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The aim of this chapter is to give a review of recent results on single-server
finite-source retrial queuing systems with collision of the customers. There are
investigations when the server is reliable and there are models when the server is
subject to random breakdowns and repairs depending on whether it is idle or busy.
Tool supported, numerical, simulation and asymptotic methods are considered under
the condition of unlimited growing number of sources. Several cases and examples
are treated and the results of different approaches are compared to each other
showing the advantages and disadvantages of the given method. In general, we could
prove that the steady-state distribution of the number of customers in the service
facility can be approximated by a normal distribution with given mean and variance.
Using asymptotic methods under certain conditions in steady state, the distribution of
the sojourn time in the orbit and in the system can be approximated by a generalized
exponential one. Furthermore, it is proved that the distribution of the number of
retrials until the successful service in the limit is geometrically distributed. By the
help of stochastic simulation, several systems are analyzed showing directions for
further analytic investigations. Tables and figures are presented to illustrate some
special features of these systems.

8.1. Introduction

Finite-source retrial queues are very useful and effective stochastic systems to
model several problems arising in telephone switching systems and
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telecommunication networks including cellular networks, local area computer
networks CSMA (carrier sense multiple access) type, call centers and CSMA-based
wireless mesh networks in frame level. To see their importance, the interested reader
is referred to the following works and references cited in them (e.g. Artalejo and
Corral (2008); Falin and Artalejo (1998); Fiems and Phung-Duc (2017);
Gómez-Corral and Phung-Duc (2016); Kim and Kim (2016)).

Searching the scientific databases, we have noticed that relatively just a small
number of papers have been devoted to queueing systems when the arriving calls
(primary or secondary) cause collisions to the request under service and both go to
the orbit (see, for example, Ali and Wei (2015); Choi et al. (1992); Kim (2010);
Kumar et al. (2010); Lakaour et al. (2018); Peng et al. (2014); Takeda and Yoshihiro
(2017)).

In real CSMA systems, collisions are unavoidable and they decrease the
effectiveness of the system performance and that is why new protocols should be
developed to avoid the collision (see Cao et al. (2018); Jinsoo et al. (2018); Kwak
et al. (2018); Wentink (2017); Yeo et al. (2017)). Real situations where collisions
may occur were modeled byReith (2017) and Takeda and Yoshihiro (2017).

Stochastic modeling of systems with collisions is required by not only from
technical point of view but it is a mathematical challenge since it needs more
sophisticated approaches.

Nazarov and his research group developed a very effective asymptotic method
Nazarov and Moiseeva (2006) by the help of which various systems have been
investigated. Concerning finite-source retrial systems with collision, we should
mention the following papers Kvach and Nazarov (2015b); Kvach (2014); Kvach and
Nazarov (2015a,c); Nazarov et al. (2014).

Sztrik and his research group have been dealing with systems with unreliable
server/s as can be seen in Almási et al. (2005); Sztrik (2005); Sztrik et al. (2006);
Wüchner et al. (2010) and that is why it was understandable that the two research
groups started cooperation in 2017.

Our investigations have been based on analytical, numerical, simulation and
asymptotic approaches as treated in Anisimov and Sztrik (1989); Anisimov and
Artalejo (2001); Anisimov (1999); Artalejo and Corral (2008); Bhat (2015); Bossel
(2013); Falin and Templeton (1997); Harchol-Balter (2013); Kobayashi and Mark
(2009); Kulkarni (2016); Lakatos et al. (2013); Law and Kelton (1991); Nazarov and
Terpugov (2004); Nazarov and Moiseeva (2006); Rubinstein and Kroese (2016);
Stewart (2009); Yao (2016).

The primary aim of this chapter is to give a survey on the results obtained in this
field in the near past by means of different methods. Doing so we have tried to unify
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the notation appeared in different publications and to use the standard notation of
Western-style papers, which differs from the Russian-style papers. We are confident
that our models with collision can be used in real situations to describe, for example,
the operation of random access systems treated in Fiems and Phung-Duc (2017)
without collision, CSMA-based wireless mesh networks in frame and packet level
investigated in Takeda and Yoshihiro (2017) and systems with transmission errors
analyzed in Lakaour et al. (2018). When a collision occurs, signals are
superimposed, packets are distorted and therefore packets need to be retransmitted,
for which they both should be sent to the orbit.

We agree that the light-traffic approach applied in Fiems and Phung-Duc (2017)
to get the distribution of the number of customers in the service facility for systems
without collisions could be integrated to investigate systems with collisions. However,
we must emphasize that beside these we are able to obtain approximation for the
distribution of number of retrials and for the distribution of the response/waiting time
of a customer. These measures were not treated in the above-mentioned paper. In
addition, in our different cases the service time is generally distributed and the server
is not reliable.

From the theoretical point of view, one of the main difficulties comparing to the
systems without collision is that the service process is many times interrupted by the
collisions until it is successfully completed. Unreliable server failures also interrupt
the service, resulting in a quite complicated total service time structure. In addition, AQ1
in case of a collision the number of customers in the orbit increases by 2. Using
algorithmic approach means that the nth iteration depends on not only the previous
iteration but on 2 previous ones. Our most important contribution is that besides
obtaining the asymptotic distribution of the number customers in the orbit, the
asymptotic distribution of the number of retrials and the distribution of the
response/waiting time of a call are determined under certain conditions.

The new numerical insights for models with collisions and unreliable server are
obtained by the help of algorithmic, numeric (MOSEL), simulation approaches. The
combination of these methods allows us to validate the accuracy of the asymptotic
method. We show that under certain parameter setup, the characteristic property of the
finite-source retrial queues having a maximum of the mean waiting time for increasing
arrival rate remains valid even in case of collision. This means that the maximum is
due to the finite source and not to the collision. This surprising feature was noticed
by several authors and it was explained in several ways. However, in systems with
collisions we have to deal with the total service time, which is many times interrupted
by collisions and failures. This notion is due to the collision and the successful service
time is the last phase of this measures of interest. According to our experiments, the
mean of the total and successful service time heavily depends on the distribution of
the service time and the minimum can be obtained only under very special parameter
setup.
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This chapter is an enlarged and modified version of our recent paper Nazarov et
al. (2018).

The rest of the paper is organized as follows. In section 8.2, description of the
model is given, and the corresponding multi-dimensional non-Markov process is
defined. In sections 8.3 and 8.4, systems with a reliable and an unreliable server are
treated, respectively. In the sections, models with exponentially and generally
distributed service times are investigated, and then analyzed by means of tool
supported, algorithmic, simulation and asymptotic methods, respectively. The main
results of the papers are collected and several figures illustrate the most interesting
features of the given system. Finally, this chapter concludes with a conclusion and
some future plans are highlighted.

