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NUMERICAL ANALYSIS OF NON-RELIABLE

RETRIAL QUEUEING SYSTEMS WITH COLLISION

AND BLOCKING OF CUSTOMERS

A. Kuki1 , J. Sztrik1 , T. Bérczes1 , Á. Tóth1 , and D. Efrosinin2

The aim of the investigation is a closed retrial queueing system with a finite source. The server can
be reached from the source (primary request) or from the orbit (secondary request). If an incoming
(primary or secondary) job finds the server busy, two modes are distinguished: the job is transferred
to the orbit (no collision) or the job under service is interrupted and both of them are transferred
to the orbit (collision). Requests in the orbit can retry reaching the server after a random waiting
time. The nonreliable case when the server is subject to breakdown is also investigated. In case of
breakdown, when the server is under repair, also two cases can be investigated. For the first, primary
calls from the source can reach the system, and they will be sent to the orbit. For the second, the
source is blocked, so primary customers are not able to step into the system. This paper focuses
on the unreliable system with collision and blocking of parameters. These types of systems can be
solved by numerical, asymptotical, and simulation methods. Our goal is to provide a new approach
to the algorithmic solution for calculating the steady-state probabilities of the system. Using these
quantities the main performance characteristics (utilization of the server, response time, etc.) can be
calculated. Examples illustrate the effect of different parameters on the distribution of requests in
the system.

1. Introduction

Retrial queueing systems (RQ-systems) are effective tools for modeling and investigating real systems
from different fields of real life situations. The dynamic behavior of a general RQ-system can be described
by the following characteristics: when an incoming job from the outside world (from the sources or from
the queue of the system) finds the server busy, joins the orbit, and after a random, usually exponentially
distributed waiting time it retries to reach the server again. The orbit is an abstract waiting cloud, and
it is assumed to be infinitely large and jobs keep retrying until they are served. The commonly known
application fields of an RQ-systems are call centers, computer networks, telecommunication systems,
telephone switching systems, and recently the different types of networks of a smart city networks, etc.
Infinite source models have been investigated and applied by many authors; they have a very large
amount of literature. But in several cases the finite source models (finite number of customers in the
source) are more adequate to describe the behavior of the considered system. The most characteristic
examples are mobile networks, sensor networks, some IoT systems, and cognitive radio systems. The
random and multiple access protocols for these type of systems have been investigated, for example,
in [3, 9].

In real life situations, unfortunately, the reliable operation of the considered systems cannot be
assumed. They are subject to breakdowns. That is why this situation has to be investigated. In the
modeling process of the system, some random server failures and the corresponding repairs are included.
The system characteristics and performance measures are highly dependent on the nonreliable operation
of the systems. Finite-source RQ-systems with server breakdowns and repairs have been investigated in
several recent papers, for example in [2, 6, 7, 16,17].
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In the present paper, an M/M/1//N retrial queueing system with collisions of customers is con-
sidered. For nonreliable systems, blocking and nonblocking cases will be distinguished and compared.
Collisions of requests can occur with significant numbers in unsynchronized communication systems with
limited number of resources, for example communication channels. In this case the transmission is lost
and the interrupted customers need to be retransmitted; consequently the performance of the system
is sub-optimal. There is great importance in developing methods, procedures, and protocols that are
able to shield the system from customers conflicts or at least try to optimize the performance. In this
direction some recent results can be found in [1, 4, 8, 10–12,15].

In this paper a new approach of a recursive numerical solution for calculating the steady-state prob-
abilities of the system is presented. Using these probabilities the most important performance measures
can be computed. Several examples illustrate the effect of different parameters of the distribution of
requests in the system.

2. Description of the system

A finite source closed retrial queuing system of type M/M/1//N is considered. As the Kendall’s
notation says, this is a single server system with the number of sources equal to N . Three working
modes of the server can be investigated:

� The system is reliable, that is, there is no server breakdown during the operation.

