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Abstract. In this paper retrial queuing systems with a finite number
of sources and collisions of the customers is considered, where the server
is subjects to random breakdowns and repairs depending on whether it
is idle or busy. The novelty of this system comparing to the previous
ones is that the service time is assumed to follow a general distribution
while the source times, retrial times, servers lifetime and repair time are
supposed to be exponentially distributed. A new numerical algorithm for
finding the joint probability distribution of the number of customers in
the system and the server’s state is proposed. Several numerical examples
and Figures show the effect of different input parameters on the main
steady state performance measures, such as mean response and waiting
time of the customers, probability of collision and retrials.
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1 Introduction

Finite-source retrial queues are very useful and effective stochastic systems to
model several problems arising in telephone switching systems, telecommunica-
tion networks, computer networks and computer systems, call centers, wireless
communication systems, etc. To see their importance the interested reader is
referred to the following works and references cited in them, for example [3,5–
7,10]. Searching the scientific databases we have noticed that relatively just a
small number of papers have been devoted to systems when the arriving calls
(primary or secondary) causes collisions to the request under service and both
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go to the orbit, see for example [1,9,11,21]. It should be noted that collisions
decreases the effectiveness of the system performance and that is why new pro-
tocols should be developed to avoid the collision but unfortunately it cannot
be neglected, see [4,8,16]. This fact shows the importance of the mathematical
modeling of such systems.

Nazarov and his research group developed a very effective asymptotic method
[20] by the help of which various systems have been investigated. Concerning to
finite-source retrial systems with collision we should mention the following papers
[12–15,18].

Sztrik and his research group have been dealing with systems with unreliable
server/s as can be seen, for example in [2,23] and that is why it was understand-
able that the two research groups started cooperation in 2017.

The primary aim of the present paper is to give a new numerical algorithm
for finding the joint probability distribution of the number of customers in the
system and the server’s state. The method of supplementary variable is used
by introducing the residual service time to derive the system of steady state
Kolmogorov equations. An effective algorithmic approach is proposed to get
the solution of these equations resulting the steady state distribution of the
underlying process. Several numerical examples and Figures show the effect of
different input parameters on the main steady state performance measures, such
as mean response and waiting time of the customers, probability of collision and
retrials. The present model is a generalization of the M/G/1//N retrial system
treated in [14] where the server was reliable and the M/M/1//N system with
unreliable server analyzed in [17].

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding multi-dimensional non-Markov process is
defined. Then in Sect. 3 by the help of the residual service time technique the cor-
responding steady state Kolmogorov equations are derived. Section 4 is devoted
to the solution of these equations by proposing and new algorithmic approach
and important performance measures are defined. In Sect. 5 several numerical
examples and Figures show the effect of different input parameters on the main
steady state performance measures and some comments are made. Finally, the
paper ends with a Conclusion and some future plans are highlighted.

2 Model Description and Notation

Let us consider a closed retrial queuing system of type M/GI/1//N with collision
of the customers and an unreliable server. The number of sources is N and each
of them can generate a primary request with rate λ/N . A source cannot generate
a new call until the end of the successful service of this customer. If a primary
customer finds the server idle and not failed, he enters into service immediately,
in which the required service time has a probability distribution function B(x).
Let us denote its service rate function by μ(y) = B

′
(y)(1 − B(y))−1 and its

Laplace -Stieltjes transform by B∗(y), respectively. Otherwise, if the server is
busy, an arriving (primary or repeated) customer involves into collision with the
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customer under service and they both moves into the orbit. The retrial times of
requests are exponentially distributed with rate σ/N . We assume that the server
is unreliable, that is its lifetime is supposed to be exponentially distributed with
failure rate γ0 if the server is idle and with rate γ1 if it is busy. When the server
breaks down, it is immediately sent for repair and the recovery time is assumed
to be exponentially distributed with rate γ2. We deal with the case when the
server is down all sources continue generation of customers and send it to the
server, similarly customers may retry from the orbit to the server but all arriving
customers immediately go into the orbit. Furthermore, in this unreliable model
we suppose that the interrupted request goes to the orbit immediately and its
next service is independent of the interrupted one. The explanation of using
λ/N , and σ/N is that in a consecutive paper we would like to investigate the
same system by means of asymptotic methods as N tends to infinity and we
would like to compare the asymptotic results to the exact ones. All random
variables involved in the model construction are assumed to be independent of
each other. Let Q(t) be the number of customers in the system at time t, that
is, the total number of customers in the orbit and in service. Similarly, let C(t)
be the server’s state at time t, that is

C(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is down

(under repair).