8.2. Model description and notations

In the following, we introduce the model in the most general form as it was treated
by the help of numerical and asymptotic methods.

Let us consider a retrial queuing system of type M/GI/1//N with collision of the
customers and an unreliable server (Figure 8.1). The number of sources is N and each
of them can generate a primary request during an exponentially distributed time with
rate λ/N . A source cannot generate a new call until the end of the successful service
of this customer.

Figure 8.1. Retrial queuing system of type M/GI/1//N with
collisions of the customers and unreliable server
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If a primary request finds the server idle, he enters into service immediately, in
which the required service time has a probability distribution function B(x). Let us
denote its service rate function by µ(y) = B

′
(y)(1 − B(y))−1 and its

Laplace -Stieltjes transform by B∗(y), respectively. If the server is busy, an arriving
(primary or repeated) customer involves into collision with customer under service
and they both move into the orbit. The interretrial times of customers are supposed to
be exponentially distributed with rate σ/N that is it does not depend on how many
times it has been blocked. We assume that the server is unreliable, that is its lifetime
is supposed to be exponentially distributed with failure rate γ0 if the server is idle and
with rate γ1 if it is busy. When the server breaks down, it is immediately sent for
repair and the repair time is assumed to be exponentially distributed with rate γ2. We
deal with the case when the server is down, all sources continue generation of
customers and send it to the orbit; similarly, customers may retry from the orbit to the
server but all arriving customers immediately go into the orbit. Furthermore, in this
unreliable model, we suppose that the interrupted request goes to the orbit
immediately and its next service is independent of the interrupted one. Of course, in
the case of reliable server γ0 = γ1 = 0. All random variables involved in the model
construction are assumed to be independent of each other.

Let J(t) be the number of customers in the system at time t, that is, the total
number of customers in the orbit and in service. Similarly, let K(t) be the server state
at time t, that is

K(t) =






0, if the server is idle,
1, if the server is busy,
2, if the server is down (under repair).

Thus, we will investigate the process {K(t), J(t)}, which is not a Markov-process
unless the service time is exponentially distributed. To be a Markov, one we will use
the method of supplementary variables, namely, we will consider two variants: the
residual service time method and the elapsed service time method depending on what
is the aim of the investigation.

Let us denote by Y (t) the supplementary random process equals the elapsed
service time of the customer till the moment t and by Z(t) the residual service time,
that is time interval from the moment t until the end of successful service of the
customer, respectively. It is obvious that {K(t), J(t), Y (t)} and {K(t), J(t), Z(t)}
are Markov processes. Let us note that Y (t) and Z(t) are defined only in those
moments when the server is busy, that is, when K(t) = 1.
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Let us define the stationary probabilities as follows:

P0(j) = P{K = 0, J = j},
P1(j, y) = P{K = 1, J = j, Y < y},
P1(j, z) = P{K = 1, J = j, Z < z},

P2(j) = P{K = 2, J = j}.

Of course, in the case of exponentially distributed service time the steady-state
probabilities are denoted as follows:

Pk(j) = P{K = k, J = j}, k = 0, 1, 2, j = 0, ..., N.

The steady-state distribution of the server’s state is denoted by

Rk = P (K = k), k = 0, 1, 2

and the distribution of number of customers in the system is designated by

P (j) = P (J = j), j = 0, ..., N.

It is clear that in the case of reliable server, all the probabilities where K = 2 are 0.

The main aim of the investigations is to get these distributions and other
performance measures of the systems, such as the distribution of the sojourn time in
the system, distribution of the total service time and distribution of the number of
retrials. These are very complicated problems and to the best knowledge of the
authors there are no exact analytical formulas to the solutions. That is the reason we
have tried to obtain the characteristics of different systems by the help of tool
supported, algorithmic, stochastic simulation and asymptotic methods.

Since in the following, we will use the gamma distribution to show special features
of some systems we introduce it to be sure of the form because it is defined in several
ways.

A random variable X is said to have a gamma distribution with parameters (α,β)
if its density function is given by

f(x) =






0 , if x < 0

β(βx)α−1e−βx

Γ(α) , if x ≥ 0,
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where α > 0, β > 0, and

Γ(α) =

∞∫

0

tα−1e−tdt

is the so-called complete gamma function.

Its distribution function cannot be obtained in an explicit form except α = n. In
this case, it reduces to the Erlang distribution.

It should be noted that depending on the parameters it can take small values with
high probability, that is when the shape parameter is low, in this case the squared
coefficient of variation C2

X is high. Its density function has the form

Figure 8.2. Density function of the gamma distribution. For a color version of this
figure, see www.iste.co.uk/anisimov/queueing1.zip

It can be shown that

E(X) =
α

β
, V ar(X) =

α

β2
, C2

X =
1

α
.
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α and β are called the shape parameter and scale parameter, respectively, and they
can be expressed by the mean and variance in the following way if we would like to
estimate the parameters from the sample

α =
(E(X))2

V ar(X)
, β =

E(X)

V ar(X)
.

It can be shown that its Laplace transform has the form

LX(s) =

(
β

β + s

)α

=

(
1 +

s

β

)−α

.

8.3. Systems with a reliable server

8.3.1. M/M/1 systems

8.3.1.1. Algorithmic approach

In previous papers Kvach (2014); Nazarov et al. (2014), the steady-state
Kolmogorov equations were derived and the distribution of the system’s state was
obtained by an algorithmic approach. Then the distribution of the number of
customers in the system were calculated and used to validate the asymptotic results.

8.3.1.2. Asymptotic approach

The main contribution of paper Nazarov et al. (2014) that the steady-state
characteristic function of prelimit distribution of the number of customers in the
system can be approximated by the following third-order asymptotic characteristic
function, that is

E exp {iuJ} ≈ exp

{
iuκ1N +

(iu)2

2
κ2N +

(iu)3

3!
κ3N

}

where the distribution of the server’s state is explicitly given in the following form:

R1 =
σ(2λ+ µ)−

√
σ2(2λ− µ)2 + 8σµλ2

4µ(σ − λ)
,

R0 = 1−
σ(2λ+ µ)−

√
σ2(2λ− µ)2 + 8σµλ2

4µ(σ − λ)
,
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and the cumulants (semi-invariants) Nazarov and Sudyko (2010) are

κ1 =
2µR2

1

σ(1− 2R1)
, κ2 = µR1

1 + (R1 −R0)R0

λ− (λ− σ)(R1 −R0)2
.

a = R0R1(R1 −R0),

κ3 = 2 ·






[
(λ− σ)(R0 −R1)2κ2 + µa

]
·
[
1
2 − ((R0 −R1)(σ − λ) + λ) κ2

µR1

]

λ+ (σ − λ)(R0 −R1)2
+

+

λκ2 ·
[

a
R0

+ 1
2

]
+ µ

[
1
R0

− a
2

]

λ+ (σ − λ)(R0 −R1)2)





.

