] init O;

[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;

[repeat] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;

[isforward] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)
(irwaiting’ = irwaiting-1) ;

endmodule

module S_S

iswaiting: [0..IS] init O;
[isforward] iswaiting < IS -> 1
(iswaiting’ = iswaiting+l) ;

35

[repeat] (iswaiting > 0) & (1-g > 0) -> (Ns/Bs)=*(l-q)

(iswaiting’ = iswaiting-1) ;
[sanswer] (iswaiting > 0) & (g > 0) —-> (Ns/Bs)x*gq :
(iswaiting’ = iswaiting-1) ;
endmodule

Here the module S represents the server network which receives file blocks of
size By from the server such that after a delay Bs/N; (with a probability 1 —)
either a new block can be requested (transition repeat) or (with a probability gq)
the total server answer is available to the PCS (transition sanswer); the rates of
the transitions reflect this behavior.

In the following, we present the results of analyzing our (unmodified) model in
PRISM (choosing the Jacobi method for the solution of the equation systems and a
relative termination epsilon of 10~%; the analysis only takes a couple of seconds).
As it turns out, it suffices to take the queue capacities IP =5,IC =3,JA=IR=1
to keep the response times essentially invariant.

Figure 23 gives the acceptance ratio for various arrival rates A and proxy hit
rates p; Figure 23 depicts the corresponding average number of requests N in the
system. From this, we can estimate the time that a requests spends in the system
as N/A and the total time including the file transfer as N /A + 1% +(1— p)]%, see
Figure 25 and compare with the curve given from the equation of 7. in Figure 21.
The results are virtually identical; only for arrival rates A > 70 and p = 0, we can
see differences (because the web server gets saturated and the request rejection
rate starts to get significant).

36

Expected accepted

Expected pending

1,01
0,91
0,81
0,71
0,6 -
0,5 1
0,4
0,3 1
0,2
0,11

|

-o-p=0

- p=0,2
p=0,4
p=0,6

—+ p=0,8
p=1

0,0

3,00 1
2,75 1
2,501
2,25 1
2,001
1,75 1
1,50 1
1,25 1
1,00 1
0,75 1
0,50 1
0,25 1

0,00

10 20 30 40 50 60 70 80 90
lambda

Figure 23: Estimated Acceptance Ratio

- p=0

- p=0,2
p=0,4
p=0,6

-+ p=0,8
p=1

10 20 30 40 50 60 70 80 90
lambda

Figure 24: Number of Pending Requests (N)

37

0,0325 -
0,0300
0,0275 -
0,0250
v 0,0225 -
= 0,0200 - ~-p=0
20,0175 | = p=0,2
(9} = 4
$ 0,0150 p=0,
X p=0,6
W 0,0125 ¢ M// -+ p=0,8
0,0100 p=1
0,0075 -
0,0050
0,0025 -
0,0000 -— : : - : : - : :
10 20 30 40 50 60 70 80 90
lambda
. . oo 2
0,351 &—= s o . = s , H
0,30
2 0,25
E ~-p=0
S 0,20 - p=0,2
9] p=0,4
[}
£ 0,15 p=0,6
u -+ p=0,8
0,10 - p=1
0,05 -
0,00

10 20 30 40 50 60 70 80 90
lambda

Figure 25: Estimated Response Time N/ /'L(—i—l% +(1-p)E)

38

4 Performance Model of a Proxy Cache Server with
External Users

The article [3] describes the model of a “proxy cache server” (PCS) to which the
clients of a firm are connected such that web requests of the clients are first routed
to the PCS. If the requested file cannot be served by the PCS, then it downloads
it from the remote Web servers and forwards to the clients. This model is refined
in the article [2] by the following two issues: (1) external visits (from the rest
of the Internet) are also allowed to the remote Web servers, (2) the Web servers
have limited buffer. Referring to an illustration redrawn in Figure 26, the authors
describe their model as follows:

In this paper a modification of the performance model of Bose and Cheng [3]
is given to deal with a more realistic case when external visitors are allowed
to the remote Web servers and the Web servers have a limited buffer. For
the easier understanding of the basic model and comparisons we follow the
structure of the cited work.

Using proxy cache server, if any information or file is requested to be down-
loaded, first it is checked whether the document exists on the proxy cache
server. (We denote the probability of this existence by p). If the document
can be found on the PCS then its copy is immediately transfered to the user.
In the opposite case the request will be sent to the remote Web server. After
the requested document arrived to the PCS then the copy of it is delivered to
the user. ...

We assume that the requests of the PCS users arrive according to a Poisson
process with rate A, and the external visits at the remote web server form a
Poisson process with rate A

Let F' be the average of the requested file size. We define A1, A3, A3 and A5
suchthat: A} = pxA, L =(1—p)*xA, 3= +A,and As = (1 — B,) x4,

In our model we assume that the Web server has a buffer of capacity K. Let
P, be the probability that a request will be denied by the Web server. As it is
well-known from basic queueing theory the blocking probability P, for the

M/M/1/K queueing system: P, = P(N =K) = (11:;;2?1’(
Now we get p = 2FLRAE) (1221;2*'3‘?)

Now we can see that the requests arrive to the buffer of the Web server
according to a Poisson process with rate Ay = (1 — P,) % A3 ...

If the size of the requested file is greater then the Web server’s output buffer
it will start a looping process until the delivery of all requested file’s is com-
pleted. Let ¢ = min (1,2:) be the probability that the desired file can be

39

Client Network

Bandwidth
|
-
Arrival of
Users’ Proxy Cache
Requests Server

- - (O

L' T2 15=(1-Pb)*12

Server

Network

Bandwidth
A |
P g2 =12 L2
} I
I
I I
: I3*Pb
i (1-q)a |
1 I
B I
I |

I

Web Server Web
Output Initialization

Figure 26: Queueing Network Model of a Proxy Cache Server (redrawn from [2])

delivered at the first attempt. Let 7@1 be the rate of the requests arriving at the
Web service considering the looping process. According to the conditions
of equilibrium and the flow balance theory of queueing networks A4 = g * M

The performance of the model is characterized by the parameters (in addition to
those already listed in Section 2 and in Section 3).

e Visit rates for external users (A)
e Cache hit rate probability (p)

o Buffer size of the Web server given in requests (K = 100)

with default values ¢ = B = y = 1 (and, different from the values listed in Sec-
tion 2, F' = 5000 and N, = 16000).