Thus, we will investigate the process {C(t), Q(t)}, which is not a Markov-type
unless the required service time is exponentially distributed. Using the supple-
mentary variable method let us introduce the random process Z(t), equal to the
residual service time, that is the time interval from moment t until the end of
the successful service. It should be noted that the other standard method is to
introduce the elapsed service time as the continuous component, see for example
[6,25,26] where the resulting Kolmogorov equations are solved by the help of
so-called discrete transform. This approach is more common but in our case the
residual service time method is more effective as we will show it later on.

As we can see {C(t), Q(t), Z(t)} is a three-dimensional Markov process, which
has variable number of components, depending on the server’s state, since the
component Z(t) is determined only in those moments when the server is busy,
that is C(t) = 1.

3 Kolmogorov Equations for the Probability Distribution

Let us define the following probabilities

Pk(j, t) = P{C(t) = k,Q(t) = j}, k = 0, 2
P1(j, z, t) = P{C(t) = 1, Q(t) = j, Z(t) < z}.

Since the introduction of the residual service time is not so standard as
the elapsed service time approach we derive the Kolmogorov equations in more
details, namely we can write
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P0(0, t + Δt) = P0(0, t)(1 − λΔt)(1 − γ0Δt) + γ2ΔtP2(0, t) + P1(1, Δt, t) + o(Δt),
(1)

P1(1, z − Δt, t + Δt) =
[
P1(1, z, t) − P1(1,Δt, t)

](
1 − λ

N − 1
N

Δt
)
(1 − γ1Δt)

(2)

+ P0(0, t)λB(z)Δt + P0(1, t)
σ

N
B(z)Δt + o(Δt),

P2(0, t + Δt) = P2(0, t)(1 − λΔt)(1 − γ2Δt) + γ0ΔtP0(0, t) + o(Δt), (3)

P0(j, t + Δt) = P0(j, t)(1 − λ
N − j

N
Δt)(1 − γ0Δt)

(
1 − j

N
σΔt

)
+ P1(j + 1, Δt, t)

(4)

+ P1(j − 1, t)λ
N − j + 1

N
Δt + P1(j, t)

(j − 1)σ

N
Δt + P2(j, t)γ2Δt + o(Δt),

P1(j, z − Δt, t + Δt) = (5)
[
P1(j, z, t) − P1(j,Δt, t)

](
1 − λ

N − j

N
Δt

)
(1 − γ1Δt)

(
1 − j − 1

N
σΔt

)

+ P0(j − 1, t)λ
N − j + 1

N
B(z)Δt + P0(j, t)

jσ

N
B(z)Δt + o(Δt),

P2(j, t + Δt) =P2(j, t)
(
1 − λ

N − j

N
Δt

)
(1 − γ2Δt) + γ0ΔtP0(j, t) (6)

+ P2(j − 1, t)λ
N − j + 1

N
Δt + P1(j, t)γ1Δt + o(Δt)

Assuming that system is operating in steady state, then from the above
relations it is not difficult to get the system of equations for the stationary
probability distribution P0(j),P1(j, z),P2(j), j = 0, ..., N in a shorter form,
namely we have

−
[

λ
N − j

N
+ σ

j

N
+ γ0

]

P0(j) +
∂P1(j + 1, 0)

∂z
+ λ

N − j + 1
N

P1(j − 1)

+
j − 1
N

σP1(j) + γ2P2(j) = 0 ,

∂P1(j, z)
∂z

− ∂P1(j, 0)
∂z

−
[

λ
N − j

N
+ σ

j − 1
N

+ γ1

]

P1(j, z)

+ λ
N − j + 1

N
B(z)P0(j − 1) +

j

N
σB(z)P0(j) = 0 ,

−
[

λ
N − j

N
+ γ2

]

P2(j) + λ
N − j + 1

N
P2(j − 1) + γ0P0(j) + γ1P1(j) = 0 .