Actually, κ1 is the positive solution of the equation

λ(1− κ1) = µR1(κ1),

and numerically it is easy to verify that

R0(κ1) =
δ(κ1) + µ

2δ(κ1) + µ
,

R1(κ1) =
δ(κ1)

2δ(κ1) + µ
,

where δ(κ1) = λ(1− κ1) + σκ1.

It is easy to see that the second-order approximation results a normal distribution.
In this case, let us denote by G(x) the distribution function of the Gaussian distribution
with mean Nκ1 and variance Nκ2.

Furthermore, let us denote by Pas(j) the asymptotic discrete distribution obtained
by the help of Gaussian approximation, that is

Pas(j) = {G(j + 0.5)−G(j − 0.5)} [G(N + 0.5)−G(−0.5)]−1,

j = 0, ..., N [8.1]

which we will call Gaussian approximation of the prelimit discrete distribution P (j).
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In the following, we show how we can get the distribution by the help of the
inverse characteristic function (see Nazarov and Sudyko (2010)).

Let Dm(j) be a probability distribution with j = 0, 1, 2, ..., N and hm(u) its
characteristic function, that is

hm(u) =
N∑

j=0

eiujDm(j)

where i =
√
−1 is the imaginary unit and hm(u) is the mth-order asymptotic

characteristic function. Then using the inverse transformation Dm(j) is given by the
formula

Dm(j) =
1

2π

∫ π

−π
e−iujhm(u) du.

It is obvious that

N∑

j=0

Dm(j) = hm(0) = 1.

If the values of Dm(j) are real and non-negative for all j = 0, ..., N , then

Dm(j) = Pm(j),

where Pm(j) is called the mth-order approximation of the prelimit distribution P (j).

Since Dm(j) is calculated by numeric integration, among the numbers Dm(j)
there can appear complex numbers with small enough imaginary parts or real negative
numbers with small enough absolute values.

In this case, we define real non-negative numbers gm(j) by the formula

gm(j) =
1

4

{
Dm(j) +Dm(j) +

∣∣∣Dm(j) +Dm(j)
∣∣∣
}
,

where the over bar denotes complex conjugation, and then let us define the
approximation of the prelimit distribution by the equality

Pm(j) = gm(j)/
N∑

l=0

gm(l).
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To compare the probability distributions P (j) and Pm(j), we will use the
Kolmogorov distance defined as

∆m = max
0≤n≤N

∣∣∣∣∣∣

n∑

j=0

P (j)−
n∑

j=0

Pm(j)

∣∣∣∣∣∣
.

By this distance, we can estimate the error of the mth-order approximation of the
prelimit distribution.

In the previous paper Nazarov et al. (2014), second- and third-order
approximations of the prelimit distribution were compared to the exact distribution
obtained by the algorithmic method. In different parameter setup and for different N ,
the applicability of the asymptotic method was validated and some conclusions were
drawn.

A more complicated problem, namely the distribution of the sojourn time in the
service facility was investigated in Kvach and Nazarov (2015b) by the help of
asymptotic methods as N tends to infinity. It was proved that the characteristic
function of the sojourn time T of a customer spends in the service facility can be
approximated by

E exp {iuT} ≈ q + (1− q)
σq/N

σq/N − iu
,

where q = µR0

δ+µ .

Then it is easy to show that the approximation of the prelimit distribution function
of the sojourn time can be written as

A(x) ≈ 1− (1− q)e−
σq
N x

which means that the asymptotic sojourn time can be zero with probability q and it is
exponentially distributed with probability 1− q. As a result, the mean sojourn time

E(T ) ≈ (1− q)N/(σq).

From probabilistic reasoning

λ(1− κ1) = µR1,
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which means that the mean arrival rate is equal to the mean departure rate and from
the Little’s formula

µR1(1− q) = σqκ1

should be valid. These formulas can be used for validation of the obtained numerical
and asymptotic results. The asymptotic sample examples concerning the sojourn time
distribution have not been validated by simulation in the paper.

8.3.2. M/GI/1 ystem

This section deals with the results when the required service times are generally
distributed but in the examples the gamma distribution is used due to its useful
properties. Namely, it is easy to see that its squared coefficient of variation can be
less, equal or greater than 1 depending on the values of the shape and scale
parameters.

8.3.2.1. Algorithmic approach

The previous study Kvach and Nazarov (2015a) deals with the algorithmic
approach how to get the steady-state distribution of the system. The method of
supplementary variable technique with residual service time were applied and several
numerical examples were treated with gamma distributed service time. The results
helped the validation of asymptotic results for the same model.

8.3.2.2. Stochastic simulation

Papers of Nazarov et al. (2017b,c) are devoted to the asymptotic analysis of the
mean total service time, distribution of the sojourn time in the system and the
distribution of number of retrials. It must be noted that the results have not been
validated by simulation. Meanwhile, simulations have been carried out the
estimations for the mean and variance of the sojourn time have been obtained, and
the distribution of the number of retrials also has been determined. The simulation
analysis will be published in the near future.

8.3.2.3. Asymptotic approach

In this section, the asymptotic results published in Nazarov et al. (2017b,c) are
summarized. Before doing that we need some notations, namely

B∗(α) =

∫ ∞

0
e−αxdB(x), δ(κ1) = λ+ (σ − λ)κ1.
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Then κ1 can be obtained from

κ1 = 1− δ(κ1)

λ
· B∗(δ(κ1))

2−B∗(δ(κ1))
, [8.2]

and the distribution of the server’s state can be determined by

R0 =
1

2−B∗(δ)
, R1 =

1−B∗(δ)

2−B∗(δ)
.

In the case of the residual service time until the successful service completion
approach for the busy server’s sate, we have

R1(z) = eδz
∫ z

0
e−δx · {λ(1− κ1)− δR0B(x)} dx,

and in the case of the elapsed service time approach we get

∞∫

0

R1(y)µ(y)dy = λ(1− κ).