� The nonblocking mode. The system is nonreliable, that is, the server is subject to random break-
downs after an exponentially distributed time. When the server is idle at the time of the breakdown,
the breakdown parameter is γ0. When the server is busy at the time of breakdown, the breakdown
parameter is γ1. This means, for example, that if the server is busy, it will go wrong after an expo-
nentially distributed random time with parameter γ1. Because of the memorylessness property of
the exponential distribution, this is so for every chosen time point from the busy period. Further-
more, it is assumed that the job under service is sent to the orbit. The repair starts immediately
after the breakdown. The distribution of the repair time is also exponential with parameter γ2.
During the repair period of the server, the sources are supposed to be able to generate requests.
These jobs find an unavailable server and they will be sent into the orbit. From the orbit these
requests retry reaching the server again after an exponentially distributed time with parameter
σ/N . The customers keep trying for service until they can reach the available idle server.

� The blocking mode. All of the nonblocking conditions hold, except one. During the repair period
of the server the sources are not able to generate requests. They are blocked.

This paper investigates mainly the nonreliable case with nonblocking and blocking working modes.
The workflow of the system is as follows. The sources generate a job (request, customer) towards

the server. The job generation inter-request times are exponentially distributed with parameter λ/N .
After generating a request, the source waits for successful service. Until the end of service of the job, the
source cannot generate a new request. The generated customer reaches the server, which can be busy or
idle. When the server is empty (idle), the service of the job begins immediately, and the service times
are assumed to be exponentially distributed with parameter µ. When the server is busy, two different
scenarios can be considered:

� No collision: when an arriving customer finds the server busy, it is transferred into the orbit. From
the orbit this request retries reaching the server again after an exponentially distributed time with
parameter σ/N . The customers keep trying for service until they can reach an available idle server.

� Collision: when an incoming request finds the server busy, it is involved in collision with the
customer under service, and both customers are transferred into the orbit. From the orbit the jobs
will have the same behavior as in the “No collision” case. See the model in Fig. 1.
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The reason that we deal with rates λ/N and σ/N is that in [13,14] similar systems were treated by
an asymptotic method where N tends to infinity and it was proved that the number of customers in the
system follows a nearly normal distribution. As we can see in Fig. 2, this happens in our case, too.

Let us denote the state of the system i(t), that is, the number of customers in the service facility
that is either in the orbit or under service, and let k(t) denote the status of the server:

k(t) =







0, if the server is up and idle,
1, if the server is up and busy,
2, if the server is down and under repair.

Let P(k(t) = k, and i(t) = i) = Pk(i, t) the probability that at the time t there are i customers in
the system and the server is in the state k. Under the assumptions given above, the process X(t) =
= {k(t), i(t)} is a 2-dimensional Markov chain with the state space {0, 1, 2}x{0, 1, . . . , N}.

Fig. 1. System model.

When the service of a request is successful, the request goes back to the source. All the random
variables involved in the model are assumed to be jointly independent.

The Kolmogorov differential equations for probabilities Pk(i, t) are as follows (for the nonblocking
case see, [10] and [12]):

∂P0(0, t)

∂t
= −(λ+ γ0)P0(0, t) + µP1(1, t) + γ2P2(0, t),

∂P1(1, t)

∂t
= −

(

λ
N − 1

N
+ µ+ γ1

)

P1(1, t) + λP0(0, t) +
σ

N
P0(1, t),

∂P2(0, t)

∂t
= −γ2P2(0, t) + γ0P0(0, t), (1)

∂P0(i, t)

∂t
= −

(

λ
N − 1

N
+ σ

i

N
+ γ0

)

P0(i, t) + µP1(i+ 1, t)+

+ λ
N − i+ 1

N
P1(i− 1, t) + σ

i− 1

N
P1(i, t) + γ2P2(i, t),
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∂P1(i, t)

∂t
= −

(

λ
N − 1

N
+ σ

i− 1

N
+ γ1 + µ

)

P1(i, t) + λ
N − i+ 1

N
P0(i− 1, t) + σ

i

N
P0(i, t),

∂P2(i, t)

∂t
= −γ2P2(i, t) + γ0P0(i, t) + γ1P1(i, t).

