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THE SIMULATION OF FINITE-SOURCE RETRIAL

QUEUEING SYSTEMS WITH COLLISIONS AND

BLOCKING

Á. Tóth1, T. Bérczes1, J. Sztrik1, A. Kuki1, and W. Schreiner2

This paper investigates, using a simulation program, a retrial queuing system with a single server
which is subject to random breakdowns. The number of sources of calls is finite, and collisions can
take place. We assume that the failure of the server blocks the system’s operation such that newly
arriving customers cannot enter the system, contrary to an earlier paper where the failure does not
affect the arrivals. All the random variables included in the model construction are assumed to be
independent of each other, and all times are exponentially distributed except for the service time,
which is gamma distributed. The novelty of this analysis is the inspection of the blocking effect on
the performance measures using different distributions. Various figures represent the impact of the
squared coefficient of the variation of the service time on the main performance measures such as the
mean and variance of the number of customers in the system, the mean and variance of the response
time, the mean and variance of the time a customer spends in the service, and the mean and variance
of the sojourn time in the orbit.

1. Introduction

This paper deals with the investigation of systems with retrial queues; these are effective tools for
modeling real life situations emerging in major telecommunication systems, such as telephone switching
systems, call centers, computer networks, and computer systems. It is a typical feature of this system
that customers who find the server busy or unavailable are directed toward the so-called orbit instead of
the service area. Models of retrial queuing systems have also become popular in two-way communication
in the last years; see for example [6, 12]. In many application fields, such as cellular mobile networks,
computer networks, and local-area networks with random access protocols and with multiple access
protocols, researchers can utilize the models of retrial queues like in [3, 9].

In many papers the server is expected to function in all the available time, which is quite unrealistic.
In real life applications, reliability cannot be assumed. For example, during wireless communication,
several factors can impact the transmission rate, so during packet transmission, interruptions are in-
evitable. The study of the unreliability of retrial queuing systems has a great importance especially
considering the system characteristics and performance measures. Recently several papers investigated
finite-source retrial queues where the server is subject to breakdown; see for example [2,5,8,11,18,20,21].

In many practical situations during data transmission, where the number of communication channels
is limited, users (sources) usually compete with each other for the available resources. When various
sources begin to distribute data towards the same server, collisions are produced, resulting in the loss
of the transmission and consequently in the need for retransmission. Creating an efficient method for
preventing conflict and corresponding message delay is essential in eliminating the possibility of collision.
Recent results on retrial queues with collisions can be found, for example, in [1, 4, 10,13,14,17].

The aim of this paper is to examine the operation of a system in the case of server failure and to
analyze the effect of blocking. The considered system contains a nonreliable server with a finite number
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Fig. 1. System model.

of sources where collisions can occur. A simulation model is developed using SimPack [7], a collection
of C/C++ libraries and executable programs, in order to obtain the main steady-state performance
measures. The SimPack toolkit provides the user with a set of utilities that illustrate the basics of
building a working simulation from a model description. One of its main advantages is that it really
depends on the user what performance measure to calculate and how the model is built up. The novelty
of this work is to provide a possible operation method when the server is not available and to compare
the received results with those of [19], where the arrivals of the customers are not blocked by the failure
of the server.

2. Model description and notations

This paper investigates a retrial queuing model with one server. The operation of the model can be
seen in Fig. 1.

In this model, N customer resides in the source, which is finite such that the system is stable in every
moment. Each customer can produce a call (incoming customers in the system) towards the server with
rate λ/N , so the inter-request times are exponentially distributed with parameter λ/N . Our model does
not contain a queue; therefore the service of an incoming customer starts instantaneously if the server
is idle and in operational state (up). The service time follows a gamma distribution with parameters α
and β. The customer returns to the source after a successfully executed service. When an arriving
customer (from either the source or the orbit) finds the server busy, meaning that another customer is
under service, a collision arises such that both requests are sent into the orbit. Customers located in
the orbit may retry their requests for service after a random time. The distribution of this period is
exponential with parameter σ/N . Because of the unreliability of the server, it breaks down after some
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exponentially distributed period. The parameter of this distribution is γ0 when the server is busy and γ1
when it is idle. The repair mechanism begins immediately upon the failure of the server. The repair time
is an exponentially distributed random variable with parameter γ2. It is assumed that all the random
variables involved in the model creation are totally independent of each other. The reason that we deal
with rates λ/N and σ/N is that in [15,16] similar systems were treated by an asymptotic method where
N tends to infinity, and it was proved that the number of customers in the systems follows a normal
distribution. As we can see in Fig. 2, this happens in our case, too.

When a busy server breaks down, the interrupted customer is transmitted to the orbit. Two types
of operation mode are distinguished in the case of a server failure:

� without blocking: requests are able to enter the system and these are forwarded to the orbit
instantaneously;

� with blocking: the arriving customers cannot enter the system; they return to the source and a
new request generation starts.

3. Simulation results

The applied values of the input parameters are presented in Table 1. Tables 2 and 3 indicate the
numerical results of the main performance measures comparing the two possible operation methods
whenever the server breaks down. Here the following notations are introduced: E(NS): the mean
number of customers, Var(NS): the variance of the number of customers, E(T): the mean response
time, Var(T): the variance of the response time, E(W): the mean waiting time, Var(W): the variance
of the waiting time, E(S): the average successful service time, Var(S): the variance of the successful
service time, E(IS): the mean period of the interrupted service time.

