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ARTICLE INFO ABSTRACT

Available online xxxx The present paper deals with a generalization of the homogeneous multi-server finite-
source retrial queue with search for customers in the orbit. The novelty of the investigation
is the introduction of balking and impatience for requests who arrive at the service facility
with a limited capacity and FIFO queue. Arriving customers may balk, i.e., they either join
the queue or go to the orbit. Moreover, the requests are impatient and abandon the buffer
after a random time and enter the orbit, too. In case of an empty buffer, each server
searches for a customer in the orbit after finishing service. All random variables involved
in the model construction are supposed to be exponentially distributed and independent
of each other. The primary aim of this analysis is to show the effect of balking, impatience,
and buffer size on the steady-state performance measures. Concentrating on the mean
response time, several numerical examples are investigated by the help of the MOSEL-2
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tool used for creating the model and calculating the stationary characteristics.
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1. Introduction

In many real-life situations, it is unrealistic to assume
that a customer enters a queue if all service providers are
busy at arrival time. Consider, for example, a telephone
call, where in general there is no possibility to queue if
the line is busy. Another example is a hairdresser’s shop,
where a finite number of chairs are provided to waiting
customers. All chairs might be occupied at arrival instant,
and thus, an arriving customer is not able to enter the
queue. In both cases, the customer may not leave the sys-
tem forever, but might retry to be served at another time.

Such situations are commonly modeled using the retrial
queue formalism introduced in [12]. Basic retrial queues
can be described as follows. Customers arrive at the system
according to a Poisson process with state-independent ar-
rival rate. If an arriving customer finds all (identical) serv-
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ers busy, it does not leave the system but joins the so-
called orbit of infinite size instead. All orbiting customers
will retry to be served after an exponentially distributed
retrial time. They will re-join the orbit, if they find all serv-
ers busy. Customers in service will leave the system after
an exponentially distributed service time.

These basic retrial queues were generalized in various
directions by a large number of publications. Surveys and
bibliographies of these works are given in [3-6,13,
14,18,29].

Basic retrial queues and their generalizations have been
applied to model telephone trafficin [12], Ethernet systems
in [1], active queue management of Internet routers in [7],
self-organizing P2P systems in [28], inventory systems in
[24], and mobile communications in [2,19,21, 22,25]. In
[3,6,11,29], further application examples are given.

In this article, we investigate finite-source retrial queues
with multiple homogeneous servers that conduct orbital
search and discuss the influence of customer balking and
impatience as well as the effect of the service area’s finite
capacity on the mean response time. Here, the service area
encompasses the waiting area (queue) by definition.

Netw. (2009), doi:10.1016/j.comnet.2009.02.015
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Finite-source retrial queues are motivated by the fact
that in many applications the number of potential custom-
ers is far less than infinite. In these cases, the arrival pro-
cess is non-Poisson but depends on the number of
customers already in the system (see [6, p. 32]).

Customer balking refers to (discouraged) customers that
are entering the orbit although there is some space avail-
able in the service area. Joining the orbit might be more
attractive than joining a long queue, e.g., in wireless sensor
networks, where queueing sensors may need to be online
and waste valuable energy, whereas orbiting sensors may
retreat to a power-saving stand-by mode. The concept of
balking was first introduced in [16] for classical
M/M/1-FCFES queues. In [23], balking is considered for infi-
nite-source retrial queues. There, however, the balking is
deterministic and depending on a fixed threshold value
of the queue size. In this paper, we introduce a new meth-
od that describes a balking probability depending on the
current number of customers located in the queue and an
encouraging parameter.

Impatience (also known as reneging, see [17]) lets queue-
ing customers leave the queue and join the orbit instead. For
example, customers that joined the queue might be able to
observe the service area while waiting. This allows them to
estimate the mean service time and queue length and hence,
also their remaining waiting time. Based on this estimation,
they may decide to leave the queue and retry to get service
later, hoping for a shorter queue on return. Impatience in re-
trial queues is already considered in [12].

In some scenarios, idle servers are able to inform orbit-
ing customers of their status. This allows servers to fetch
customers directly from the orbit with some probability
if there are no other customers waiting in the queue at ser-
vice completion instant. This behavior is called orbital
search and introduced in [20]. We treated finite-source re-
trial queues without balking and impatience in [27].