40

The overall response time in the presence of the PCS is given as

+(1-p){ T+ —5 l4+§s++xs+§c}

Iy 7% F*(YS+B—j) q F*(Yxc-F%)

In this formula, the first term denotes the lookup time to see if the desired files
are available from the PCS, the second term (with factor p) describes the time for
the content to be delivered to the requesting user, and the third term (with factor
1 — p) indicates the time required from the time the PCS initiates the fetching of
the desired files to the time the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

S 1 P F
A B gy N N
‘ gy~

4.1 The Analytical Model Corrected

We have to notice that neither the client network nor the server network are treated
as queues; thus the queues labelled as “server network bandwidth” and “client
network bandwidth” should be removed and replaced by other visual elements
indicating simple delays, that are just used to give additional time constants for
file transfers as it is described in Section 3).

The error of the “repetition loop” that is described in Section 3 appears in the
overall response time in the article [2] too.

So, actually a queue is missing; this is the one that models the repeated requests
for blocks of size B,. which are sent by the clients to the PCS (analogous to the
repeated requests for blocks of size B sent by the client to the web server in
the basic web server model); therefore the client indeed needs to be modeled by
a queue (whose output is redirected with probability 1 — p,. is redirected to its
input), but because of the looping process, not because of the client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually
wrong; the corresponding requests do not flow to the PCS queue (where, since the
queue cannot distinguish its inputs, they might generate new requests for the web
server) but directly to the client queue.

41

Client Network
Bandwidth Client Loop

|_ret ,) I
|_ret =p_xc*l

(1-p_xc)l

Proxy Cache
Server

- [)——=P
Arrival of I < 12

i
i
Users’ !
Requests !
Server !
i
Network i
Bandwidth }
i |

1 12

} I
! I
! 13*Pb i
! (1-g)i4’ ‘
i
@ i |
! !

L_._._. _ C e (P O - @47

14 13 13 L
Web Server Web
Output Initialization

Figure 27: Corrected Model of Web Server with External Users

Summarizing, the actual, corrected queueing network modeled in [2] contains
four nodes as shown in Figure 27: there are no queues for modeling the server and
client network bandwidth but one for the repetition of block requests (it could be
labelled in the figure as “client output” because it plays for the repetition the same
role as the queue labeled “web server output™).

So, the corrected overall response time in the presence of the PCS is given as

T = T—+p]——F1+7
Ixc (YXCJr%ch) qxc
F
+(1-p) L,IM_F 1B3 Ay +§x+ 1 BXC_MHS +§c
SR O) R =

where

42

AIZP*/L)“2:<1_p)*2’7 2'?>:A'2_|_/\7
—o)xok

p =yl Py=P(N=K) =25, la=(1-P)sla,

As = (1 = Py) x Ay.

The corrected overall response time without a PCS is given as

1 B.

B
:l' _ S
(YS IBS) ;L/q

Rs

+ 2L E

4.2 PRISM Implementation

The PRISM implementation of this model can be found in Appendix C.1. It is
based on the one given in Appendix B.2, which is referred as the “original” or
“base” implementation in this subsection. We are now going to explain the differ-
ences of the two implementations.

We have seen that the new model has two new issues: (1) external visits (from
the rest of the Internet) are also allowed to the remote Web servers, (2) the Web
servers have limited buffer. In PRISM any queue must have a buffer limit. This
means that we have to deal only with the first issue, i.e., we have to simulate
external users. We simulate external users by the following new module:

module external
[extaccept] true —-> capitallambda : true ;
endmodule

This module generates external requests with rate A, which is called in the PRISM
code capitallambda. The requests are sent to the Web servers input queue, i.e., we
have to synchronize with the S; module, therefore, the corresponding transactions
have the same label, which is “extaccept”. We show only those lines from the S;
module, which are not included in the base implementation:

module S_T

[extaccept] waiting < IA -> 1
(waiting’ = waiting+l) ;

endmodule

43

After an external request has arrived, it is processed and the answer is placed in the
output queue, which is simulated by the Sg module. Here one cannot distinguish
between answers to external requests and answers to PCS requests (requests from
the proxy cache server), but the two kind of answers have different impact on
the system (answers to external requests have to send to the rest of the Internet,
answers to PCS requests have to send to the proxy cache server).

So we do not know which answer belongs to which kind of answers, but we know
the incoming rate of the two kind of requests: We know that external requests
arrive with rate A, PCS requests arrive with rate (1 —p)*A. Let A, = (1 — p) % 4,
and let A3 = A, + A. So we know that A3 is the number of all the incoming requests
per time unit, and A, is the number of the incoming PCS requests per time unit,
therefore, A, /A3 is the probability that a request is a PCS one. Since for each
request we have an answer, we obtain that A, /A3 is the probability that an answer
belongs to a PCS request.

We used this observation in the Sg module. We show only those lines from the Sg
module, which are altered or not included in the base implementation:

module S_R

[sanswer] (irwaiting > 0) &
(g > 0) -> 1/(Ys+Bs/Rs) *q * (lambda2/lambda3l) :
(irwaiting’ = irwaiting-1) ;

[extanswer] (irwaiting > 0) &
(g > 0) —> 1/(Ys+Bs/Rs)*g * (1-(lambda2/lambda3)) :
(irwaiting’ = irwaiting-1) ;
endmodule

Finally we had to rewrite the timing rewards. The original time reward was

rewards "time"
true : (waiting + irwaiting + pxwaiting + icwaiting) /lambda;
endrewards

This is a very nice and concise form, but this hides the inner structure. A more
verbose form of the original time reward could be this one:

rewards "time"
true : 1 * pxwaiting / lambda +
p * icwaiting / lambdal +
(1-p) * waiting /lambda2 +
(1-p) » irwaiting / lambdaZ2;
endrewards

44

Here lambdal = p * lambda and lambda2 = (1 — p) * lambda. Each part of this
reward has the form “probability of this branch times the actual size of the queue
divided by the incoming rate”. One can see that the two rewards are the same, but
the second one helps us to write the new “time” and “time(” rewards:

rewards "time"
true : (pxwailting + icwaiting)/lambda +
(1-p) » (waiting + irwaiting)/lambda3;
endrewards

rewards "timeO"
true : (pxwaiting + icwaiting)/lambda +
(1-p) » (waiting + irwaiting)/lambda3 +
(FS/Nc) + (1-p)=*(FS/Ns);
endrewards

Here we have lambda3 = lambda?2 + capitallambda. The new time reward is
based on the fact that with probability (1 — p) the proxy cache server forwards
the requests to the Web server’s input queue. Since each request is served, the
probability that the answer is placed in the output queue of the Web server is the
same: (1 — p). For both queues the incoming rate is lambda3, because the Web
server gets requests from the proxy cache server (with rate lambda2) and from
external users (with rate capitallambda).