Introducing the notations

A1 = λ(1− κ1), R∗
1(α) = −δR0 [B

∗(α)] ,

we obtain

κ2 =
A1

(
R0 ·B∗(δ) [δ +A1]− (δ +A1R0)

)

A1(σ − λ)
(
R∗

1(δ)−R1 −R0(B∗(δ)− 1)
)
+ δ

(
(σ − λ)

(
R∗

1(δ)−R0B∗(δ)
)
− λ

) .

Consequently, the steady-state prelimit distribution of the number of customers in
the system can be approximated by a normal distribution with mean Nκ1 and variance
Nκ2.

It is interesting that equation [8.2] can have one, two or three roots 0 < κ1 < 1.
For example, for the gamma distribution function B(x) with a shape parameter α and
scale parameter β with values α = β = 2, λ = 0.29, σ = 20, equation [8.2] has three
roots, namely κ(1)

1 = 0.031, κ(2)
1 = 0.188 and κ(3)

1 = 0.549.
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Figure 8.3. Bimodal probability distribution of the number customer in the system

Let us consider such values of the service parameters α, β and the system λ, σ at
which equation [8.2] has three roots, then the probability distribution
P (i) = P {i(t) = i} can be of a bimodal type. In particular, for α = β = 2,
λ = 0.29, σ = 19.7 by simulation and numerical methods at N = 200 for P (i) we
obtain the following graph shown in Figure 8.3.

The reason of this feature is explained in Nazarov et al. (2017c).

As a rule, equation [8.2] has three roots in exceptional cases at special values of
parameters and such situation arises extremely rare. Therefore, in the following let us
consider some properties of the system when the main equation [8.2] has a single root
0 < κ1 < 1.

In the paper Nazarov et al. (2017b) for the mean sojourn time of the customer in
service, we get the following expression:

lim
N→∞

E(TS) =
1−B∗(δ)

δB∗(δ)
.

Next let us consider the influence of the system parameters on the mean sojourn
time E(TS) of the customer in the server. We will choose σ = 20 and the values of
parameters λ and α = β are specified in Table 8.1

As we can see, at α < 1 the values of total mean sojourn time E(TS) of the
customer under service takes values less than unity. For α < 1, there is a high
probability of emergence of small values of service time and this fact undoubtedly
influences to the total mean sojourn time E(TS) of the customer at the server and it
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takes rather small values. Moreover, let us remark, that with increasing values of
parameter λ the values of E(TS) decrease.

α = β
0.1 0.3 0.5 0.8 1 2 3 5

0.5 0.324 0.546 0.682 0.857 1 5.038 20.816 153.239
1 0.204 0.367 0.488 0.727 1 5.576 21.695 154.766
5 0.067 0.165 0.301 0.640 1 5.937 22.360 155.975
10 0.046 0.140 0.280 0.632 1 5.979 22.441 156.125

λ

15 0.039 0.131 0.273 0.629 1 5.993 22.468 156.175

Table 8.1. Mean sojourn time E(TS) of the customer under service
at various values of λ and α = β

In the case of α > 1, the values of E(TS) become greater than unity. Table 8.1
illustrates that with increase of service parameter α the values of total mean sojourn
time E(TS) of the customer under service considerably increases and reaches very
large values. Let us note that in this situation, parameter λ practically does not
influence on E(TS) and with increasing parameter of service α this influence
becomes less and less.

Table 8.1 also shows that in case of exponential service time, i.e. α = β = 1, the
values of total mean sojourn time E(TS) of the customer at the server is equal to unit.

For the distribution of the number of retrials/transitions of the tagged customer
into the orbit, we have the following results.

Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1− (1− q)z
,

where value of parameter q has a form

q = R0B
∗(δ).

From the proved theorem, it is obviously follows that the probability distribution
P {ν = n} , n = 0,∞ of the number of transitions of the tagged customer into the
orbit is geometric and

P {ν = n} = q(1− q)n, n = 0,∞.
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Consequently, by using the law of total probability for the characteristic function
of the sojourn/waiting time W of the tagged customer in the orbit we get

EeiuW ≈ q + (1− q)
σq

σq − iuN
.

In the case of N → ∞, the limiting probability distributions of the sojourn time
of the customer in the system T and the sojourn time of the customer in the orbit W
coincide, namely

lim
N→∞

E exp

{
iu

T

N

}
= lim

N→∞
E exp

{
iu

W

N

}
= q + (1− q)

σq

σq − iu
.

Let us consider the influence of the system parameters on the values of mean
number of retrials ν. We will choose the same parameters of system which have been
considered in the previous examples, namely σ = 20 and the values of parameters λ
and α = β are specified in Table 8.2.

α = β
0.1 0.3 0.5 0.8 1 2 3 5

0.5 0.470 1.131 1.86 3.65 6.32 162.7 793 6091
1 0.656 2.002 4.19 11.57 21.83 204.1 848 6172
5 1.114 4.192 9.31 22.73 37.07 234.4 891 6236
10 1.278 4.755 10.28 24.30 39.02 238.1 896 6244

λ

15 1.355 4.969 10.63 24.83 39.67 239.3 898 6247

Table 8.2. Mean number of retrials for various values of λ and α = β

From Table 8.2, it is shown that the mean number of retrials obviously depends on
service parameter α that is the expected and logical result. It should be noted that for
small values of parameter α, influence of parameter λ on mean number of retrials is
significant and obvious. But with the increase in parameter α, this influence decreases
and already for great values of α practically disappears.

The following conclusions can be drawn: the mean number of retrials and mean
sojourn time of the customer under service is a consequence of the collision of
customers and the admissibility of repeated attempts of service the same customer.
Duration of the customer service for repeated attempts has the same probability
distribution B(x), but its repeated realization, naturally, accepts various values. If for
the distribution B(x), there is a high probability of emergence of small values of
service time as in the gamma distribution with the shape parameter α < 1, then a
small number of retries is sufficient to realize a small value of the service time which
will be successful. If the small values of the service time are unlikely for the
probability distribution B(x), as in the gamma distribution with the shape parameter
α > 1, then the number of unsuccessful attempts of service becomes big, as we can
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see in Table 8.2, the server works without results, the mean sojourn time of the
customer under service increases (Table 8.1).

8.4. Systems with an unreliable server

In many practical situations, the server is not reliable and after a random time
it can fail and needs repair which also takes a random duration. To deal with these
service interruptions, several papers have been published (see, for example, Almási
et al. (2005); Dragieva (2014); Gharbi and Dutheillet (2011); Gharbi and Ioualalen
(2006); Gharbi et al. (2014); Krishnamoorthy et al. (2014); Roszik (2004); Sztrik
et al. (2006); Wang et al. (2010, 2011); Zhang and Wang (2013)). In the following
parts, we summarize our results obtained by different methods.