The X(t) = {k(t), i(t)} process is a finite state Markov chain, so the steady-state operation can be
assumed: Pk(i, t) = Pk(i).

Based on the stationarity, the steady-state Kolmogorov equations can be written as

−(λ+ γ0)P0(0) + µP1(1) + γ2P2(0) = 0,

−

(

λ
N − 1

N
+ µ+ γ1

)

P1(1) + λP0(0) +
σ

N
P0(1) = 0,

−γ2P2(0) + γ0P0(0) = 0, (2)

−

(

λ
N − 1

N
+ σ

i

N
+ γ0

)

P0(i) + µP1(i+ 1) + λ
N − i+ 1

N
P1(i− 1) + σ

i− 1

N
P1(i) + γ2P2(i) = 0,

−

(

λ
N − 1

N
+ σ

i− 1

N
+ γ1 + µ

)

P1(i) + λ
N − i+ 1

N
P0(i− 1) + σ

i

N
P0(i) = 0,

−γ2P2(i) + γ0P0(i) + γ1P1(i) = 0.

Note that the formulas for the system with conflict and reliable server are obtained if all of the γ2
parameters and P2 probabilities are set to zero.

3. Performance measures

To show the effect of the input parameters on the operation of the system, let us define the most
important characteristics that can be determined directly from the steady-state probabilities.

� The mean number of customers in the system Q and in the orbit O

Q =

N
∑

i=0

iP(i), O = Q− P1.

� The mean arrival rate λ

λ =
1

∑

k=0

N
∑

i=0

(N − i)
λ

N
Pk(i).

� The mean response time T and mean waiting time W in the orbit can be obtained by the Little
formula
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T =
Q

λ
, W =

O

λ
,

O = Q− P1.

� The mean total service time E(TS) and mean total sojourn time in the source E(τ)

E(TS) = T −W, E(τ) =
(N −Q)T

Q
.

� The mean number of trials from the source E(NTS) and from the orbit E(NTO)

E(NTS) =
λ

N
E(τ), E(NTO) =

σ

N
W.

4. Numerical solution

When we have these system equations, for the steady-state probabilities a recursive solution can be
build up. For the nonblocking case it was described in [10] and [12]. For the blocking case the following
steps can be used for calculating the steady-state probabilities Pk(i) recursively:

Step 1. Set the numerical values for parameters N,λ, µ, σ, γ0, γ1, γ2. Table 1 contains the values of
these parameters for the figures presented below.

Step 2. Use the natural assumption P1(0) = 0.

Step 3. From the third equation of (2), P2(0)
P0(0)

can be calculated as

P2(0)

P0(0)
=

γ0
γ2

.

Step 4. From the third equation of (2), P1(1)
P0(0)

can be obtained as

P1(1)

P0(0)
=

1

µ

(

(λ+ γ0)− γ2
P2(0)

P0(0)

)

.

Step 5. For 1 6 i 6 N − 1 the following equations can be derived

P0(i)

P0(0)
=

N

iσ

{(

λ

(

N − i

N

)

+ σ
i− 1

N
+ µ+ γ1

)

P1(i)

P0(0)
− λ

(

N − i+ 1

N

)

P0(i− 1)

P0(0)

}

,

P2(i)

P0(0)
=

1

γ2

(

γ0
P0(i)

P0(0)
+ γ1

P1(i)

P0(0)
+

P2(i− 1)

P0(0)

)

,

P1(i+ 1)

P0(0)
=

=
1

µ

{(

λ

(

N − i

N

)

+ σ
i

N
+ γ0

)

P0(i)

P0(0)
− λ

(

N − i+ 1

N

)

P1(i− 1)

P0(0)
− σ

i− 1

N

P1(i)

P0(0)
− γ2

P2(i)

P0(0)

}

.