4.3 Test Results

Of course one has to counter-check the implementation against numerical results.
Unfortunately we cannot use the diagrams in [2], because the article contains
errors as we shown above. But we can use the results of the previous chapter.
If we choose A to be a very small number then our implementation has to give
virtually the same results as the base implementation. To check this we recall the
Estimated Response Time of the PRISM code of Appendix B.2 in Figure 28 as
the first diagram. The second one is the Estimated Response Time of the new
implementation in case A = 1. We can see that the diagrams are virtually the
same, except that in the new implementation we cannot simulate the case p = 1.

We have also numerical results based on the corrected equation in the subsection
4.1. The numerical results are as follows:

Parameters:
p = 0.25
capitallamba = 100

45

Expected time

Expected time

0,0325 1
0,0300 1
0,0275 1
0,0250 1
0,0225 1
0,0200 1
0,0175 1
0,0150 1
0,0125 1
0,0100 1
0,0075 1
0,0050 1
0,0025 1

e

- p=0

- p=0,2
p=0,4
p=0,6

-+ p=0,8
p=1

0,0000

10 20 30 40 50 60 70 80 90
lambda

0,0325 1
0,0300 1
0,0275 1
0,0250 1
0,0225 -
0,0200 1
0,0175 1
0,0150 1
0,0125 1
0,0100 1
0,0075 1
0,0050 1
0,0025 1

e

0,0000

10 20 30 40 50 60 70 80 90
lambda

Figure 28: Estimated Response Time

46

- p=0

-&- p=0,2
p=0,4
p=0,6

—+ p=0,8

F = 5000

Y s = 0.000016, Y _xc = 0.000016

B_s = 2000, B_xc = 2000

R_s = 1250 » 1000 * 8, R_xc = 1250 = 1000 =* 8
I_s = 0.004, I_xc = 0.004

Ns = 1544 « 100, Nc = 128 x 100

mu_pcs = 1 / (Y_xc + (B_xc / R_xc))

muweb =1 / (Y_s + (B_s / R_s))
Results:

lambda: 10 0,425314728333584
lambda: 20 0,425792543375320
lambda: 30 0,426321265032608
lambda: 40 0,426909696486849
lambda: 50 0,427568831459086
lambda: 60 0,428312592318381
lambda: 70 0,429158892980198
lambda: 80 0,430131208973998
lambda: 90 0,431260965835961

In Figure 29 we can see the Estimated Response Time of the new implementation
using the “time0” reward and the parameters shown above. The cache sizes are
set as follows: IP =7,IC = 3,1A = 19,IR = 8. With these, the test results are the
same up to the 4-5th digit as the numerical results.

The next question was, how big should the queues be? If the queues are small then
lot of requests are refused. If the queues are big then the running time of a PRISM
experiment is to long. We did lot of experiments with cash sizes. The goal was to
find the minimal cache size for which the acceptance ratio for all queue is at least
0.99 with incoming rates lambda = 70 and capitallambda = 100. We have found
that the following cache sizes are the best choice: IP =7,IC =3,IA=19,IR=8
in case of p = 0.2. For this test we used the PRISM implementation which can be
found in in Appendix C.2. We show only the acceptance ratio for the queues IC,
IA, and IR in Figure 30, because the acceptance ratio for the queue /P is always
more than 0.999.

We can see an interesting phenomenon that the acceptance ratio grows for /C as
capitallambda grows, but this is the opposite one would expect. The explanation
of this phenomenon is that the acceptance ratio for queues /A and IR gets lower and
lower as capitallambda grows, and hence, more and more PCS request are lost.
In case lambda = 90 and capitallambda = 150 around 90 % 0.99 x 0.95 = 84,645
PCS requests are served, but in case lambda = 90 and capitallambda = 200 only
around 90 % 0.9 %x0.91 = 73,71 PCS requests are served and, of course, lower
number of requests means bigger acceptance ratio.

47

0,432

0,431 1

0,43 1

o
N
N
©

Expected time0
o
~
N
oo

0,427 -

0,426 -

0,425

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
lambda

Figure 29: Estimated Response Time

48

Expected icaccepted

Expected iaaccepted

Expected iraccepted

0,99 -

0,98 1

0,97

0,99 -
0,98 1
0,97 1
0,96 -
0,95 1
0,94 -
0,93 -
0,92 1
0,91 4

0,9

(ejelelejolelola]e)
©OWOWOOOOOO

o

—o— capitallambda=50

-#- capitallambda=100
capitallambda=150

-=— capitallambda=200

10 20 30 40 50 60 70 80 90
lambda

—o— capitallambda=50

-&- capitallambda=100
capitallambda=150

—=— capitallambda=200

10 20 30 40 50 60 70 80 90
lambda

O-2NWAOION0WWO -

—o— capitallambda=50

-&- capitallambda=100
capitallambda=150

-=— capitallambda=200

10 20 30 40 50 60 70 80 90
lambda

Figure 30: Estimated Response Time

49

5 Conclusions

The work described in this paper seems to justify the following conclusions:

e The informal models used in literature for the performance analysis of com-
puting systems are often ambiguous. This may lead to misunderstandings
of other researchers that build on top of prior work; e.g. [3] and [2] describe
their results as to be based on the model presented in [8], but actually [8]
models the server network by a delay element rather than by a queue which

gives different results in the performance evaluation.