(7)

where the meaningless probabilities are zero.
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4 Numerical Algorithm for Finding the Probability
Distribution of the System State and Performance
Measures

4.1 Algorithmic Approach for the Steady State Distribution

In order to find the probability distribution of the number of customers in the
system, we will solve system (7) numerically. We first obtain some very impor-
tant equalities used later on.

Let us consider the second equation of system (7) for case j = 1, that is

∂P1(1, z)
∂z

− ∂P1(1, 0)
∂z

−
[

λ
N − 1

N
+ γ1

]

P1(1, z)

+ λB(z)P0(0) +
σ

N
B(z)P0(1) = 0. (8)

The solution of this equation can be written in the form

P1(1, z) = e[λ
N−1
N +γ1]z

z∫

0

e−[λN−1
N +γ1]y

{
∂P1(1, 0)

∂z

−
[
λP0(0) +

σ

N
P0(1)

]
B(y)

}
dy.

(9)

Then by carrying out the limiting transition at z → ∞ we obtain that the first
factor of the right part of equality (9) in a limiting condition tends to infinity,
therefore we can conclude that the second factor will be equal to zero, that is

∞∫

0

e−[λN−1
N +γ1]y

{
∂P1(1, 0)

∂z
−

[
λP0(0) +

σ

N
P0(1)

]
B(y)

}

dy = 0,

from which it is not difficult to obtain that

∂P1(1, 0)
∂z

=
[
λP0(0) +

σ

N
P0(1)

]
B∗

(

λ
N − 1

N
+ γ1

)

. (10)

We can perform similar transformations for the second equation of system (7)
for the general case and, as a result we obtain

∂P1(j, 0)
∂z

=
[

λ
N − j + 1

N
P0(j − 1) +

j

N
σP0(j)

]

B∗
(

λ
N − j

N
+

j − 1
N

σ + γ1

)

.

(11)
In Eq. (8) let us execute the limiting transition at z → ∞ then we get

∂P1(1, 0)
∂z

[

λ
N − 1

N
+ γ1

]

P1(1) = λP0(0) +
σ

N
P0(1). (12)
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Similarly, for the general case, that is for j, using the second equation of sys-
tem (7), we can obtain

∂P1(j, 0)
∂z

[

λ
N − j

N
+

j − 1
N

σ + γ1

]

P1(j) = λ
N − j + 1

N
P0(j − 1)

+
j

N
σP0(j).

(13)

Let us write down the system of Eq. (7) for the case j = 0 then we get

∂P1(1, 0)
∂z

= [λ + γ0] P0(0) − γ2P2(0),

− [λ + γ2] P2(0) + γ0P0(0) = 0.

(14)

Hence combining equations of the system (7) for case j = 1 by using Eqs. (10)
and (12) we obtain

∂P1(1, 0)
∂z

=
[
λP0(0) +

σ

N
P0(1)

]
B∗

(

λ
N − 1

N
+ γ1

)

,

∂P1(1, 0)
∂z

+
[

λ
N − 1

N
+ γ1

]

P1(1) = λP0(0) +
σ

N
P0(1),

[

λ
N − 1

N
+ γ2

]

P2(1) = γ0P0(1) + γ1P1(1) + λP2(0),

∂P1(2, 0)
∂z

=
[

λ
N − 1

N
+ γ0 +

σ

N

]

P0(1) − γ2P2(1) − λP1(0).

(15)

Similarly, using the equations of system (7) and the equalities (11), (13) obtained
earlier we can write down the extended system of equations for 2 ≤ j ≤ N as
follows

[
λ

N − j

N
+ σ

j

N
+ γ0

]
P0(j) =

∂P1(j + 1, 0)

∂z
+ λ

N − j + 1

N
P1(j − 1)

+
j − 1

N
σP1(j) + γ2P2(j) ,

[
λ

N − j

N
+ γ2

]
P2(j) = λ

N − j + 1

N
P2(j − 1) + γ0P0(j) + γ1P1(j) ,

∂P1(j, 0)

∂z
=

[
λ

N − j + 1

N
P0(j − 1) +

j

N
σP0(j)

]
B∗

(
λ

N − j

N
+

j − 1

N
σ + γ1

)
,

∂P1(j, 0)

∂z
+

[
λ

N − j

N
+

j − 1

N
σ + γ1

]
P1(j) = λ

N − j + 1

N
P0(j − 1) + +

j

N
σP0(j) .

