HETEROGENEOUS FINITE-SOURCE RETRIAL QUEUEING SYSTEMS

B. Almási*, G. Bolch, J. Sztrik*

University of Erlangen, Germany
* University of Debrecen, Faculty of Informatics, Hungary

http://irh.inf.unideb.hu/user/jsztrik
The queueing model

Outline
The queueing model, applications
Case studies
Bibliography

The queueing model

Sources

Orbit

Server

B. Almási, G. Bolch, J. Sztrik
Heterogeneous finite-source retrial queues
Applications

- magnetic disk memory systems
- local area networks with CSMA/CD protocols
- collision avoidance local area network modeling
Mathematical model

\[P(0; 0) = \lim_{t \to \infty} P(C(t) = 0, N(t) = 0) \]

\[P(j; 0) = \lim_{t \to \infty} P(\alpha_{1} = j, N(t) = 0), \ j = 1, ..., K \]

\[P(0; i_{1}, ..., i_{k}) = \lim_{t \to \infty} P(C(t) = 0, \beta_{1} = i_{1}, ..., \beta_{k} = i_{k}), \ k = 1, ..., K-1 \]

\[P(j; i_{1}, ..., i_{k}) = \lim_{t \to \infty} P(\alpha_{1} = j, \beta_{1} = i_{1}, ..., \beta_{k} = i_{k}), \ k = 1, ..., K-1. \]
Performance measures

Once we have obtained these limiting probabilities the **main system performance measures** can be derived in the following way.

1. The server utilization with respect to source j

 \[U_j = P \left(\text{the server is busy with source } j \right) \]

 that is, we have to summarize all the probabilities where the first component is j. Formally

 \[U_j = \sum_{k=0}^{K-1} \sum_{i_1, \ldots, i_k \neq j} P(j; i_1, \ldots, i_k). \]
Hence the server utilization

\[U = E[C(t) = 1] = \sum_{j=1}^{K} U_j. \]

Let us denote by \(P_W^{(i)} \) the steady state probability that request \(i \) is waiting (staying in the orbit). It is easy to see that

\[
P_W^{(i)} = \sum_{j=0, j \neq i}^{K} \sum_{k=1}^{K-1} \sum_{i \in \{i_1, \ldots, i_k\}} P(j; i_1, \ldots, i_k).
\]

Similarly, it can easily be seen, that the steady state probability \(P^{(i)} \) that request \(i \) is in the service facility (it is under service or waiting in the orbit) is given by

\[
P^{(i)} = P_W^{(i)} + U_i.
\]
2. Mean response time of source i

Let us denote by $E[T_i]$ the mean response time of customer i, and by γ_i the **throughput** of request i, that is, the mean number of times that request i is served per unit time. These are related by

$$\gamma_i = \frac{1}{E[T_i] + 1/\lambda_i} = \lambda_i(1 - P(i)) = \mu_i U_i, \quad i = 1, \ldots, K. \quad (1)$$

For $P(i)$ we have

$$P(i) = \frac{E[T_i]}{E[T_i] + 1/\lambda_i} = \gamma_i E[T_i] = 1 - \frac{\gamma_i}{\lambda_i} \quad i = 1, \ldots, K. \quad (2)$$

which represents **Little’s theorem** for request i in the service facility. It is easy to see that as a consequence of (1) we have

$$P(i) = 1 - \frac{\mu_i U_i}{\lambda_i},$$
and
\[P_W^{(i)} = P^{(i)} - U_i = 1 - \frac{\mu_i + \lambda_i}{\lambda_i} U_i. \]

Alternatively, by the help of (2) we can express the mean response time \(E[T_i] \) for request \(i \) in terms of \(U_i \) as
\[
E[T_i] = \frac{P^{(i)}}{\lambda_i (1 - P^{(i)})} = \frac{1 - \frac{\mu_i}{\lambda_i} U_i}{\mu_i U_i} = \frac{\lambda_i - \mu_i U_i}{\lambda_i \mu_i U_i}. \tag{3}
\]