e The use of diagrams of queue networks is an insufficient substitute for a
formal specification of a system model and a constant source of pitfalls.
In [8], the diagram depicts a queue where the actual performance model uses
a constant delay; likewise [3] and [2] depict queues for the server network
but also use delays in their analysis. Furthermore, in all three papers there
is an apparent confusion of the roles of the “loop-back™ arrows which are
shown in the diagrams in places that are misleading with respect to the role

that they actually play in the analyzed models.

e Two of the papers [3, 2] have errors in the analytical models; these errors
were only detected after trying to reproduce the results with the PRISM
models. This demonstrates that performance evaluation results published in

literature cannot be blindly trusted without further validation.

e Most important, after correcting the diagrams to match the actually ana-
lyzed models, a question mark has to be put on the adequacy of the models
with respect to real implementations. All three [8, 3, 2] model the client net-
work bandwidth outside the “loop” for the repeated transfer of blocks from
the web (respectively proxy cache) server to the client. While the informal
descriptions seem to suggest that this is intended to model the underlying
network protocol, i.e. presumedly TCP, the “sliding windows” implemen-
tation of TCP lets the client interact with the server to control the flow of
packets; this interaction is not handled in the presented performance models
(because then the network delay must be an element of the interaction loop).

e The PRISM modeling language can be quite conveniently used to describe
queueing networks by representing every network node as an automaton
(“module”) with explicit (qualitative and quantitative) descriptions of the
interactions between automata. This forces us to be much more precise
about the system model, which may first look like a nuisance, but shows its

advantage when we want to argue about the adequacy of the model.

50

e The major limitation of a PRISM model is that it can be only used to
model finitely bounded queues, while typical performance models use infi-
nite queues. However, by careful experiments with increasing queue sizes
one may determine appropriate bounds where the finite models do not sig-
nificantly differ from the infinite models any more. Furthermore, since ac-
tual implementations typically use (for performance reasons) finite buffers
anyway, such models more adequately describe the real-world situation; the
work performed for the analysis may be therefore used to determine appro-
priate bounds for the implementations and reason about the expected losses
of requests for these bounds.

In the future, we intend to continue this line of work by progressing towards the
modeling and analysis of more complex systems that are derived from real im-
plementations rather than from models published in literature. By this work, we
hope to gain further insight into the real-world applicability of probabilistic model
checking to the performance analysis of computing systems.

51

References

[1] Tamas Berczes, Gabor Guta, Gabor Kusper, Wolfgang Schreiner, and Janos
Sztrik. Comparing the Performance Modeling Environment MOSEL and
the Probabilistic Model Checker PRISM for Modeling and Analyzing Retrial
Queueing Systems. Technical Report 07-17, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, 2007.

[2] Tamas Berczes and Janos Sztrik. Performance Modeling of Proxy Cache
Servers. Journal of Universal Computer Science, 12(9):1139-1153, 2006.

[3] Indranil Bose and Hsing Kenneth Cheng. Performance Models of a Firm’s
Proxy Cache Server. Decision Support Systems, 29:47-57, 2000.

[4] Robert B. Cooper. Introduction to Queueing Theory. North Holland, 2nd
edition, 1981.

[5] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM: A Tool for Automatic Verification of Probabilistic Systems. In Hol-
ger Hermanns and Jens Palsberg, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 12th International Conference, TACAS
2006, Vienna, Austria, March 27-30, volume 3920 of Lecture Notes in Com-
puter Science, pages 441-444. Springer, 2006.

[6] G. Norman M. Kwiatkowska and D. Parker. Stochastic Model Checking.
In M. Bernardo and J. Hillston, editors, Formal Methods for Performance
Evaluation: 7th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2007, volume 4486

of Lecture Notes in Computer Science, pages 220-270, Bertinoro, Italy, May
28 — June 2, 2007. Springer.

[7] PRISM — Probabilistic Symbolic Model Checker, November 2008.
http://www.prismmodelchecker.org.

[8] Louis P. Slothouber. A Model of Web Server Performance. In 5th Interna-
tional World Wide Web Conference, Paris, France, 1996.

52

A PRISM Model of a Web Server

A.1 A First PRISM Model

// webServer(Q.sm

// a bounded queue approximation of the web server model presented in

// Louis P. Slothouber "A Model of Web Server Performance"

//

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"
//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// continuous time markov chain (ctmc) model
stochastic

[
// system parameters

/o

// variable parameters
const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size

const double Bs = 2000; // buffer size

const double Is 0.004; // initialization time (Bose/Cheng)

const double Ys 0.000016; // static server time (Bose/Cheng)

const double Rs 1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values

const double g = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA = 3; // capacity of server arrival queue

const int IR = 3; // capacity of server output queue

const int IS = 3; // capacity of internet queue of server

const int IC; // capacity of internet queue of client
e
// system model

[

// generate requests at rate lambda
module jobs

[accept] true -> lambda : true ;
endmodule

// server arrival queue
module S_1I

53

waiting: [0..IA] init 0;
accepted: bool init false;

[accept] waiting = IA -> 1

(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’” = waiting-1) ;
endmodule

// server output queue

module S_R
irwaiting: [0..IR] init 0;
iraccepted: bool init false;

// request from arrival queue

[forward] irwaiting = IR -> 1
(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

// repetition request from client

[repeat] irwaiting = IR -> 1
(iraccepted’ = false) ;

[repeat] irwaiting < IR —-> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

// forwarding of full block
[isforward] irwaiting > 0 -> 1/ (Ys+Bs/Rs)
(irwaiting’ = irwaiting-1) ;
endmodule

// internet queue of server
module S_S
iswaiting: [0..IS] init O;
isaccepted: bool init false;

[isforward] iswaiting = IS -> 1
(isaccepted’ = false) ;
[isforward] iswaiting < IS -> 1
(isaccepted’ = true) &
(iswaiting’ = iswaiting+l) ;
[icforward] iswaiting > 0 -> (Ns/Bs)
(iswaiting’ = iswaiting-1) ;
endmodule

// internet queue of client
module S_C
icwaiting: [0..IC] init O;
icaccepted: bool init false;

// accept answer

[icforward] icwaiting = IC -> 1
(icaccepted’ = false) ;

[icforward] icwaiting < IC -> 1
(icaccepted’ = true) &
(icwaiting’ = icwaiting+l) ;