Infinite-source multi-server retrial queues with balking
and impatient customers have been treated recently in
[23]. We are not aware of any publication discussing the
effects of service area capacity, balking, impatience, and
orbital search in a finite-source context.

The performance measures of our model are obtained
by numerical analysis carried out using the MOSEL-2 per-
formance evaluation tool. The first version of MOSEL (see
[8]) was designed and developed in the late nineties at
the research group for performance evaluation and process
control, lead by Dr. Gunter Bolch, at the University of
Erlangen, Germany. Due to a major revision in 2003 (see
[9]), MOSEL was renamed to MOSEL-2, which is now main-
tained at the Chair of Computer Networks and Communi-
cations, University of Passau, Germany.! For a short
introduction to MOSEL-2, we refer the interested reader
to [26]. A discussion of the performance and scalability of
MOSEL-2 in the context of finite-source retrial queues is
provided in [27].

The remainder of this article is organized as follows. In
Section 2, the investigated model is introduced and the nota-
tions used in this paper are defined. The underlying Markov

T Project homepage: http://mosel2.net.fim.uni-passau.de/.

chain and interesting performance measures are derived in
Section 3. The numerical analysis is carried out using the
MOSEL-2 tool in Section 4. In Section 5, various numerical re-
sults are presented and discussed in detail. Finally, in Section
6, a conclusion and directions for future work are given.

2. Model description

The queueing model given in Fig. 1 illustrates the finite-
source retrial queue with balking, impatience, and orbital
search.

The behavior of the retrial queue can be described as fol-
lows. Each of the K sources is generating requests with rate 1
as long as it is not waiting for a response to an active request
located in the orbit or in the service area. A request arriving
from the sources first checks whether there is an idle server.
If there is an idle server, the request will enter this server
immediately. If all S identical servers are busy, the request
enters the queue of size Q with probability f(c) given by

1 :c<S,
g+ +1 : S<c<C, (1)
0 :c=C,

foo) =

where c is the current number of requests located in the
service area, g = max(0, c — S) is the current number of re-
quests waiting in the queue, C = S + Q is the finite capacity
of the service area, and e, 0 < e < 1, is the encouraging
parameter. The outcome of Eq. (1) is illustrated in Fig. 2
for various values of e. With a probability of
f (c) =1—f,"(c), the request balks and enters the orbit in-
stead. Since an arriving request will enter the orbit only if
there are at least S request located in the servers, the max-
imum number of requests located in the orbit is equal to
K —S.

Note that the linear balking probability f," (c) given by
Eq. (1) is just an example that suggests itself and serves
well in several application scenarios. However, the numer-
ical evaluation using MOSEL-2 allows extending the model
flexibly by more general (state-dependent) balking
probabilities.

Requests located in the orbit retry to enter the service
area with retrial rate v. Requests waiting in the queue start
being served as soon as an idle server gets assigned to
them. However, requests leave the queue with rate # and
join the orbit due to impatience.

Busy servers complete requests with service rate p. A
response returns to the requesting source after service. If
the queue is empty and there are requests located in the
orbit, at service completion instant, the server carries out
orbital search, i.e., it instantly fetches a request directly
from the orbit with a probability of p, where 0 < p < 1.

Table 1 gives an overview on the model parameters.

To preserve mathematical tractability, all inter-event
times (i.e., request generation time, impatience time, ser-
vice time, and retrial time) involved in the model are as-
sumed to be exponentially distributed and regulated by
their rate parameter. Extending the model by including
phase-type distributions is considered to be straight for-
ward. We present a discussion of the solution method’s
scalability in Section 4.

Netw. (2009), doi:10.1016/j.comnet.2009.02.015
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Fig. 1. Queueing model of finite-source retrial queue with balking, impatience, and orbital search.
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Fig. 2. Probability for joining the queue f;*(c) over number of requests c located in the service area for different values of the encouraging parameter e as

given by Eq. (1).