8.4.1. M/M/1 system

8.4.1.1. Tool-supported approach by MOSEL
Because of the fact that in many practical situations the state space of the

describing Markov chain is very large, it is rather difficult to calculate the system
measures in the traditional way of writing down and solving the underlying
steady-state equations. To simplify this procedure, several software packages have
been developed and effectively used for performance evaluation of complex systems
(see, for example, Gharbi and Dutheillet (2011); Gharbi and Ioualalen (2006); Gharbi
et al (2015); Gharbi et al. (2014); Ikhlef et al. (2016)). In our investigations, a similar
software tool called MOSEL (Modeling, Specification and Evaluation Language) has
been used to formulate the model and to obtain the performance measures. A
previous study Bérczes et al. (2017) deals with the model formulation, derivation of
several performance measures and generation of illustrative examples showing an
interesting phenomenon of finite-source retrial queues, that is under specific
parameter setup the mean waiting/sojourn time has a maximum as the arrival
intensity is increasing. We showed that it still remains in the case of collisions as the
following example shows

Case N λ/N γ0 γ1 γ2 σ/N µ
Figure 8.4 case 1 100 0.01 0.01 0.01 1 0.1 1
Figure 8.4 case 2 100 0.01 0.1 0.1 1 0.1 1
Figure 8.4 case 3 100 0.01 1 1 1 0.1 1

Figure 8.5 100 0.03 - 8.1 0.01 0.01 1 0.1 1
Figure 8.6 100 0.03 - 8.1 0.1 0.1 1 0.1 1

Table 8.3. Numerical values of model parameters

Figure 8.4 shows the steady-state distribution of the three investigated cases. In
this figure, we can see also the effect of the breakdown of the server. We can see that
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the mean number of customers increases as the breakdown intensity are getting larger.
From the shape of the curves, it is clearly visible that the steady-state distribution of
the cases are normally distributed.

Figure 8.4. Steady-state distributions. For a color version of this figure, see
www.iste.co.uk/anisimov/queueing1.zip

Figures 8.5 and 8.6 show the mean response time as a function of the customer
generation rate. As we can see, the mean response time will be greater as we increase
the generation rate, but after λ/N is greater than 1.5 the mean response time starts to
decrease.AQ2

8.4.1.2. Algorithmic approach

The advantage of algorithmic approach to the general tool supported method is
that in this case we do not have a state space explosion and N can be much higher
than in case of calculations carried by MOSEL as we will see soon. The publication
of the results has been submitted (see Kuki et al. (2019)). The calculation has been
performed by a spreadsheet program, MS Excel and N can be arbitrary large. When
the calculations are performed by MOSEL-2 tool (see Bérczes et al. (2017)), we run
into a strict limitations, namely the state space grows extremely fast, consequently the
number of sources cannot exceed 200. In Excel, we can go far more above 200. Other
advantages for using this spreadsheet are that the effect of parameter modifications
can be seen immediately and the set of the steady-state probabilities, both the two-
and one-dimensional ones are present in separate columns and can be used directly
for further investigations.
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Figure 8.5. vs λ/N , γ0 = γ1 = 0.01

Figure 8.6. vs λ/N , γ0 = γ1 = 0.1

For illustration, we consider three systems with the following input parameters

N = 100, λ = 1, µ = 1, σ = 5, γ0 = 0.1, γ1 = 0.1, γ2 = 1.

In Figure 8.7, the steady-state probabilities of three models are displayed: the basic
reliable system with no conflict, reliable system with conflict, and unreliable system
with conflict. In the no conflict case, the expectation of states are lower than for the
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other cases. The probabilities of the states have the greatest mean in the unreliable
system as it was expected.

Figure 8.7. Reliable no conflict, reliable with conflict, and unreliable with conflict. For a
color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

8.4.1.3. Stochastic simulation

To validate the applicability of the asymptotic approach, we need either numerical
or simulation results. The correct operation of the simulation software was tested by
the numerical sample examples. The investigations carried out by the simulation and
asymptotic methods have been submitted for publication (see Nazarov et al. (2018,?)).

8.4.1.4. Asymptotic approach

First, we deal with the distribution of the number customers in the system as it
has been published in (Nazarov et al., 2018). The first-order asymptotic results are the
following

lim
N→∞

Eexp

{
iw

J

N

}
= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1− κ1)λ− µR1(κ1) = 0,
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where the stationary distributions of probabilities Rk(κ1) of the server state
k = 0, 1, 2 are obtained as follows

R0(κ1) =

{
γ0 + γ2

γ2
+

γ1 + γ2
γ2

· a (κ1)

a (κ1) + γ1 + µ

}−1

,

R1(κ1) =
a (κ1)

a (κ1) + γ1 + µ
·R0(κ1),

R2(κ1) =
1

γ2
[γ0R0(κ1) + γ1R1(κ1)] ,

here a (κ1) is

a (κ1) = (1− κ1)λ+ σκ1.

The second order asymptotic results are

lim
N→∞

Eexp

{
iw

J − κ1N√
N

}
= exp

{
(iw)2

2
κ2

}
,

where κ2 is

κ2 =
γ2µ(R1 − b1) + (1− κ1)λ {(γ1 + γ2) b1 + (1− κ1)λR2}

(λ+ µb2) γ2 − (1− κ1)λ (γ1 + γ2) b2
,

and

b1 =
(1− κ1)λ

a+ γ1 + µ
R0, b2 =

(σ − λ)(R0 −R1)

a+ γ1 + µ
.

Consequently, the prelimit distribution of the number of customers in the system
can be approximated by a normal distribution with mean Nκ1 and variance Nκ2.

Let us determine the accuracy and area of applicability of this approximation.

We have the following input parameters:

µ = 1, σ = 5, γ0 = 0.1, γ1 = 0.2, γ2 = 1

and we will provide values of Kolmogorov distance ∆ in Table 8.4.
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N = 5 N = 10 N = 20 N = 30 N = 50
λ = 0.5 0.095 0.059 0.032 0.023 0.017
λ = 1.0 0.037 0.023 0.017 0.014 0.011
λ = 2.0 0.078 0.046 0.022 0.014 0.013

Table 8.4. Kolmogorov distance between prelimit distribution P (i) and the asymptotic
distribution Pas(i) for various values of the parameters N and λ

Table 8.5 demonstrates the Kolmogorov distance for the following parameters:

λ = 1, µ = 1, γ0 = 0.1, γ1 = 0.2, γ2 = 1

and for various values of the parameter N and σ.