54

// request is repeated with probability 1-p
[repeat] (icwaiting > 0) & (1-g > 0) -> (Nc/Bs)x*(1-q)
(icwaiting’ = icwaiting-1) ;

// request is completed with probability p
[done] (icwaiting > 0) & (g > 0) -> (Nc/Bs)=xq

(icwaiting’ = icwaiting-1) ;

endmodule
J e
// system rewards
/) ST
rewards "allaccepted"

accepted : 1

iraccepted 1;

isaccepted : 1;

icaccepted 1;
endrewards

rewards "accepted"
accepted : 1;
endrewards

rewards "iraccepted"
iraccepted : 1;
endrewards

rewards "isaccepted"
isaccepted : 1;
endrewards

rewards "icaccepted"
icaccepted : 1;
endrewards

rewards "pending"
true : waiting + irwaiting + iswaiting + icwaiting;
endrewards

rewards "time"
true : (waiting + irwaiting + iswaiting + icwaiting)/lambda;
endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-3, and model constants
// lambda = 5..40, IA = 3, IR =3, IS = 3, IC = 5..35
// gives reliable results for lambda <= 20

// estimated percentage of requests accepted by queues

R{"allaccepted"}=? [S]

R{"accepted"}=? [S

R{"iraccepted"}=? [

R{"isaccepted"}=? [
[

]

S

S 1]
R{"icaccepted"}=? S

55

// number of requests pending in system
R{"pending"}=? [S]

// average request response time
R{"time"}=2 [S]

A.2 The PRISM Model Corrected

// webServerl.sm

// a bounded queue approximation of the web server model presented in

// Louis P. Slothouber "A Model of Web Server Performance"

/7

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"
//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// continuous time markov chain (ctmc) model
stochastic

/e
// system parameters

S

// variable parameters
const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size
const double Bs = 2000; // buffer size
const double Is = 0.004; // initialization time (Bose/Cheng)

const double Ys = 0.000016; // static server time (Bose/Cheng)

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)
const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values
const double g = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA = 3; // capacity of server arrival queue

const int IR = 3; // capacity of server output queue

const int IS; // capacity of internet queue of server

[T

// system model: client bandwidth is ignored
// (file transfer time to be added to total request time)

// generate requests at rate lambda
module jobs

56

[accept] true -> lambda : true ;
endmodule

// server arrival queue
module S_TI
waiting: [0..IA] init O;
accepted: bool init false;

[accept] waiting = IA -> 1
(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server output queue

module S_R
irwaiting: [0..IR] init O;
iraccepted: bool init false;

// request from arrival queue

[forward] irwaiting = IR -> 1
(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

// repetition request from client

[repeat] irwaiting = IR -> 1
(iraccepted’ = false) ;

[repeat] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

// forwarding of block

[isforward] (irwaiting > 0) -> 1/(Ys+Bs/Rs)
(irwaiting’ = irwaiting-1) ;
endmodule

// internet queue of server
module S_S
iswaiting: [0..IS] init O;
isaccepted: bool init false;

[isforward] iswaiting = IS -> 1
(isaccepted’ = false) ;

[isforward] iswaiting < IS -> 1
(isaccepted’ = true) &
(iswaiting’ = iswaiting+l) ;

// request 1is repeated with probability 1-gq
[repeat] (iswaiting > 0) & (l1-g > 0) -> (Ns/Bs)*(1l-q)
(iswaiting’ = iswaiting-1) ;

// request is completed with probability g
[done] (iswaiting > 0) & (g > 0) —-> (Ns/Bs)xqg
(iswaiting’ = iswaiting-1) ;
endmodule

// system rewards

[
rewards "allaccepted"

accepted : 1

iraccepted : 1;

isaccepted : 1;
endrewards

rewards "accepted"
accepted : 1;
endrewards

rewards "iraccepted"
iraccepted : 1;
endrewards

rewards "isaccepted"
isaccepted : 1;
endrewards

rewards "pending"
true : waiting + irwaiting + iswaiting;
endrewards

rewards "time"
true : (waiting + irwaiting + iswaiting)/lambda;
endrewards

rewards "timeO"

true : (waiting + irwaiting + iswaiting)/lambda+ (FS/Nc);
endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-3, and model constants
// lambda = 5..40, IA = 3, IR = 3, IS = 3..33
// gives reliable results for lambda <= 35

// estimated percentage of requests accepted by queues
R{"allaccepted"}=? [S]

R{"accepted"}=2? [S]

R{"iraccepted"}=2? [S]
R{"isaccepted"}=2? [S]

// number of requests pending in system
R{"pending"}=2 [S]

// time request spends in system
R{"time"}=2 [S]

// time request spends in system plus file transfer time
R{"time0"}=? [S]

58

A.3 The PRISM Model Simplified

// webServer?2.sm

// a bounded queue approximation of the web server model presented in

// Louis P. Slothouber "A Model of Web Server Performance"

//

// with parameters partially taken from

//

// Bose and Cheng "Performance models of a firm’s proxy cache server"
//

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria

// http://www.risc.uni-linz.ac.at

// continuous time markov chain (ctmc) model
stochastic

/]
// system parameters

T

// variable parameters
const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5275; // average file size
const double Bs = 2000; // buffer size
const double Is = 0.004; // initialization time (Bose/Cheng)

const double ¥Ys
const double Rs

0.000016; // static server time (Bose/Cheng)
1310720; // dynamic server rate (1.25 Mbytes/s, Bose/Cheng)

const double Ns = 193000; // server network bandwidth (1544 kbps)

const double Nc = 88375; // client network bandwidth (707 kbps)

// dervied values

const double g = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA; // capacity of server arrival queue

const int IR = 2; // capacity of server output queue

const int IS = 2; // capacity of internet queue of server

J

// system model: client bandwidth is ignored
// (file transfer time to be added to total request time)

// generate requests at rate lambda
module Jjobs

[accept] true -> lambda : true ;
endmodule

// server arrival queue
module S_TI
waiting: [0..IA] init O;
accepted: bool init false;

59

[accept] waiting = IA -> 1

(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+1l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server output queue
module S_R
irwaiting: [0..IR] init O;

// request from arrival queue
[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;

// repetition request from client
[repeat] irwaiting < IR -> 1

(irwaiting’ = irwaiting+l) ;