3. Underlying Markov chain and performance
measures

The behavior of the finite-source retrial queue with balk-
ing, impatience, and orbital search as described in Section 2
can be represented by a bivariate continuous-time Markov
chain (CTMC) with state variable X(t) = (o(t),c(t)), where
variable o(t), 0 < o(t) < O, is the number of requests in the
orbit and variable c(t), 0 < c(t) < C, is the number of re-
quests in the service area at time t > 0. Since the number
of active sources is given by k(t) = K — o(t) — c(t), and due
to the memoryless property of the exponentially distributed
inter-event times involved, X(t) sufficiently describes the
state of the system at any time t.

In Fig. 3, the state transition diagram of the CTMC is
sketched for K =3,C=2,0=2,and S=1.

Note that for p ~ 1 or very large v, the orbit tends to act
like additional queue capacity and the retrial queue then
behaves quite similar to the classical M/M/S/K/K-FCFS
queue. Moreover, for p=1, =0, and f,(S)=0 (ie,
f.7(S) = 1), Fig. 3 reduces to the gray-colored states which
then even form the state transition diagram of the classical
M/M/S/K/K-FCFS queue.

The CTMC illustrated in Fig. 3 is finite and irreducible
for all reasonable (i.e., strictly positive) rates Z, i, v, and
n. Hence, the CTMC is positive recurrent which implies
ergodicity (see [10, p. 70]). This also holds for higher (but
finite) values of K > C > Sand O =K - S.

Netw. (2009), doi:10.1016/j.comnet.2009.02.015
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Table 1
Overview of model parameters.

Parameter Maximum Value at t Mean (t — o)
Number of active sources K (population size) k(t) K

Request generation rate A

Total request generation rate K 2k(t) =K
Encouraging parameter 1 e

Requests in queue Q = C — S (queue size) q(t) Q
Impatience rate n

Service rate n

Busy servers S (number of servers) s(t) S ~
Server utilization 1 Us =2
Requests in service area C (finite capacity) c(t) = s(t) +q(t) C=Q+S
Orbiting requests 0 = K — S (orbit size) o(t) 0

Work in progress K m(t) = c(t) + o(t) M=C+0
Retrial rate v

Orbital search probability 1 D

Fig. 3. State transition diagram of finite-source retrial queue with balking, impatience, and orbital search for K =3,C=2,0=2,and S= 1.

Fig. 3 suggests a partitioning of the state space into lev-
els reflecting o(t), i.e., the number of requests in the orbit.
Each level consists of a subset of states, called phases, indi-
cating c(t), i.e., the number of requests in the service area.
Since transitions only take place between adjacent levels,
the structured CTMC is skip-free and constitutes a finite
quasi-birth-death process (QBD). This gives rise to efficient
algorithms like the one presented in [15], which has poten-
tial to lead to closed-form equations of performance mea-
sures in special cases (e.g., C = 2). See also [1] for similar
discussions.

In this paper, however, all performance measures are
derived conveniently using the MOSEL-2 tool (see Section
4) which takes care of the generation of the CTMC and
the numerical solution of the system of steady-state equa-
tions to obtain the steady-state probabilities.

Let us denote by m,. the steady-state probability that
there are 0, 0 < 0 < O, requests located in the orbit, and

¢, 0 < c <K, customers located in the service area, i.e.,
T, = lim,_P(o(t) = 0,c(t) = c).

In the following, interesting steady-state performance
measures are presented assuming the steady-state proba-
bilities 7, are known.

e Mean number of busy servers S: The mean number of
busy servers is given by

0 S C
§ = Z {Z CTloc + Z Sno‘c}- (2)
0=0 c=1 c=S+1

e Server utilization Us: The utilization of the servers can
then be calculated via

Us =3 3)

e Mean queue length Q: The mean number of requests
located in the queue is given by

Netw. (2009), doi:10.1016/j.comnet.2009.02.015
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[¢] C
Q=>" > (c-9T. (4)

0=0 c=5+1

Mean orbit size O: The mean number of requests located
in the orbit is given by

(9] C
0=> > om,. (5)
0=0 c=0

Mean number of active requests M: The mean number of
requests located in the service area or in orbit is given by
M=5+Q+0. (6)
Mean number of active sources K: The mean number of
request-generating sources is then given by