(16)
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The joint stationary probability distribution Πk(j) of the server’s state and the
number of customers in the system is the normalized solution of systems (14)–
(16). Starting with P0(0) = 1 using the algorithmic steps after normalization
we obtain the probability distribution Πk(j). Thus our proposed algorithmic
solution consists of the following steps

1. Put P0(0) = 1.
2. From the second equation of system (14) we get

P2(0) =
γ0

λ + γ2
P0(0).

3. From the first equations of systems (14), (15) we obtain

P0(1) =
N

σB∗ (
λN−1

N + γ1
) {−γ2P2(0)+

+
(

λ

[

1 − B∗
(

λ
N − 1

N
+ γ1

)]

+ γ0

)

P0(0)
}

.

4. From the first equation of system (14) and second equation of system (15) we
have

P1(1) =
1

λN−1
N + γ1

{ σ

N
P0(1) − γ0P0(0) + γ2P2(0)

}
.

5. From the third equation of system (15) we determine

P2(1) =
1

λN−1
N + γ2

{γ0P0(1) + γ1P1(1) + λP2(0)} .

6. For general case, that is for 2 ≤ j ≤ N , from system (16) it is not difficult to
obtain formulas for calculating Pk(j) in the form

P0(j) =
1

jσB∗
(
λN−j

N + j−1
N σ + γ1

)
{

− λ(N − j + 2)P1(j − 2)

+
(

λ(N − j + 1)
[

1 − B∗
(

λ
N − j

N
+

j − 1
N

σ + γ1

)]

+ (j − 1)σ

+γ0N
)

P0(j − 1) − (j − 2)σP1(j − 1) − γ2NP2(j − 1)
}

,

P1(j) =
1

λ(N − j) + σ(j − 1) + γ1N
{− [σ(j − 1) + γ0N ] P0(j − 1)

+jσP0(j) + λ(N − j + 2)P1(j − 2) + (j − 2)σP1(j − 1) + γ2NP2(j − 1)} ,

P2(j) =
1

λ(N − j) + γ2N
[γ0NP0(j) + γ1NP1(j) + λ(N − j + 1)P2(j − 1)] ,

P1(0) = 0 by convention.
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7. The solution obtained in the previous steps does not satisfy the normalization
condition. For the normalizing constant let us calculate the sum

d =
N∑

j=0

[P0(j) + P1(j) + P2(j)] ,

where Pk(j) is the quantities obtained in the previous steps.
8. To calculate the two-dimensional probability distribution Πk(j) carry on the

normalization, that is

Πk(j) =
1
d
Pk(j), k = 0, 1, 2, j = 0, 1, ..., N.

9. The marginal distribution of the number of customers in the system Π(j),
and the server’s state Πk, respectively can be calculated as follows

Π(j) = Π0(j) + Π1(j) + Π2(j), j = 0, ..., N, Πk =
N∑

j=0

Πk(j), k = 0, 1, 2.

4.2 Performance Measures

To show the effect of the input parameters on the operation of the system let us
define the most important characteristics which can be determine directly from
the steady state probabilities. Unfortunately only mean values are obtained but
our intention is to continue the research to get the distribution of the response
and waiting time of the customers, distribution of the number of retrials just to
mention some.

– Mean number of customers in the system Q

Q =
N∑

j=0

jΠ(j), (17)

– Mean arrival rate λ

λ = (N − Q)
λ

N
, (18)

– Mean response time T can be obtained by the Little-formula

T =
Q

λ
, (19)

– Mean number of customers in the orbit O

O = Q − Π1, (20)
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– Mean waiting time in the orbit W

W =
O

λ
, (21)

– Mean total service time E(TS)

E(TS) = T − W, (22)

– Probability of collision of a customer arriving from the source (Primary Cus-
tomer) PPC

PPC =
∑N

k=1(N − k) λ
N Π1(k)

∑N
j=0(N − j) λ

N (Π0(j) + Π1(j))
, (23)

