RETRIAL QUEUES FOR PERFORMANCE MODELLING AND EVALUATION OF HETEROGENEOUS NETWORKS

J. Roszik, J. Sztrik
Institute of Informatics, University of Debrecen
Debrecen, Hungary

e-mail: jsztrik@inf.unideb.hu
www: http://irh.inf.unideb.hu/user/jsztrik/
OUTLOOK

- The queueing model
- Applications
- Mathematical model
- Evaluation Tool MOSEL
- Case studies
- References
The queueing model
Applications

- magnetic disk memory systems
- local area networks with CSMA/CD protocols
- collision avoidance local area network modeling
Mathematical model

\[P(0;0) = \lim_{t \to \infty} P(C(t) = 0, N(t) = 0) \]

\[P(j;0) = \lim_{t \to \infty} P(\alpha_1 = j, N(t) = 0), \ j = 1, \ldots, K \]

\[P(0; i_1, \ldots, i_k) = \lim_{t \to \infty} P(C(t) = 0, \beta_1 = i_1, \ldots, \beta_k = i_k), \ k = 1, \ldots, K-1 \]

\[P(j; i_1, \ldots, i_k) = \lim_{t \to \infty} P(\alpha_1 = j, \beta_1 = i_1, \ldots, \beta_k = i_k), \ k = 1, \ldots, K-1. \]
Once we have obtained these limiting probabilities the **main system performance measures** can be derived in the following way.

1. **The server utilization with respect to source** j

\[U_j = P \text{ (the server is busy with source } j \text{) } \]

that is, we have to summarize all the probabilities where the first component is j. Formally

\[U_j = \sum_{k=0}^{K-1} \sum_{i_1, \ldots, i_k \neq j} P(j; i_1, \ldots, i_k) \]
Hence the server utilization

\[U = E[C(t) = 1] = \sum_{j=1}^{K} U_j. \]

Let us denote by \(P_{W}^{(i)} \) the steady state probability that request \(i \) is waiting (staying in the orbit). It is easy to see that

\[P_{W}^{(i)} = \sum_{j=0, j \neq i}^{K} \sum_{k=1}^{K-1} \sum_{i \in (i_1, ..., i_k)} P(j; i_1, ..., i_k). \]

Similarly, it can easily be seen, that the steady state probability \(P^{(i)} \) that request \(i \) is in the service facility (it is under service or waiting in the orbit) is given by

\[P^{(i)} = P_{W}^{(i)} + U_i. \]
2. Mean response time of source \(i \)

Let us denote by \(E[T_i] \) the mean response time of customer \(i \), and by \(\gamma_i \) the **throughput** of request \(i \), that is, the mean number of times that request \(i \) is served per unit time. These are related by

\[
\gamma_i = \frac{1}{E[T_i] + 1/\lambda_i} = \lambda_i (1 - P(i)) = \mu_i U_i, \quad i = 1, \ldots, K. \tag{1}
\]

For \(P(i) \) we have

\[
P(i) = \frac{E[T_i]}{E[T_i] + 1/\lambda_i} = \frac{\gamma_i E[T_i]}{\lambda_i E[T_i]} = 1 - \frac{\gamma_i}{\lambda_i} \quad i = 1, \ldots, K. \tag{2}
\]

which represents **Little’s theorem** for request \(i \) in the service facility.

It is easy to see that as a consequence of (1) we have

\[
P(i) = 1 - \frac{\mu_i U_i}{\lambda_i}
\]
and

\[P_W^{(i)} = P^{(i)} - U_i = 1 - \frac{\mu_i + \lambda_i}{\lambda_i} U_i. \]

Alternatively, by the help of (2) we can express the mean response time \(E[T_i] \) for request \(i \) in terms of \(U_i \) as

\[E[T_i] = \frac{P^{(i)}}{\lambda_i(1 - P^{(i)})} = \frac{1 - \frac{\mu_i U_i}{\lambda_i}}{\mu_i U_i} = \frac{\lambda_i - \mu_i U_i}{\lambda_i \mu_i U_i}. \] (3)

3. Mean waiting time of source \(i \)

The mean waiting time of request \(i \) is given by

\[E[W_i] = E[T_i] - \frac{1}{\mu_i} = \frac{1}{\gamma_i} - \frac{1}{\lambda_i} - \frac{1}{\mu_i} = \frac{\lambda_i - (\mu_i + \lambda_i)U_i}{\lambda_i \mu_i U_i}. \] (4)
At the same time we have another Little’s theorem for request \(i \) waiting for service. Namely

\[
P_W^{(i)} = \frac{E[W_i]}{E[T_i] + 1/\lambda_i} = \gamma_i E[W_i], \quad i = 1, \ldots, K.
\]

4. Mean number of calls staying in the orbit or in service

\[
M = E[C(t) + N(t)] = \sum_{i=1}^{K} P^{(i)} = \sum_{i=1}^{K} (1 - \frac{\mu_i}{\lambda_i} U_i) = K - \sum_{i=1}^{K} \frac{\mu_i}{\lambda_i} U_i.
\]

5. Mean number of sources of repeated calls

\[
N = E[N(t)] = \sum_{i=1}^{K} P_W^{(i)} = \sum_{i=1}^{K} (1 - \frac{\mu_i + \lambda_i}{\lambda_i} U_i) = K - \sum_{i=1}^{K} \frac{\mu_i + \lambda_i}{\lambda_i} U_i.
\]
6. Mean rate of generation of primary calls

\[\bar{\lambda} = \sum_{i=1}^{K} \gamma_i = \sum_{i=1}^{K} \lambda_i (1 - P(i)) = \sum_{i=1}^{K} \mu_i U_i. \]

7. Blocking probability of primary call \(i \)

\[B_i = \frac{\lambda_i \sum_{j=1, j \neq i}^{K} \sum_{k=0}^{K-1} \sum_{i \neq i_1, ..., i_k} P(j; i_1, ..., i_k)}{\bar{\lambda}}. \]

Hence blocking probability of primary calls

\[B = \sum_{i=1}^{K} B_i \]
In particular, in the case of **homogeneous calls**

\[U_i = E[C(t)]/K, \quad i = 1, \ldots, K, \quad N = K - \frac{(\lambda + \mu)U}{\lambda}, \]

\[\bar{\lambda} = \lambda E[K - C(t) - N(t)] = \mu U, \]

\[E[W] = \frac{N}{\bar{\lambda}} = K - \frac{1}{\mu U} - \frac{1}{\lambda} - \frac{1}{\mu}, \]

\[B = \frac{\lambda E[K - C(t) - N(t); C(t) = 1]}{\lambda E[K - C(t) - N(t)]}. \]
Evaluation Tool MOSEL

MOSEL (Modeling, Specification and Evaluation Language) developed at the University of Erlangen, Germany, is used to formulate and solved the problem.

Case studies
$E[T]$ versus retrial rate
$E[T]$ versus service rate
$E[T]$ versus primary request generation rate
Mean waiting time depending on request generation rate

\[E[T] \text{ versus primary request generation rate} \]
$E[T]$ versus primary request generation rate with homogeneous service and heterogeneous retrial
$E[T]$ versus primary request generation rate with homogeneous retrial and heterogeneous service
$E[T]$ versus retrial rate with homogeneous service and heterogeneous primary request generation
$E[T]$ versus retrial rate with homogeneous primary request generation and heterogeneous service
$E[T]$ versus primary request generation rate with heterogeneous service and heterogeneous retrial
References