N = 5 N = 10 N = 20 N = 30 N = 50
σ = 0.2 0.066 0.035 0.018 0.013 0.010
σ = 1.0 0.033 0.018 0.014 0.014 0.008
σ = 5.0 0.037 0.023 0.017 0.014 0.011

Table 8.5. Kolmogorov distance between prelimit distribution P (i) and the asymptotic
distribution Pas(i) for various values of the parameters N and σ

Assuming an acceptable error ∆ ≤ 0.05 of the given values in Tables 8.4–8.5,
we can conclude that approximation has large error at N ≤ 10, at 10 < N < 20
acceptability of approximation doubtful, and at N ≥ 20 approximation has quite
acceptable accuracy.

Let us turn our attention to the analysis of the waiting/sojourn time distribution.
Using the Little’s formula, we have

(1− κ1)λ E

(
1

N
T

)
= κ1 ,

therefore

E

(
1

N
T

)
=

κ1

(1− κ1)λ
, [8.3]

where κ1 is asymptotic average value of number of customers in the system, and
(1− κ1)λ is the mean arrival intensity of the incoming flow.
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However, we should underline that the above equality [8.3] defines only mean
sojourn time of the customer in the system. We would like to carry a more detailed
investigation for T of the tagged customer.

One of the main contributions of (Nazarov et al., 2018) that for the limit of the
characteristic function of the normalized sojourn time we have

lim
N→∞

E exp

{
iw

T

N

}
= q + (1− q)

σq

σq − iw
,

where q is

q =
(1− κ1)λ

(1− κ1)λ+ σκ1
.

Consequently, the characteristic function of the sojourn time of the customer in the
system in the prelimit situation of finite N can be approximated by

E eiuT ≈ q + (1− q)
σq

σq − iuN
. [8.4]

In the following, let us find the average value of the normalized sojourn time of
the customer in the system which is

E

(
1

N
T

)
= (1− q)

1

σq
=

1

σ
· 1− q

q
=

1

σ

σκ1

(1− κ1)λ
=

κ1

(1− κ1)λ
,

that coincides with the result obtained by Little’s formula before.

For the distribution of the number of transitions/retrials of the tagged customer
into the orbit, we got the following results.

Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1− (1− q)z
,

resulting that the probability distribution P {ν = n} , n = 0,∞ of the number of
transitions of the tagged customer into the orbit is geometric and has the form

P {ν = n} = q(1− q)n, n = 0,∞.
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Consequently, the prelimit characteristic function of the sojourn/waiting time W
of the tagged customer in an orbit can be approximated as

EeiuW ≈ q + (1− q)
σq

σq − iuN
.

In the case of N → ∞, the limiting probability distributions of the sojourn time
of the customer in the system T and the sojourn time of the customer in an orbit W
coincide, namely

lim
N→∞

E exp

{
iu

T

N

}
= lim

N→∞
E exp

{
iu

W

N

}
= q + (1− q)

σq

σq − iu
.

Previously, we have obtained that the probability distribution of the number of
transitions of the tagged customer into the orbit is geometric with parameter q. Let us
find out how close the limiting results to the simulation results and at what values N
this approximation is admissible.

To do so, let us denote by Pas(ν = n) the asymptotic geometric distribution of
probabilities with parameter q and by Ps(ν = n) the probability distribution of the
number of transitions of the tagged customer into the orbit obtained with the help of
simulation program. Furthermore, let us determine the accuracy (error) of
approximation of distribution by mean of Kolmogorov distance ∆, which for
probability distributions Pas(ν = n) and Ps(ν = n) is defined as

∆ = max
0≤i<∞

∣∣∣∣∣

i∑

n=0

(Pas(ν = n)− Ps(ν = n))

∣∣∣∣∣ .

Realizing the simulation program for

λ = 1, µ = 1, σ = 4, γ2 = 1

and applying the approximation we will provide the Kolmogorov distance ∆ for
various values N and γ = γ0 = γ1 in Table 8.6.

We can see, what is expected that by increasing N the Kolmogorov distance should
decrease, but with this parameter setup there is no essential reduction if N > 50.

Let us see the mean number of retrials under the same condition as before.

Again we can observe what was expected, as N increases the mean number of
retrials increases since there are more and more customers in the system resulting more
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and more collisions. At the same time, it can also be seen how the mean number of
retrials increases as the failure rate of the server increases. It should be underlined that
each time the limiting values give very good approximations showing the effectiveness
of the asymptotic method.

N = 20 N = 30 N = 50 N = 100 N = 200
γ = 0.05 0.026 0.016 0.009 0.005 0.003
γ = 0.1 0.024 0.015 0.009 0.004 0.002
γ = 0.5 0.017 0.011 0.006 0.004 0.001

Table 8.6. Kolmogorov distance between distribution Ps(i) and approximation of the
geometric distribution Pas(i) for various values of the parameters N and γ

N = 20 N = 30 N = 50 N = 100 N = 200 Limiting
γ = 0.05 5.512 5.727 5.842 5.900 5.930 5.977
γ = 0.1 6.090 6.233 6.334 6.415 6.442 6.494
γ = 0.5 10.336 10.501 10.640 10.715 10.777 10.821

Table 8.7. Mean number of retrials in prelimiting and limiting situations for various
values of the parameters N and γ

8.4.2. M/GI/1 system

8.4.2.1. Stochastic simulation

In Tóth et al. (2017), the required service time is supposed to be gamma distributed
and the input parameters of the system are collected in Table 8.8.

Case N λ/N γ0 γ1 γ2 σ/N α β
1 100 0.01 0.1 0.1 1 0.01 0.5 0.5
2 100 0.01 0.1 0.1 1 0.01 1 1
3 100 0.01 0.1 0.1 1 0.01 2 2

Table 8.8. Numerical values of model parameters

Figure 8.8 shows the steady-state distribution of the three investigated cases. It is
observed the mean number of customers increases as α and β are getting larger. Case
2 is a special case because when α = 1, it represents the exponential distribution.
From the shape of the curves, it is clearly visible that the steady-state distribution of
the cases are normally distributed. The next table presents the considered performance
measures in relation with the different cases (see Table 8.9).



238 Queueing Theory 1

Figure 8.8. Comparison of steady-state distributions. For a color version of this figure,
see www.iste.co.uk/anisimov/queueing1.zip

In Table 8.9, the notations mean the followings: E(J) and V ar(J) are mean
number and variance of customers in the system, E(T ) and V ar(T ) are mean and
variance of response time, E(W ) and V ar(W ) are mean and variance of waiting
time, E(S) and V ar(S) are mean and variance of successful service time, andE(IS)
is mean interrupted service time.