– Probability of collision of a customer arriving from the orbit (Secondary Cus-
tomer) PSC

PSC =

∑N
j=1(j − 1) σ

N Π1(j)
∑N

j=0 j σ
N Π0(j) +

∑N
j=1(j − 1) σ

N Π1(j)
, (24)

– Probability of collision PC

PC = (25)
∑N

j=1

[
(N − j) λ

N
+ (j − 1) σ

N

]
Π1(j)

∑N
j=0

[
(N − j) λ

N
+ j σ

N

]
Π0(j) +

∑N
j=0(N − j) λ

N
Π1(j) +

∑N
j=1(j − 1) σ

N
Π1(j)

,

– Probability of retrial PR

PR = (26)
∑N

j=0(N − j) λ
N

(
Π1(j) + Π2(j)

)
+

∑N
j=1(j − 1) σ

N
Π1(j) +

∑N
j=1 j σ

N
Π2(j) + γ1Π1

∑N
j=0(N − j) λ

N
Π(j) +

∑N
j=1(j − 1) σ

N
Π1(j) +

∑N
j=1 j σ

N

(
Π0(j) + Π2(j)

)
+ γ1Π1

.

5 Numerical Examples

The proposed algorithm has been tested by the numerical results of [13] where
the service time is exponentially distributed and the server is reliable, [14] in
which the service time is generally distributed and the server is reliable, and [19]
where the service time is exponentially distributed and the server is subject to
breakdowns and repairs. Finally, in [24] the present model has been analyzed by
means of stochastic simulation.
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Table 1. Numerical values of model parameters

Case studies

No. N λ σ α β γ0 γ1 γ2

Fig. 1 30 2 10 0.5 0.5 0.1 0.2 1

Fig. 2 30 2 10 0.5, 1, 2 0.5, 1, 2 0.1 0.2 1

Fig. 3 100 0.01..10 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 4 100 0.01..0.2 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 5 100 0.01..0.2 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 6 100 0.01..0.25 0.1 0.5 0.5 0.5 0.5 1

Fig. 7 100 0.01..0.15 0.1 1 1 0.5 0.5 1

Fig. 8 100 1 1 1 1 0.05..1 0.05..1 2

In our examples we will choose gamma distributed service time S with a shape
parameter α and scale parameter β, with Laplace-Stieltjes transform B∗(δ) of
the form

B∗(δ) =
(

1 +
δ

β

)−α

,

in the case when α = β, that is when the average service time will be equal to
unit.
It can be shown that

E(S) =
α

β
, V ar(S) =

α

β2
, V 2

S =
1
α

,

where V 2
S denotes the squared coefficient of variation of S. This distribution

allows us to show the effect of the distribution on the main performance mea-
sures, because dealing with the same mean we can see the impact of the variance,
too.

From the system probabilities the well known system characteristics are cal-
culated. The most interesting performance characteristics obtained by these tools
are graphically presented in this section. On the Figures the lines represent dif-
ferent working assumptions or cases (e.g. different parameters of the distribution
of the service time). The input parameters are listed in Table 1.

Figures 1 and 2 display distributions of the steady-state system probabilities
where values of x-axes represent the numbers of customers staying in the sys-
tem, i.e. the states of the system. On the other Figures the effects of a running
parameter are shown. In Table 1 a parameter running from n to m is denoted
by n..m. If the effect of an other parameter is also considered, a separate curve
is presented for each values of that parameter, and these values are listed in
Table 1, as well.
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Fig. 1. Comparison of numerical and
simulation results

Fig. 2. Comparison the distributions
for different α and β parameters

On Fig. 1 the numerical and simulation results for the steady-state proba-
bilities are compared to each other. As we can see the values are very close to
each other, so the two curves are identical illustrating that the numerical and
simulation procedures operate correctly.

Figure 2 shows the effect of the different values of the shape α, and scale/rate
β parameters. The curves represent the cases of α = β with values 0.5, 1, 2,
respectively. Thus, the expected values of the service times are equal but the
variances are different. For higher values of α, and β parameters, the standard
deviation and the coefficient of variance will be smaller. For small values of
parameters, i.e. high value of standard deviation, the distribution is more tailed
than for higher values of α, and β.