K=K-M. (7)
Mean system throughput 7: The mean throughput of the
finite-source retrial queue with orbital search can be
obtained from

7 =Ki. (8)

Mean orbit time Ty: The mean overall time spent by each
request in the orbit before service can be calculated by

To= 9

(\)gl Ql

Eq. (9) can be motivated as follows. Let us denote the or-
bit’s throughput by 4. Following Little’s Law (see [10, p.
245]), the mean time spent at the orbit (per visit) by
every request arriving at the orbit is T} :% The mean
number of visits to the orbit per request before being
served is ep = % (see [10, p. 324]). Hence, the overall mean

time spent in the orbit before being served is equal to
TO:(?()TS:%]Q:%

PRI
e Mean number of retrials R: The mean number of retrials
before service can then be calculated via

R =T,. (10)
e Mean response time T: The mean time spend by each

request in the orbit and the service area can also be cal-
culated by applying Little’s Law, i.e.,

=

T==>. (11)

4. Numerical analysis using MOSEL-2

Finite-source retrial queues with balking, impatience,
and orbital search can be evaluated numerically quite eas-
ily by using the MOSEL-2 performance evaluation tool. The
corresponding MOSEL-2 model is shown in Listing 1.

Listing 1: MOSEL-2 model of finite-source retrial queue with balking, impatience, and

orbital search.

16| /s kx NODES s sk sk sk sk sk sk sk ok sk sk ok sk ok sk sk ok sk s ok sk ok sk sk ok sk sk ok sk s ok sk ok ok ok K sk o ok ok K sk ok ok sk sk ok ok K sk ok ok sk sk ok sk o ok ok ok ok ok ok ok oK oK ok K ok ok /

1

2| // request generation rate (z—awis):
3| PARAMETER lambda := 0.001, 0.05
4

5| CONST K = 100;

6| CONST S = 3

7| CONST C = 10;

8| CONST Q = C-S;

9| CONST (@] = K-S

10| CONST e = 0.5;

11| CONST eta = 1;

12| CONST nu = 0.4;

13| CONST mu = 10;

14| CONST P = 0.5;

15

17|NODE Sources [K] := K;

18 NODE Request [1] := 0;

19| NODE Buffer [C] = 0;

20| NODE Orbit [O] = 0;

21| NODE Finished [1] := 0;

23| /xkx RULES sk s sk sk s s ok sk sk sk sk o ok sk sk sk sk o ok sk ok ok sk ook ok sk ok sk o ok ok sk ok sk o ok ok sk sk sk o o ok sk ok ok s ok ok sk sk ok sk ok ok sk ok ok ok o ok ok ok ok ok o ok ok ok /)

24|FROM Sources TO Request RATE Sourcesxlambda;
25| IF (Buffer < S) FROM Request TO Buffer;

26| IF (Buffer == C) FROM Request TO Orbit;

27

28| // balking customers:

29| IF (Buffer >= S AND Buffer < C) FROM Request TO Buffer

30 WEIGHT (e—1)/(Q+1)*(Buffer —S+1)+1;

31| IF (Buffer >= S AND Buffer < C) FROM Request TO Orbit

32 WEIGHT (1—e) /(Q+1)%(Buffer—S+1);

33

34| IF (Buffer > S) FROM Buffer TO Orbit RATE (Buffer—S)*eta; // impatient customers
35|FROM Orbit TO Request RATE Orbitx*nu; // retrials

36| IF (Buffer <= S) FROM Buffer TO Finished RATE Bufferxmu; // service

37| IF (Buffer > S) FROM Buffer TO Finished RATE Sxmu; // service

38| IF (Buffer >= S) FROM Finished TO Sources;
39| IF (Buffer < 8)
40| IF (Buffer < S)

A2 /wkx RESULTS s ok sk sk sk sk sk ok sk sk sk sk ok ok ok sk sk sk ook ok sk ok sk s ok ok sk sk sk sk ok ok sk sk o o ok sk ok ok ok ok ok sk sk sk ok ok ok ok sk ok o ok ok ok ok sk o ok ok sk ok ok ok ok /)

43| PRINT mM MEAN( Orbit )+MEAN( Buffer) ;

44| PRINT mK = K—mM;
45| PRINT ml := mKxlambda;
46 | PRINT mT := mM/ml;