// forwarding of block

[isforward] (irwaiting > 0) -> 1/ (Ys+Bs/Rs)
(irwaiting’ = irwaiting-1) ;
endmodule

// internet queue of server
module S_S
iswaiting: [0..IS] init O;

[isforward] iswaiting < IS -> 1
(iswaiting’ = iswaiting+l) ;

// request is repeated with probability 1-gq
[repeat] (iswaiting > 0) & (1-g > 0) -> (Ns/Bs)x(1-q)
(iswaiting’ = iswaiting-1) ;

// request is completed with probability g
[done] (iswaiting > 0) & (g > 0) -> (Ns/Bs)xq
(iswaiting’ = iswaiting-1) ;
endmodule

/]

// system rewards

rewards "accepted"
accepted : 1;
endrewards

rewards "pending"
true : waiting + irwaiting + iswaiting;
endrewards

rewards "time"
true : (waiting + irwaiting + iswaiting)/lambda;
endrewards

rewards "timeO"

true : (waiting + irwaiting + iswaiting)/lambda+ (FS/Nc);
endrewards

60

CSL Queries

// run experiments with JOR, termination epsilon 10°-3, and model constants
// lambda = 5..40, IA = 10..40, IR = 2, IS = 2
// gives reliable results for lambda <= 30

// estimated percentage of requests accepted by queues
R{"accepted"}=2? [S]

// number of requests pending in system
R{"pending"}=2 [S]

// time request spends in system
R{"time"}=2? [S]

// time request spends in system plus file transfer time
R{"time0"}=2 [S]

B PRISM Model of a Proxy Cache Server

B.1 The Model without PCS

// webServer3.sm

// a bounded queue approximation of the web server model without proxy used in
// Bose and Cheng "Performance models of a firm’s proxy cache server"

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria
// http://www.risc.uni-linz.ac.at

// continuous time markov chain (ctmc) model

stochastic

/] ST
// system parameters

// variable parameters

const int lambda; // network arrival rate

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size
const double Bs = 2000; // buffer size
const double Is = 0.004; // initialization time

const double Ys = 0.000016; // static server time

const double Rs = 1310720; // dynamic server rate (1.25 Mbytes/s)
const double Ns = 193000; // server network bandwidth (1544 kbps)
const double Nc = 16000; // client network bandwidth (128 kbps)

61

// web server and proxa cache server blocks
const double g = func(min, 1, Bs/FS); // probability of last server block

// queue capacities

const int IA; // capacity of server arrival queue
const int IR; // capacity of server output queue
f

// system model: server and client bandwidth is ignored
// (file transfer time has to be added to total request time)

// generate requests at rate lambda
module jobs

[accept] true -> lambda : true ;
endmodule

// server arrival queue
module S_I
waiting: [0..IA] init O;
accepted: bool init false;

[accept] waiting = IA -> 1
(accepted’ = false) ;
[accept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server processing queue
module S_R
irwaiting: [0..IR] init O;

// request from arrival queue
[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;

// request is completed with probability p
[done] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)=*qg
(irwaiting’ = irwaiting-1) ;
endmodule

/) T
// system rewards

e

rewards "accepted"
accepted : 1;
endrewards

rewards "pending"
true : waiting + irwaiting;
endrewards

rewards "time"
true : (waiting + irwaiting) /lambda;

endrewards

rewards "timeO"
true : (waiting + irwaiting)/lambda + (FS/Nc)+ (FS/Ns);

62

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-4, and model constants
// lambda = 10..90, IA = 10, IR = 3
// gives reliable results for all lambda

// estimation of acceptance ratio
R{"accepted"}=2? [S]

// number of requests pending in system
R{"pending"}=? [S 1]

// time request spends in queue
R{"time"}=? [S]

// total time including network transfer
R{"time0"}=2 [S]

B.2 The Model with PCS

// webProxy.sm

// a bounded queue approximation of the web server proxy model presented in
// Bose and Cheng "Performance models of a firm’s proxy cache server"

// (c) 2008 Wolfgang Schreiner

// Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria
// http://www.risc.uni-linz.ac.at

/) T
// continuous time markov chain (ctmc) model

stochastic

[
// system parameters

/) T
// variable parameters

const int lambda; // network arrival rate

const double p; // probability that file is on PCS

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs

const double beta = 1; // beta = Rxc/Rs = ¥Yxc/Ys
const double gamma = 1 ; // gamma = Ixc/Is;

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size
const double Bs = 2000; // buffer size
const double Is = 0.004; // initialization time

63

const double Ys = 0.000016; // static server time

const double Rs 1310720; // dynamic server rate (1.25 Mbytes/s)
const double Ns 193000; // server network bandwidth (1544 kbps)
const double Nc = 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alpha*Bs; // proxy buffer size

const double Yxc = betax¥s; // static proxy time

const double Rxc = betaxRs; // dynamic proxy rate

const double Ixc = gammaxIs; // proxy initialization time

// web server and proxa cache server blocks
const double g = func(min, 1, Bs/FS); // probability of last server block
const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue
T

// system model: client/server network is not considered
// (hence network transfer time has to be added to average request time)

// generate requests at rate lambda
module jobs

[accept] true -> lambda : true ;
endmodule

// proxy cache server

module PCS
pxwaiting: [0..IP] init O;
pxaccepted: bool init true;

// request from arrival queue
[accept] pxwaiting = IP -> 1

(pxaccepted’ = false) ;
[accept] pxwaiting < IP -> 1

(pxaccepted’ = true) &

(pxwaiting’ = pxwaiting+l) ;

// with probability (1-p), request is forwarded to server
[sforward] (pxwaiting > 0) & (l1-p > 0) -> (1/Ixc)*(1l-p)
(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client
[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)x*p
(pxwaiting’ = pxwaiting-1) ;
endmodule

// client queue
module S_C
icwaiting: [0..IC] init O;

// accept answer found on proxy cache server
[panswer] icwaiting < IC -> 1

(icwaiting’ = icwaiting+l) ;

// accept answer found on web server
[sanswer] icwaiting < IC -> 1

64

(icwaiting’ = icwaiting+l) ;

// request is completed with probability pxc by transfer of block

[done] (icwaiting > 0) & (pxc > 0) -> 1/ (Yxc+Bxc/Rxc)*pxc
(icwaiting’ = icwaiting-1) ;
endmodule