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S) E(IS)
1 63.6842 27.9734 175.3073 65,657.3454 174.5884 65,434.6696 0.3147 0.1979 0.4041
2 70.5912 24.3012 239.9734 105,273.4267 238.9734 104,918.6389 0.4784 0.2289 0.5217
3 75.1825 21.2439 302.8106 151,781.1411 301.5377 151,277.6006 0.6472 0.2095 0.6257

Table 8.9. Simulation results

Figure 8.9 represents the confirmation of mean waiting time. The same parameters
are (see Table 8.9) used as in case shown in Figure 8.8 but here the running parameter
is λ/N . As it is expected with the increment of λ/N , mean waiting time increases as
well but an interesting phenomenon is noticeable namely after λ/N is greater than 0.1
mean waiting time starts to decrease.
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Figure 8.9. Mean waiting time versus intensity of incoming customers. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

8.4.2.2. Asymptotic approach

These results have been published in Nazarov et al. (2017a) using supplementary
variable technique. The limit of the characteristic function of the scaled number of
customers in the systems can be written in the following form

lim
N→∞

E exp

{
iw

J

N

}
= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1− κ1)λ− δ(κ1) [R0(κ1)−R1(κ1)] + γ1R1(κ1) = 0,

here δ (κ1) is

δ (κ1) = (1− κ1)λ+ σκ1,
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and the stationary distributions of probabilities Rk(κ1) of the server’s state k = 0, 1, 2
are determined as follows:

R0(κ1) =

{
γ0 + γ2

γ2
+

γ1 + γ2
γ2

· δ (κ1)

δ (κ1) + γ1
[1−B∗(δ(κ1) + γ1)]

}−1

,

R1(κ1) = R0(κ1)
δ (κ1)

δ (κ1) + γ1
· [1−B∗(δ(κ1) + γ1)] ,

R2(κ1) =
1

γ2
[γ0R0(κ1) + γ1R1(κ1)] .

8.4.3. Stochastic simulation of special systems

In Tóth et al. (2017), systems with not only gamma distributed service times but
also gamma distributed interarrival and gamma distributed retrial times have been
investigated.

8.4.3.1. Gamma distributed interarrival times

Table 8.10 presents the input parameters of this case.

Case N α β γ0 γ1 γ2 σ/N α1 β1/N
1 100 1 1 0.1 0.1 1 0.01 0.5 0.01
2 100 1 1 0.1 0.1 1 0.01 1 0.01
3 100 1 1 0.1 0.1 1 0.01 2 0.01

Table 8.10. Numerical values of parameters of gamma distributed interarrival times

Figure 8.10 displays the steady-state distribution of this case. Now the service time
is exponentially distributed (α = 1) and the interarrival time is gamma distributed. It is
interesting to notice that in these cases, the steady-state distributions are still normally
distributed and when α1 is greater than 1 the mean number of requests in the system is
significantly lower than in the other cases. In Table 8.11, the estimations for the main
performance measures can be found.

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S) E(IS)
1 84.3609 14.1827 270.0351 128,831.5059 269.0354 128,420.4087 0.4502 0.2039 0.5495
2 70.5912 24.3012 239.9734 105,273.4267 238.9734 104,918.6389 0.4784 0.2289 0.5217
3 47.7859 34.2376 183.0164 69,830.9728 182.0164 69,573.992 0.5462 0.2982 0.4538

Table 8.11. Simulation results



Recent Results in Finite-source Retrial Queues with Collisions 241

Figure 8.10. Steady-state distributions of gamma distributed interarrival times. For a
color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.11. Mean waiting time versus shape parameter. For a color version of this
figure, see www.iste.co.uk/anisimov/queueing1.zip
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In Figures 8.11 and 8.13, the service time distribution of the cases has the
following parameters: α = β = 0.5, 1, 2, respectively, and all the other
parameters are the same as in Table 8.11. The running parameter is α1, so in this way
the impact of different distributions on the various performance measures can be
discovered. First the mean waiting time (Figure 8.11), after an initial jump mean
waiting time, starts to monotonically decrease resulting that as α1 is getting bigger
the less time the customers spend in the system. At the end, the values of separate
cases are almost equal. As a result (Figure 8.11), it is not surprising how the mean
interrupted service time change as a function of α1. It is interesting that around
α1 ≈ 4.5 we observe that the curves intersect each other.

Figure 8.12. Mean interrupted service time versus shape parameter. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

8.4.4. Gamma distributed retrial times

In this case not just the interarrival but also the retrial time are gamma distributed
with the same parameters. Table 8.12 shows the input parameters of this system.

Case N α β γ0 γ1 γ2 α1 β1/N
1 100 1 1 0.1 0.1 1 0.5 0.01
2 100 1 1 0.1 0.1 1 1 0.01
3 100 1 1 0.1 0.1 1 2 0.01

Table 8.12. Numerical values of parameters of gamma distributed retrial times
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Table 8.13 contains the main performance measures in connection with the cases.

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S) E(IS)
1 81.5384 16.9599 220.8314 82,735.764 219.8314 82,377.8317 0.3398 0.1183 0.6602
2 70.5912 24.3012 239.9734 105,273.4267 238.9734 104,918.6389 0.4784 0.2289 0.5217
3 56.6635 30.1636 261.483 146,264.4778 260.4827 145,919.0907 0.626 0.3915 0.3743

Table 8.13. Simulation results

Figure 8.13. Steady-state distributions of gamma distributed retrial times. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Let us notice that under these parameter setup this modification has no significant
effect on the steady-state distribution (see Figure 8.13). Of course, the mean customers
in the system is quite disparate but the distribution remains normal. Also when α1 is
less than 1, it results higher mean number of customers in the system compared to
when it is more than one.

8.4.5. The effect of breakdowns disciplines

In Tóth et al. (2019), the M/G/1//N and G/M/1//N systems were investigated
with exponentially distributed operating and repair times. In case of a server failure,
two operation modes are considered:

– the interrupted request gets into the orbit instantaneously (mode 1);

– the service of the interrupted request is suspended and it continues after repairing
the server (mode 2).
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8.4.5.1. Scenario A, gamma distributed service time
Table 8.14 shows the input parameters of scenario A.