Step 6. For i = N the following formulas are valid:

P0(i)

P0(0)
=

1

σ

{(

σ
N − 1

N
+ µ+ γ1

)

P1(N)

P0(0)
−

λ

N

P0(N − 1)

P0(0)

}

,
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P2(N)

P0(0)
=

1

γ2

(

γ0
P0(N)

P0(0)
+ γ1

P1(N)

P0(0)

)

.

Step 7. Using the normalization condition, P0(0) can be determined as

P0(0) =
1

N
∑

i=0

(

P0(i)
P0(0)

+ P1(i)
P0(0)

+ P2(i)
P0(0)

)

.

Step 8. From the values of Pk(i)
P0(0)

and P0(0), the Pk(i), k = 0, 1, 2, probabilities can be obtained.

Step 9. The one-dimensional marginal distribution can be obtained as

P(i) = P0(i) + P1(i) + P2(i), i = 0, 1, . . . , N.

Several possible tools were taken into consideration to perform the calculations. The choice was a
spreadsheet application, namely MS Excel. This software is efficient and comfortable for solving this
type of recursive calculations. The parameters are set into specified cells so the effect of changing the
different parameters can be computed immediately. During programming the formulas, the absolute and
relative cell references are useful methods for handling the recursive elements. The running parameter,
the number of sources (i), is set into a column and N can be arbitrary large. Simultaneously with these
calculations, the problem was solved by MOSEL-2 tool, as well (MOdeling Specification and Evaluation
Language); see [5]. The MOSEL tool builds up the system equations. The steady-state probabilities are
the results of these equations. A hard limit can be found for the number of sources. The state space
grows extremely fast; consequently the number of sources cannot exceed 200. In Excel we can go far
above 200. Other advantages for using this spreadsheet are that the effect of parameter modifications
can be seen immediately, and the set of the steady-state probabilities, both two- and one-dimensional,
are presented in separate columns and can be used directly for further investigations.

First, the steady-state probabilities are calculated and some effects of the system parameters are
presented. A comparison with the MOSEL-calculations is also performed. After these results the
behavior of some performance measures are given. These measures are calculated from the steady-state
probabilities and are specified in Section 3.

Table 1. Numerical values of model parameters

Figure Model λ µ σ N γ0 γ1 γ2

2 All* 1 1 5 100 0.1 0.1 1

3 Block, Nonblock 1, 2 1 5 100 0.1 0.1 1

4 Block, Nonblock 1 1, 2 5 100 0.1 0.1 1

5 Block, Nonblock 1 1 5 100 0.1, 0.5 0.1 1

6 Block, Nonblock 1 1 5 100 0.1 0.1,0.5 1

7 Block, Nonblock 1 1 5 100 0.1 0.1 1, 5

8 Block 1 1 5 100 0.1 0.1 1

9 Block x-axes 1 0.1 100 0.1 0.1 1

10 Block x-axes 1 0.1 100 0.1 0.1 1

11 Block 1 1 0.1 100 x-axes x-axes 1

12 Block 1 1 0.1 100 x-axes x-axes 1

* All the four considered models are included in this graph: reliable with no collision, reliable with
collision, unreliable with collision and nonblocking, and unreliable with collision and blocking. The
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Fig. 2. Reliable no conflict, reliable with conflict, and unreliable with conflict.

Fig. 3. Effect of generation rate λ.

further figures were generated for comparing the blocking and nonblocking cases for an unreliable server
with collision of customers.

In Fig. 2 the steady-state probabilities of the four models are displayed: the basic reliable system
with no collision, reliable system with collision, and unreliable system with collision with blocking and
nonblocking. In the no collision case the expectation of states are lower than for the other cases. The
probabilities of the states have the greatest mean in the unreliable system with nonblocking, as was
expected, because the blocking phenomenon prevents from sources entering into system during the
phase of the breakdown.