48 | PICTURE "mean_response_time” PARAMETER lambda CURVE mT;

/# %% CONSTANTS AND PARAMETERS s s s s s s s s s s sk s sk ok s sk ok ok sk ok sk sk ok sk ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok /)

1 STEP 0.05, 1.1

FROM Finished TO Sources WEIGHT 1—p; //
FROM Finished , Orbit TO Sources, Buffer WEIGHT p;

2 STEP 0.1;

// population size
// nmnumber of servers
// capacity

// queue size

// orbit size

// encouraging

// impatience rate
// retrial rate

// service rate

// search probability

// the sources

// arriving request
// the servers + queue
// the orbit

// response

// primary requests
// server awvailable

// buffer full

// without orb. search
without orb. search
// with orb. s.

// mean # active rTeq.
// mean # active sources
// mean throughput

// mean response time

Please cite this article in press as: P. Wiichner et al., Finite-source M/M/S retrial queue with search for balking ..., Comput.
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As a reference value, we can state that the solvers ap-
plied by MOSEL-2 are able to evaluate models that com-
prise up to approximately 9 x 10° tangible states. This is
shown in [27] also in the context of finite-source retrial
queues. The exact value, however, depends on the model
details and on the hardware used.

In Table 2, we exemplarily give a selection of model
parameter settings we expect to be evaluable using
MOSEL-2 since the number of states taken by the Markov
chain described in Section 3 is smaller than 9 x 10°. How-
ever, as it is shown in [27], it takes about 20 min to evalu-
ate a single parameter setting comprising 9 x 10> states
using MOSEL-2 on a PC with Linux operating system,
2 GHz CPU, and 2 GB of RAM.

To calculate the number of states given in Table 2, we
proceed as follows. We assume that K > C > S.

In the case of an empty queue (q(t) = 0), the orbit may
contain up to (K-S) requests and hence, can take
(K —S+1) states (including being empty). The servers
may contain up to S requests. All requests not located in
the orbit or in the servers will be located in the sources.
The number of possible states for q(t) =0 is then given
by (K—-S+1)(S+1).

In the case of a non-empty queue (q(t) > 0), all servers
have to be busy (s(t) = S). The orbit may then contain up to
(K — (S+q(t))) requests, resulting in (K— (S+q(t))+1)
possible orbit states. The number of requests waiting in
the queue may vary from one to Q. Thus, if there is at least
one request waiting in the queue, the system can take

EQ:(K—S—H—q(t)) QK-S+1) Zn
q(t)=

=QK-S+1)- Qe+1) — +1) (12)
different states.
Hence, for arbitrary queue lengths (0 < q(t)
total number of possible states is

< Q), the

QQ+1)
.

We can generalize this discussion by allowing for phase-
type service with P phases at each server. We then addi-
tionally have to keep track of the number of requests lo-
cated in each phase. If there are s(t) requests located in
the servers, these requests are distributed throughout the
phases which is possible in

(K=S+1)S+1)+QK—-S+1)—

Table 2

State space sizes calculated using Eq. (13) for various values of the
population size K, queue size Q = C — S, number of servers S, and number of
phases P per server.

K Q S P Number of states
7000 60 60 1 838,031
65,000 5 7 1 844,907
5000 10 10 2 877,811
20,000 4 5 2 899,760
1000 9 10 3 869,110
1000 5 5 5 876,582
100 3 10 10 852,852

P+s(t)—1\ (P+s(t)—1\ (P+s(t)—1)!
( P-1 ) a ( s(t) ) s -1)!
different ways (see also [10, p. 346]).

In the case of an empty queue (q(t) = 0), up to S servers
might be busy and up to (K — S) request might stay at the
orbit, resulting in

(P+s(t)—1)!
(K-5+4+1) <1 + —
s(;1 s(HI(P—1)!
different states.

If there is at least one request waiting in the queue
(q(t) > 0), all servers are busy (s(t) = S), leading to

(P+S-1)
SI(P—-1)!
different server states and the number of states taken by

the orbit is following Eq. (12).
Finally, the Markov chain can take

(K-S+1) <1+ > 71:(35(53)—_1;!)?