// server arrival queue
module S_TI
waiting: [0..IA] init 0;

[sforward] waiting < IA -> 1

(waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server output queue
module S_R
irwaiting: [0..IR] init O;

// request from arrival queue
[forward] irwaiting < IR -> 1
(irwaiting’ = irwaiting+l) ;

// forwarding of block to internet queue
[sanswer] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)xQg
(irwaiting’ = irwaiting-1) ;
endmodule

/] m
// system rewards

f
rewards "accepted"

pxaccepted: 1;
endrewards
rewards "pending"

true : waiting + irwaiting + pxwaiting + icwaiting;
endrewards
rewards "time"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda;
endrewards
rewards "timeO"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda

+ (FS/Nc) + (1-p)=*(FS/Ns);
endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-4, and model constants
// lambda = 10..90, IP =5, IC =3, IA =1, IR =1

// gives reliable results up to lambda = 70

65

// estimation of acceptance ratio
R{"accepted"}=? [S]

// number of requests pending in system
R{"pending"}=2 [S]

// time spent in system
R{"time"}=2 [S]

// time spent in system including network transfer time
R{"timeO"}=2? [S]

C PRISM Model of a Proxy Cache Server with Ex-
ternal Users

C.1 The Model with No Acceptance Reward

// webProxyWithExternalUsers.sm
// a bounded queue approximation of the web server proxy model presented in
// Bérczes and Sztrik "Performance Modeling of Proxy Cache Servers"

// (c) 2008 Gé&bor Kusper

// Mathematics and Informatics Institute
// Eszterhdzy Kédroly College

// http://www.ektf.hu/

// continuous time markov chain (ctmc) model
stochastic

)

// system parameters

// variable parameters

const int lambda; // network arrival rate

const int capitallambda; // visit rate for external users
const double p; // probability that file is on PCS

// helper constans

const double lambdal lambda * p;

const double lambda2 = lambda * (l-p);

const double lambda3 = lambda2 + capitallambda;

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs

const double beta = 1; // beta = Rxc/Rs = Yxc/Ys
const double gamma = 1 ; // gamma = Ixc/Is;

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size
const double Bs = 2000; // buffer size

66

const double Is = 0.004; // initialization time
const double Ys 0.000016; // static server time
const double Rs 1310720; // dynamic server rate (1.25 Mbytes/s)
const double Ns 193000; // server network bandwidth (1544 kbps)
const double Nc = 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alphaxBs; // proxy buffer size

const double Yxc = betaxYs; // static proxy time

const double Rxc betaxRs; // dynamic proxy rate

const double Ixc = gammaxIs; // proxy initialization time

// web server and proxa cache server blocks
const double g = func(min, 1, Bs/FS); // probability of last server block
const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue

J

// system model: client/server network is not considered
// (hence network transfer time has to be added to average request time)

e

// generate requests at rate lambda
module jobs

[accept] true -> lambda : true ;
endmodule

// proxy cache server
module PCS
pxwaiting: [0..IP] init O;

// request from arrival queue
[accept] pxwaiting < IP -> 1
(pxwaiting’ = pxwaiting+l) ;

// with probability (l1-p), request is forwarded to server
[sforward] (pxwaiting > 0) & (l-p > 0) -> (1/Ixc)x*(1l-p)

(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client

[panswer] (pxwaiting > 0) & (p > 0) —-> (1/Ixc)=*p
(pxwaiting’ = pxwaiting-1) ;
endmodule

// client queue
module S_C
icwaiting: [0..IC] init O;

// accept answer found on proxy cache server
[panswer] icwaiting < IC -> 1

(icwaiting’ = icwaiting+l) ;
// accept answer found on web server
[sanswer] icwaiting < IC -> 1

(icwaiting’ = icwaiting+l) ;

// request is completed with probability pxc by transfer of block

67

[done] (icwaiting > 0) & (pxc > 0) —> 1/ (Yxc+Bxc/Rxc) *xpxc
(icwaiting’ = icwaiting-1) ;
endmodule

// generate external requests at rate capitallambda
module external

[extaccept] true -> capitallambda : true ;
endmodule

// server arrival queue
module S_T
waiting: [0..IA] init 0;

// requests from the PCS
[sforward] waiting < IA -> 1
(waiting’ = waiting+l) ;

// requests from external users
[extaccept] waiting < IA -> 1
(waiting’ = waiting+l) ;

[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server output queue
module S_R
irwaiting: [0..IR] init O;

// request from arrival queue
[forward] irwaiting < IR -> 1

(irwaiting’ = irwaiting+l) ;

// forwarding of block to internet queue

[sanswer] (irwaiting > 0) &
(g > 0) => 1/(Ys+Bs/Rs) xg * (lambda2/lambda3) :
(irwaiting’ = irwaiting-1) ;

// forwarding of block to external users, it is not synchronized
[extanswer] (irwaiting > 0) &
(g > 0) —> 1/(Ys+Bs/Rs)*g *(1-(lambda2/lambda3)) :
(irwaiting’ = irwaiting-1) ;

endmodule

[
// system rewards
[

rewards "pending"
true : waiting + irwaiting + pxwaiting + icwaiting;
endrewards

rewards "time"
true : (pxwaiting + icwaiting)/lambda +
(1-p) * (waiting + irwaiting)/lambda3;
endrewards

rewards "timeO"
true : (pxwaiting + icwaiting)/lambda +
(1-p) * (waiting + irwaiting)/lambda3 +
(FS/Nc) + (l-p)=*(FS/Ns);

68

endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-4, and model constants
//

// lambda = 10..90, capitallambda = 100, IP = 7, IC = 3, IA = 19, IR = 8
//

// gives reliable results up to lambda = 70 and capitallambda = 100

// number of requests pending in system
R{"pending"}=2 [S]

// time spent in system
R{"time"}=2 [S]

// time spent in system including network transfer time
R{"timeO"}=2 [S]

C.2 The Model with Acceptance Rewards

// webProxyWithExternalUsers2.sm

// a bounded queue approximation of the web server proxy model presented in

// Bérczes and Sztrik "Performance Modeling of Proxy Cache Servers"
//

// Acceptance rewards are added.