The effects of customer generation rate and service rate can be seen in Figs. 3 and 4 respectively.

The figures reflect the expected behavior: higher generation rates involve higher number of states,
thus higher mean; for higher service rates, the mean number of request is lower, as was expected. In
the blocking cases the mean number of customers is lower because no customer is generated from the
source during the repair period.

In Figs. 5–7 the effect of failure and repair rates is displayed. It can be observed that for significantly
higher idle failure rate the mean value of customers in the system is much larger than for the other two
cases. Change of the repair rate provides a similar result. The slower the repair, the higher the number
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Fig. 4. Effect of service rate µ.

Fig. 5. Effect of failure rate γ0.

Fig. 6. Effect of failure rate γ1.
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Fig. 7. Effect of repair rate γ2.

Fig. 8. Numerical calculations vs. MOSEL-2.

of customer. It is interesting that for γ0 and γ2 different blocking cases are identical.

In Figs. 8 the result of comparison between the numerical and MOSEL-calculation is displayed.
The empirical distribution functions are calculated by cumulating the steady-state probabilities, and
the Kolmogorov distance of distribution functions is applied.

The Kolmogorov distance is defined as

∆ = max
06k6N

∣

∣

∣

∣

∣

k
∑

i=0

PNum(i)−
k

∑

i=0

PMos(i)

∣

∣

∣

∣

∣

= 4.37E − 07.

It can be stated that the results of the two different calculations (numerical and MOSEL) are almost
identical.

In Fig. 9 the mean response time calculated by the formulas presented in Chapter 3 is displayed
as a function of the overall generation rate. The expected maximum characteristic can be observed
in this figure, as well. Under some parameter settings the finite-source retrial queueing systems have
this maximum feature for several performance measures, e.g., response time. The reason is the special
coincidence of the high generation rate and the low number of active tokens in the source (the number
of jobs in the system is usually high in this situation).
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Fig. 9. Mean response time vs. λ.

Fig. 10. Mean total sojourn time in source vs. λ.
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Fig. 11. Mean total sojourn time in the source vs. γ0 and γ1.

Fig. 12. Mean total service time vs. γ0 and γ1.

Figure 10 shows the mean total sojourn time in the source as a function of the generation rate. The
other parameters are the same as in Fig. 9. With increasing generation rate, a decreasing sojourn time
was expected. The only question was the shape of the function. Here it is exponentially decreasing.
(When this measure is calculated as a function of failure rates, the correspondence is linear. See Fig.
11.)

In Figs. 11 and 12 the mean total sojourn time in the source and the mean total service time are
presented. Sojourn times have been investigated in many papers (see, e.g., [10]), but for this blocking
case the sojourn time in the source has not been described yet. The running parameters are the failure
rates γ0 and γ1. For simplicity, γ0 = γ1 is considered. An increasing sojourn time was expected for
higher failure rates. In Figs. 11 a positive linear correspondence can be observed between the sojourn
time and the failure rate. For increasing failure rate the response time and the waiting time (in orbit)
will be increasing, as well. The mean total service time is the difference of T and W , and in Fig. 12 it
can be seen that this difference is almost constant and is slightly decreasing.

5. Conclusions

In this paper a finite-source retrial queueing model was introduced. Mainly the cases of an unreliable
server and collision of customers were investigated and the blocking and nonblocking behaviors were
compared.
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The goal of the paper was to provide an alternative solution for the tool supported (MOSEL) numeric
calculations of the steady-state probabilities in the nonblocking case, as well. A robust software package,
the MS Excel, proved to be a useful and efficient solution method.

The main advantage of the algorithmic approach is that there is no memory limitations, and the
values of the system probabilities are immediately ready for further use and investigations. The results
of the blocking and nonblocking scenarios were investigated. In addition, the results of the calculations
were compared with the results of the MOSEL-output. With the help of the Kolmogorov distance the
two sets of probabilities were found to be almost identical.
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