Case N λ/N γ0 γ1 γ2 σ/N α β
1 100 0.01 0.1 0.1 1 0.01 0.5 0.5
2 100 0.01 0.1 0.1 1 0.01 1 1
3 100 0.01 0.1 0.1 1 0.01 2 2

Table 8.14. Numerical values of model parameters

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 80 90 100

P
(i

)

i

Case 1

Case 2

Case 3

Figure 8.14. Comparison of steady-state distributions for mode 2. For a color version
of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.14 shows the steady-state distribution of the investigated cases for
operation mode 2. Case 2 is a special case because when parameter α is equal to 1, it
results in the exponential distribution. The mean number of customers increases with
the increment of parameter α and β and taking a closer look at the shape of the
curves steady-state distribution of the cases follow normal distribution. Table 8.15
presents the considered performance measures in relation with the different cases.

Figures 8.15–8.17 compare the mean waiting time of the two different operation
modes of the investigated cases. Operation mode 1 reflects to the mode when the
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interrupted requests get into the orbit instantaneously, and under operation mode 2,
we consider the mode when the service of the interrupted request is suspended and
it continues after repairing the server. In all cases, the results confirm the expectation
that applying operation mode 2 results lower mean waiting time. When the values
of parameter α and β are higher, the difference between the applies modes is higher
as well. With increasing arrival intensity, we should expect higher waiting times but
after λ/N reaches 0.15 it starts to monotonically decrease, which is an interesting
phenomenon.

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S)
1 63.0526 28.3198 170.5618 63,092.8264 169.7553 62,855.9266 0.3357 0.2255
2 69.6114 24.6949 228.9834 97,974.6274 227.8834 97,613.9701 0.5022 0.2523
3 73.9099 21.9244 283.1452 136,396.9409 281.7728 135,909.2373 0.6688 0.2238

Table 8.15. Numerical results of scenario A

Figure 8.15. Mean waiting time versus intensity of incoming customers of Case 1.
For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.15 shows the mean waiting time as a function of failure rate. As it is
expected, the mean waiting time increases with the higher failure rate in all cases.
Comparing the operation modes, the difference is quite obvious. While using
operation mode number 2, the growth seems linear, and in the case of operation mode
number 1, the rise is quite significant especially in Case 3.
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Figure 8.16. Mean waiting time versus intensity of incoming customers of Case 2.
For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.17. Mean waiting time versus intensity of incoming customers of Case 3.
For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

8.4.5.2. Scenario B, gamma distributed interarrival time

In scenario B, the distribution of interarrival times of the customers is gamma
distributed with parameter λ1 and β1. Table 8.16 presents the numerical values of
parameters of scenario B.
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Figure 8.18. Mean successful service time versus intensity of incoming customers of
Case 1. For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.19. Mean successful service time versus intensity of incoming customers of
Case 2. For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Case N α β γ0 γ1 γ2 σ/N α1 β1/N
1 100 1 1 0.1 0.1 1 0.01 0.5 0.01
2 100 1 1 0.1 0.1 1 0.01 1 0.01
3 100 1 1 0.1 0.1 1 0.01 2 0.01

Table 8.16. Numerical values of parameters of scenario B



248 Queueing Theory 1

Figure 8.20. Mean successful service time versus intensity of incoming customers of
Case 3. For a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.21. Mean waiting time versus intensity of failure rate. For a color version of
this figure, see www.iste.co.uk/anisimov/queueing1.zip



Recent Results in Finite-source Retrial Queues with Collisions 249

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 10 20 30 40 50 60 70 80 90 100

P
(i

)

i

Case 1

Case 2

Case 3

Figure 8.22. Steady-state distributions of scenario B. For a color version of this figure,
see www.iste.co.uk/anisimov/queueing1.zip

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S)
1 83.856 14.4707 259.7716 121,328.2493 258.6719 120,904.8333 0.4707 0.2232
2 69.5984 24.7715 228.9076 97,997.6219 227.8074 97,637.2906 0.5025 0.2525
3 45.9508 34.3607 170.0134 62,628.4067 168.9133 62,379.0441 0.5806 0.337

Table 8.17. Numerical results of scenario B

Figure 8.22 displays the steady-state distributions of Scenario B. Now, the service
time is supposed to be exponentially distributed (α = 1). With this modification
compared to scenario A, the steady-state distributions still follow a normal
distribution and as the value of α1 is increasing, the mean number of requests in the
system is decreasing. In Case 3, the mean number of customers in the system is
significantly lower among the cases. In Table 8.17, an estimation for the main
performance measures can be found in connection with the cases.

The running parameter is α1 that helps to discover the impact of different
distributions on the various examined performance measures. Figures 8.23– 8.25
show the comparison of the mean waiting time between the two operation modes of
the investigated cases. As in scenario A using operation mode number 2, when the
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interrupted requests stay at the server in case of server failure and their services
continue after server is ready to process jobs again, ensures lower mean waiting
times. In all cases, the mean waiting time starts to increase till α1 reaches 0.3, then it
monotonically decreases. With higher values of α and β, the difference between the
operation modes are higher as well.

Figure 8.23. Mean waiting time versus shape parameter, α = β = 0.5. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.24. Mean waiting time versus shape parameter, α = β = 1. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip
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Figure 8.25. Mean waiting time versus shape parameter, α = β = 2. For a color
version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figures 8.26–8.28 show the mean successful service time versus the shape
parameter of the interarrival time using both operation mode. As we can see in
scenario A, we get what we expected as the usage of operation mode number 2
provides higher values of mean successful service time. The difference is quite high
between the applied operation modes in all cases especially when α and β is equal to
0.5. The mean successful service time behaves in reverse compared to the mean
waiting time because when the mean waiting time increases the mean successful
service time decreases and vice versa.

8.5. Conclusion

In this chapter, tool-supported, numerical, simulation, and asymptotic methods
were considered under the condition of unlimited growing number of sources in a
finite-source retrial queue with collisions of customers and an unreliable server.
During the survey, several cases and examples were treated and the results of
different approaches were compared to each other showing the advantages and
disadvantages of the given method. Tables and figures used in this chapter illustrate
some special features of these systems. In the near future, the two research groups
would like to continue their investigations in this direction including systems with
impatient customers, systems embedded in a random environment and systems with
two-way communications, just to mention some alternative generalizations.
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Figure 8.26. Mean successful service time versus shape parameter, α = β = 0.5. For
a color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip

Figure 8.27. Mean successful service time versus shape parameter, α = β = 1. For a
color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip
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Figure 8.28. Mean successful service time versus shape parameter, α = β = 2. For a
color version of this figure, see www.iste.co.uk/anisimov/queueing1.zip
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