3. Mean waiting time of source \(i \)

The mean waiting time of request \(i \) is given by
\[
E[W_i] = E[T_i] - \frac{1}{\mu_i} = \frac{1}{\gamma_i} - \frac{1}{\lambda_i} - \frac{1}{\mu_i} = \frac{\lambda_i - (\mu_i + \lambda_i) U_i}{\lambda_i \mu_i U_i}. \tag{4}
\]
At the same time we have another **Little’s theorem** for request \(i\) waiting for service. Namely

\[
P_W^{(i)} = \frac{E[W_i]}{E[T_i] + 1/\lambda_i} = \gamma_i E[W_i] \quad i = 1, \ldots, K.
\]

4. **Mean number of calls staying in the orbit or in service**

\[
M = E[C(t) + N(t)] = \sum_{i=1}^{K} P^{(i)} = \sum_{i=1}^{K} (1 - \frac{\mu_i}{\lambda_i} U_i) = K - \sum_{i=1}^{K} \frac{\mu_i}{\lambda_i} U_i.
\]

5. **Mean number of sources of repeated calls**

\[
N = E[N(t)] = \sum_{i=1}^{K} P_W^{(i)} = \sum_{i=1}^{K} (1 - \frac{\mu_i + \lambda_i}{\lambda_i} U_i) = K - \sum_{i=1}^{K} \frac{\mu_i + \lambda_i}{\lambda_i} U_i.
\]
6. Mean rate of generation of primary calls

\[\bar{\lambda} = \sum_{i=1}^{K} \gamma_i = \sum_{i=1}^{K} \lambda_i (1 - P^{(i)}) = \sum_{i=1}^{K} \mu_i U_i. \]

7. Blocking probability of primary call \(i \)

\[B_i = \frac{\lambda_i \sum_{j=1, j \neq i}^{K} \sum_{k=0}^{K-1} \sum_{i_1, \ldots, i_k} P(j ; i_1, \ldots, i_k)}{\bar{\lambda}}. \]

Hence \textbf{blocking probability of primary calls}

\[B = \sum_{i=1}^{K} B_i. \]
In particular, in the case of **homogeneous calls**

\[
U_i = \frac{E[C(t)]}{K}, \quad i = 1, \ldots, K, \quad N = K - \frac{(\lambda + \mu)U}{\lambda},
\]

\[
\bar{\lambda} = \lambda E[K - C(t) - N(t)] = \mu U,
\]

\[
E[W] = \frac{N}{\bar{\lambda}} = K - \frac{1}{\mu U} - \frac{1}{\lambda} - \frac{1}{\mu},
\]

\[
B = \frac{\lambda E[K - C(t) - N(t); C(t) = 1]}{\lambda E[K - C(t) - N(t)]}.
\]
MOSEL (Modeling, Specification and Evaluation Language) developed at the University of Erlangen, Germany, is used to formulate and solved the problem.
Case studies

![Graph showing mean response time depending on retrial rate. The graph plots the mean response time against the retrial rate. There are two curves on the graph, one for the request generation rate and another for the service rate. The x-axis represents the retrial rate, and the y-axis represents the mean response time. The legend indicates the different curves for the request generation rate and the service rate. The title of the graph is "E[T] versus retrial rate."](image-url)
Mean response time depending on service rate

$E[T]$ versus service rate
Mean response time depending on request generation rate

Legend
- retrial rate 10, service rate 1

$E[T]$ versus primary request generation rate
The queueing model, applications

Case studies

Bibliography

Mean waiting time depending on request generation rate

- **Legend**
 - retrial rate=0.001, service rate=1
 - retrial rate=0.005, service rate=1
 - retrial rate=0.1, service rate=1

E[T] versus primary request generation rate

B. Almási, G. Bolch, J. Sztrik

Heterogeneous finite-source retrial queues
$E[T]$ versus primary request generation rate with homogeneous service and heterogeneous retrial
$E[T]$ versus primary request generation rate with homogeneous retrial and heterogeneous service
$E[T]$ versus retrial rate with homogeneous service and heterogeneous primary request generation
$E[T]$ versus retrial rate with homogeneous primary request generation and heterogeneous service
$E[T]$ versus primary request generation rate with heterogeneous service and heterogeneous retrial
Conclusions

- Finite-source retrial queueing system with heterogeneous requests
- Markovian model via MOSEL
- Effect of parameters on performance measures in steady-state
- Graphical presentations
Bibliography

Thank You for Your Attention