QQ+1)\ (P+S—1)
2 )S!(P—l)!

+<Q(K—S+1)— (13)

different states in the case of phase-type service.
5. Discussion of results

In this section, we discuss the influence of balking,
impatience, and service area capacity on the mean re-
sponse time of the finite-source multi-server retrial queue.
If not stated otherwise, the model parameters are chosen
according to Table 3. All results given in this section are ob-
tained and discussed based on the given parameters and
considered to hold for a wide range of similar parameter
settings.

5.1. Effect of increasing the service area capacity

The inﬂuence of the request generation rate
2,0.001 < 4 < 2 (x-axis), and of the service area capacity
Ce {3,4710} on the mean response time T (y-axis) is
shown in Fig. 4.

Table 3

Numerical values of model parameters.

Parameter Symbol Value
Request generation rate A 0.4
Number of sources K 100
Number of servers S 3
Service area capacity C 10
Queue size Q=C-S 7
Orbit size 0=K-S 97
Encouraging parameter e 0.5
Impatience rate n 1
Retrial rate v 0.4
Service rate u 10
Orbital search probability p 0.5

Netw. (2009), doi:10.1016/j.comnet.2009.02.015
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T: mean response time
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Fig. 4. Mean response time T over call generation rate / for different values of the service area capacity C.

For very small request generation rates (1 < 0.1), the
mean response time T is close to the mean service time gi-
ven by ¢! = 0.1. This is because there is a high probability
that an arriving request will find at least one server idle
which will be joined immediately. Hence, the time spent
in the queue or in orbit is negligible and the queue size
Q = C - S does not have tangible effect on the mean re-
sponse time. Further investigations that are not presented
here also show that the effect of varying the encouraging
parameter, impatience rate, or retrial rate only has negligi-
ble effect.

For high request generation rates (1> 1), the system
approaches saturation, i.e., the probability that all K re-
quests are located within the retrial queue gets close to
1. Due to the large number of requests located in the ser-
vice area, the servers are kept busy most of the time. If
Q =0 (i.e.,, C = Q + S = 3), a finishing server will not find
any request waiting in a queue. However, with probability
p it will directly get a job from the orbit, which contains re-
quests with a high probability. Even if no orbital search is
done by the server, it will not stay idle for a long time since
there is a high number of retrying requests. If Q =1 (i.e.,
C = 4), there is a high probability that a finishing server
will find a request in the queue at service completion in-
stant. Due to the large number of orbiting requests, the
queue will be refilled quickly, even for moderate values
of the impatience rate. However, increasing the queue size
to greater values (C > 4) does not decrease the mean re-
sponse time significantly, because it does not make a dif-
ference whether the requests are waiting in the queue or
in the orbit. Hence, also for high values of 4 changing the
encouraging parameter, impatience rate, or retrial rate will
not have a significant effect.

The main influence of the queue size Q on the mean re-
sponse time T can be seen for moderate request generation
rates (0.3 < 4 < 0.5). In this case, there is enough load to
utilize the queue, but there is only a limited number of

orbiting requests to be searched by a server or quickly
refilling the queue. The main influence of the retrial rate,
encouraging parameter, and impatience rate is expected
in this parameter range. This is why the call generation
rate is set to 2 = 0.4 in Sections 5.2-5.4.

5.2. Effect of retrial rate

Fig. 5 shows the influence of the retrial rate v, 0.001 <
v< 10 (x-axis), and of the service area capacity
C € {3,4,10} on the mean response time T (y-axis).

Comparing Fig. 5 to Fig. 4, it can be seen that the retrial
rate v has less effect on the mean response time T of the
investigated retrial queue than the call generation rate /.
Moreover, Fig. 5 shows that the impact of the queue size
Q on the mean response time T depends on the retrial rate
V.

For relatively high values of the retrial rate (v > 4), the
orbit itself acts similar to a queue. Hence, the actual size of
the service area’s queue does not have a significant impact.
It can be shown that for very high v all curves approach a
minimum response time of T, . ~ 0.84 for any C > S.
Note that T,.. is close to the mean response time
Tecrs ~ 0.838 of a finite-source multi-server M/M/S/K /K-
FCFS queue which can be calculated algorithmically (finite
birth-death process).