On Fig. 3 the mean waiting time can be seen in different cases. For Case 1,
2, and 3 the values of α, and β are 0.5, 1, 2, respectively (α = β for all cases). A
maximum point can be observed for this performance measure, as the arrival rate
increases. In retrial systems this maximum feature is an unexpected and quite
unique phenomenon. Many times there exists a combination of parameters, for
which the response time, waiting time or queue length have a maximum point,
see for example in [5,6,22,25].

Fig. 3. Mean waiting time W vs arrival
intensity from the source

Fig. 4. Probability of collision for pri-
mary customers PPC vs arrival inten-
sity from the source
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The mentioned maximum feature can be observed on Fig. 4, as well. Here
again the arrival rate is the running parameter. The different lines correspond
to the different α, and β parameters as on Fig. 2 and 3. As mentioned above,
this maximum point can be achieved only a specific set of parameters. With the
parameters of Fig. 4, the probabilities of retrial are computed and displayed on
Fig. 5. Here there are no maximum points for the probabilities. The PR values
increase with the increasing arrival rate. But when some parameters (retrial rate,
failure rates) are modified, the following results can be obtained: for α = β = 0.5
the Fig. 6, and for α = β = 1 the Fig. 7. The maximum feature and the decreasing
trend of the probabilities can be seen on both Figures. A similar Figure could
be generated for α = β = 2 case, too.

Finally, Fig. 8 displays the result of the effect of modification of failure rates.
γ0, and γ1 are modified parallel, the same way, so for each point γ0 = γ1.
The range of the parameters can be found in Table 1. The PPC , PC , and PR

probabilities are displayed, but only two lines are in the Figure. The values of
PPC , and PC are so close (not identical) to each other, that only one line can
be seen for these two parameters. The results show what is expected, that is as
the failure rate increasing more and more requests are sent to the orbit causing
retrials, but the chance of collision is decreasing since the server is broken.

Fig. 5. Probability of retrial PR vs
arrival intensity from the source

Fig. 6. Probability of retrial PR vs
arrival intensity from the source

Fig. 7. Probability of retrial PR vs
arrival intensity from the source

Fig. 8. Values of probabilities PPC ,
PC , and PR vs failure rate
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6 Conclusion

In this paper finite source M/GI/1 retrial queuing systems with collisions of
the customers and an unreliable server were considered. Applying the method
of residual service times as supplementary variable the steady state Kolmogorov
equations were solved by means of a new algorithmic approach. The main perfor-
mance measures were defined and several numerical sample examples illustrated
the effect of the input parameters on these characteristics. In the near future,
for the considered system we plan to investigate the distribution of the number
of transitions of the customer into the orbit, distribution of the sojourn time of
the customer in the system and other system performance descriptors.

Acknowledgments. The work/publication of J. Sztrik is supported by the EFOP-
3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the
European Social Fund.

References

1. Ali, A.A., Wei, S.: Modeling of coupled collision and congestion in finite source
wireless access systems. In: 2015 IEEE Conference on Wireless Communications
and Networking Conference (WCNC), pp. 1113–1118. IEEE (2015)

2. Almási, B., Roszik, J., Sztrik, J.: Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs. Math. Comput. Modell. 42(5–6), 673–
682 (2005)

3. Artalejo, J., Corral, A.G.: Retrial Queueing Systems: A Computational Approach.
Springer, Heidelberg (2008)

4. Cao, Y., Khosla, D., Chen, Y., Huber, D.J.: System and method for real-time
collision detection. US Patent 9,934,437, 3 Apr 2018

5. Dragieva, V., Phung-Duc, T.: Two-way communication M/M/1//N retrial queue.
In: Thomas, N., Forshaw, M. (eds.) ASMTA 2017. LNCS, vol. 10378, pp. 81–94.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61428-1 6

6. Falin, G., Artalejo, J.: A finite source retrial queue. Eur. J. Oper. Res. 108, 409–424
(1998)
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23, 213–227 (2004)

23. Sztrik, J., Almási, B., Roszik, J.: Heterogeneous finite-source retrial queues with
server subject to breakdowns and repairs. J. Math. Sci. 132, 677–685 (2006)
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