/7

// (c) 2008 Gé&bor Kusper

// Mathematics and Informatics Institute
// Eszterhdzy Kdroly College

// http://www.ektf.hu/

// continuous time markov chain (ctmc) model
stochastic

/]

// system parameters

// variable parameters

const int lambda; // network arrival rate

const int capitallambda; // visit rate for external users
const double p; // probability that file is on PCS

// helper constans

const double lambdal lambda * p;

const double lambda?2 lambda * (1-p);

const double lambda3 = lambda2 + capitallambda;

// proxy cache server performance

const double alpha = 1; // alpha = Bxc/Bs
const double beta = 1; // beta = Rxc/Rs = ¥Yxc/Y¥Ys
const double gamma = 1 ; // gamma = Ixc/Is;

69

// parameters from paper (units are bytes and seconds)

const double FS = 5000; // average file size
const double Bs = 2000; // buffer size
const double Is = 0.004; // initialization time

const double Ys = 0.000016; // static server time

const double Rs 1310720; // dynamic server rate (1.25 Mbytes/s)
const double Ns 193000; // server network bandwidth (1544 kbps)
const double Nc 16000; // client network bandwidth (128 kbps)

// proxy characteristics

const double Bxc = alphaxBs; // proxy buffer size

const double Yxc = betaxYs; // static proxy time

const double Rxc = betaxRs; // dynamic proxy rate

const double Ixc = gammaxIs; // proxy initialization time

// web server and proxa cache server blocks
const double g = func(min, 1, Bs/FS); // probability of last server block
const double pxc = func(min, 1, Bxc/FS); // probability of last proxy block

// queue capacities

const int IP; // capacity of proxy queue

const int IC; // capacity of client queue

const int IA; // capacity of server arrival queue

const int IR; // capacity of server output queue
T

// system model: client/server network is not considered
// (hence network transfer time has to be added to average request time)
/) T o

// generate requests at rate lambda
module jobs

[accept] true -> lambda : true ;
endmodule

// proxy cache server

module PCS
pxwaiting: [0..IP] init O;
pxaccepted: bool init true;

// request from arrival queue
[accept] pxwaiting = IP -> 1

(pxaccepted’ = false) ;
[accept] pxwaiting < IP -> 1

(pxaccepted’ = true) &

(pxwaiting’ = pxwaiting+l) ;

// with probability (1-p), request is forwarded to server
[sforward] (pxwaiting > 0) & (l1-p > 0) -> (1/Ixc)*(1l-p)
(pxwaiting’ = pxwaiting-1) ;

// with probability p, block is forwarded to client
[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)x*p
(pxwaiting’ = pxwaiting-1) ;
endmodule

// client queue

module S_C
icwaiting: [0..IC] init O;
icaccepted: bool init true;

70

// accept answer found on proxy cache server
[panswer] icwaiting = IC -> 1

(icaccepted’ = false) ;
[panswer] icwaiting < IC -> 1

(icaccepted’ = true) &

(icwaiting’ = icwaiting+l) ;

// accept answer found on web server

[sanswer] icwaiting = IC -> 1
(icaccepted’ = false) ;

[sanswer] icwaiting < IC -> 1
(icaccepted’ = true) &
(icwaiting’ = icwaiting+l) ;

// request is completed with probability pxc by transfer of block

[done] (icwaiting > 0) & (pxc > 0) —-> 1/ (Yxc+Bxc/Rxc) *xpxc
(icwaiting’ = icwaiting-1) ;
endmodule

// generate external requests at rate capitallambda
module external

[extaccept] true -> capitallambda : true ;
endmodule

// server arrival queue
module S_TI
waiting: [0..IA] init O;
accepted: bool init true;

// requests from the PCS

[sforward] waiting = IA -> 1
(accepted’ = false) ;

[sforward] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+1l) ;

// requests from external users

[extaccept] waiting = IA -> 1
(accepted’ = false) ;

[extaccept] waiting < IA -> 1
(accepted’ = true) &
(waiting’ = waiting+1l) ;

[forward] waiting > 0 -> (1/Is)
(waiting’ = waiting-1) ;
endmodule

// server output queue
module S_R
irwaiting: [0..IR] init O;
iraccepted: bool init true;

// request from arrival queue

[forward] irwaiting = IR -> 1
(iraccepted’ = false) ;

[forward] irwaiting < IR -> 1
(iraccepted’ = true) &
(irwaiting’ = irwaiting+l) ;

// forwarding of block to internet queue

[sanswer] (irwaiting > 0) &
(g > 0) —> 1/(Ys+Bs/Rs)*g * (lambda2/lambda3l) :

71

(irwaiting’ = irwaiting-1) ;

// forwarding of block to external users, it is not synchronized
[extanswer] (irwaiting > 0) &
(g > 0) => 1/(Ys+Bs/Rs)*g *(1-(lambda2/lambda3)) :
(irwaiting’ = irwaiting-1) ;

endmodule

[S
// system rewards

/]

rewards "ipaccepted"
pxaccepted: 1;
endrewards

rewards "icaccepted"
icaccepted: 1;
endrewards

rewards "iaaccepted"
accepted: 1;
endrewards

rewards "iraccepted"
iraccepted: 1;
endrewards

rewards "pending"
true : waiting + irwaiting + pxwaiting + icwaiting;

endrewards

rewards "time"

true : (pxwaiting + icwaiting)/lambda +
(1-p) * (waiting + irwaiting)/lambda3;
endrewards

rewards "timeO"
true : (pxwaiting + icwaiting)/lambda +
(1-p) * (waiting + irwaiting)/lambda3 +
(FS/Nc) + (1-p)=*(FS/Ns);
endrewards

CSL Queries

// run experiments with JOR, termination epsilon 10°-4, and model constants
// lambda = 10..90, capitallambda = 100, IP = 7, IC = 3, IA = 19, IR = 8
// gives reliable results up to lambda = 70 and capitallambda = 100

// number of requests pending in system

R{"pending"}=? [S]

// time spent in system
R{"time"}=2? [S]

// time spent in system including network transfer time
R{"timeO"}=2 [S]

72

R{"ipaccepted"}=7
R{"icaccepted"}=?
R{"iaaccepted"}=?

R{"iraccepted"}=?

73