Thus, if K, 4,S, and u are kept constant, the response
time Tgs of the classical finite-source multi-server
M/M/S/K/K-FCFS queue provides a lower bound for the
response time T of the finite-source multi-server retrial
queue with the search for balking and impatient customers
from the orbit, regardless of the balking behavior (config-
ured via e), the size of the queue Q, the impatience rate
n, or the orbital search probability p. On the other hand,
the mean response time of a finite-source multi-server re-
trial queue without any queue (C = S) provides an upper
bound for T.
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Fig. 5. Mean response time T over retrial rate v for different values of the service area capacity C.

For small values of the retrial rate (v < 2), there is a
notable difference in the mean response time T when con-
sidering different queue sizes. Therefore, in Sections 5.3
and 5.4, the retrial rate is set to v = 0.4. Note that in most
application scenarios, it is not realistic to assume v < A.

5.3. Effect of balking

Remember that the term balking of arriving requests de-
scribes their probabilistic decision to join either the orbit
or the service area. The probability f,(c) of joining the ser-
vice area is given in Eq. (1).

In Fig. 6, the mean response time T of the retrial queue
under study is shown for different values of the encourag-

T: mean response time

1.4

ing parameter e and the service area capacity C. According
to Eq. (1), T is independent of e for C = S, since in this case,
only two cases exist: (1) there is at least one idle server
(c < S) and hence the arriving request will join the service
area with probability f," (c) = 1, and (2) all servers are busy
(c = S) and hence an arriving request will enter the orbit
with probability f,;(c) = 1. This independence of e is di-
rectly reflected in Fig. 6 where for C = 3, the graph of T
takes a constant value.

It is interesting to note that for any queue sizes Q > 1,
the impact of e on T is rather independent of Q. On the
other hand, for larger queue sizes, additional buffer space
does not have a significant effect on T. Hence, to improve
the system’s performance, it is advisable to install a few
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Fig. 6. Mean response time T over encouraging parameter e for different values of the service area capacity C.
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Fig. 7. Mean response time T over impatience rate 7 for different values of the service area capacity C.

buffers and to ensure that they are used with a high prob-
ability instead of installing a large number of buffers.

5.4. Effect of impatience

The impact of the impatience rate 77, 0.001 < 1 < 40 (x-
axis), on the mean response time T (y-axis) is studied in
Fig. 7.

Obviously, if there is no queue (C = 3), there is no effect
of 1 on T. This is clearly reflected in Fig. 7. It can also be
seen that increasing the queue size reduces the mean re-
sponse time more significantly if the customers impatience
is low. By increasing 1 — oo, it can be shown that the mean
response time approaches the one of the case C = 3 regard-
less of the queue length. This is because the available
queue will then be used with a very small probability only.

6. Conclusion and future work

In this article, we present a novel model that describes
the behavior of finite-source retrial queues with search for
balking and impatient customers from the orbit. The model
is flexible with respect to the configuration of the finite
number of customers, their request generation rate, the
number of (identical) servers, the service area capacity,
the probability of orbital search, as well as the balking
and impatience of the customers. A novel method of
describing the balking probability as a function of the cur-
rent queue size provides more modeling flexibility by
introducing an encouraging parameter.

Numerical analysis of the model is carried out using the
MOSEL-2 tool. The results are discussed in detail and show
that in the given scenario it is advisable to provide at least
a small queue to the customers. However, it is more impor-
tant to minimize the balking and impatience of customers
than to provide a large queue. Moreover, the steady-state
performance measures are shown to be bounded by the

performance measures of the classical finite-source mul-
ti-server FCFS queue (optimum) and by the classical fi-
nite-source retrial queue (worst case).

In future, we plan to generalize the model by consider-
ing customer loss, phase-type distributed request genera-
tion, impatience, service, and/or retrial times, as well as
heterogeneous and unreliable servers. Further research
directions include the application of the model to practical
applications, the search for closed-form solutions of per-
formance measures applicable to special cases of the mod-
el, the search for higher moments and bounds of
performance measures, as well as the tool supported anal-
ysis of retrial queues comprising transitions with deter-
ministic firing times.
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