Table 1. Numerical values of model parameters

Case studies

No N λ/N γ0 γ1 γ2 σ/N α β

Fig. 2 100 0.01 0.1 0.1 1 0.01 0.5,1,2 0.5,1,2

Fig. 3 100 0.01..6 0.1 0.1 1 0.01 0.5,1,2 0.5,1,2

Fig. 4 100 0.01..6 0.1 0.1 1 0.01 0.5 0.5

Fig. 5 100 0.01..6 0.1 0.1 1 0.01 1 1

Fig. 6 100 0.01..6 0.1 0.1 1 0.01 2 2

Fig. 7 100 0.01 0.05..0.5 0.05..0.5 1 0.01 0.5 0.5

Fig. 8 100 0.01 0.05..0.5 0.05..0.5 1 0.01 1 1

Fig. 9 100 0.01 0.05..0.5 0.05..0.5 1 0.01 2 2

Fig. 10 100 0.01 0.05..0.5 0.05..0.5 1 0.01 0.5 0.5

Fig. 11 100 0.01 0.05..0.5 0.05..0.5 1 0.01 0.5 0.5

Fig. 12 100 0.01 0.05..0.5 0.05..0.5 1 0.01 1 1

Fig. 13 100 0.01 0.05..0.5 0.05..0.5 1 0.01 2 2

Table 2. Numerical results when blocking is not applied

Case E(NS) Var(NS) E(T) Var(T) E(W) Var(W) E(S) Var(S)
1 63.6842 27.9734 175.3073 65657.3454 174.5884 65434.6696 0.3147 0.1979
2 70.5912 24.3012 239.9734 105273.4267 238.9734 104918.6389 0.4784 0.2289
3 75.1825 21.2439 302.8106 151781.1411 301.5377 151277.6006 0.6472 0.2095
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Fig. 2. Comparison of steady-state distributions.

Table 3. Numerical results when blocking is applied

Case E(NS) Var(NS) E(T) Var(T) E(W) Var(W) E(S) Var(S) E(IS)
1 60.0320 28.5106 165.1955 63510.5573 164.4769 63287.935 0.3146 0.1977 0.4040
2 67.64 25.1115 229.8805 103125.2009 228.8805 102770.5034 0.4783 0.2288 0.5217
3 72.69 22.4004 292.6778 149545.4531 291.4051 149042.3599 0.6471 0.2095 0.6256

In Fig. 2 the steady-state distribution of the investigated cases is presented when blocking is applied.
The parameters of the service time of Case 2 are unique because for α = 1 we have the exponential
distribution. When the values of parameters α and β increase, this results in a higher mean number of
customers, although the mean of the gamma distribution is the same in all cases (α/β = 1). Looking
carefully at Fig. 2, it can be observed that all cases correspond to the normal distribution. Figure 3
displays the mean waiting time of the customers as a function of the incoming generation rate when
blocking is applied. Consequently, because the mean number of customers is higher in Cases 2 and 3
compared to Case 1, the mean waiting time is greater, too. It is a specialty that, when using retrial
queues with finite-source, the mean waiting time has a maximum value. This is a general characteristic
of retrial queues but depends on the parameter settings used.

In Figs. 4, 5, and 6, the two operation methods are compared when the server is down. These figures
ensure the expected behavior when blocking is applied, which results in a lower mean waiting time. This
can be explained by the fact that customers cannot enter the system in case of server failure, such that
these requests are rejected and directed back towards the source. These figures also show, besides higher
values of α and β, that the difference between the operation methods are smaller; in Fig. 6, the results
are almost identical.

Figures 7, 8, and 9 present the mean spent time in the source of the customers as a function of the
server failure rates. As can be clearly seen, the results are equal, which indicates that the distribution of
the service time has no effect on the mean spent time in the source of customers. The proposed behavior
is noticeable in case of blocking: the customers spend more and more time in the source if the server is
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Fig. 3. Mean waiting time vs. intensity of incoming customers.
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Fig. 4. The effect of blocking; the parameters of service time are α = β = 0.5.



The Simulation of Finite-source Retrial Queueing Systems with Collisions and Blocking 553

 220

 230

 240

 250

 260

 270

 280

 290

 300

 310

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

M
ea

n 
wa

iti
ng

 ti
m

e 

λ/N

With blocking

Without blocking

Fig. 5. The effect of blocking; the parameters of service time are α = β = 1.
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Fig. 6. The effect of blocking; the parameters of service time are α = β = 2.
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Fig. 7. The effect of blocking; the parameters of service time are α = β = 0.5.
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Fig. 8. The effect of blocking; the parameters of service time are α = β = 1.
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Fig. 9. The effect of blocking; the parameters of service time are α = β = 2.
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Fig. 10. The effect of blocking; the parameters of service time are α = β = 0.5.
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Fig. 11. The effect of blocking; the parameters of service time are α = β = 0.5.
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Fig. 12. The effect of blocking; the parameters of service time are α = β = 1.
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Fig. 13. The effect of blocking; the parameters of service time are α = β = 2.

more likely subjected to breakdowns. The mean spent time in the source of the customers is constant
when requests can enter the system and the server does not function.

Figure 10 shows the average number of attempts of the customers to enter the system. Consequently,
if the service unit spends more time in a state of failure, then customers will be rejected more and more
times when blocking is applied. Without blocking, the customer needs to appear once at the system
and can enter irrespectively of the availability of the server. In the case of blocking, it is not surprising
that by increasing parameters γ0 and γ1 the average number of attempts increases as well.

Figures 11, 12, and 13 demonstrate the mean waiting time of the customers as a function of γ0 and γ1.
In all of the three figures, higher parameters of server failure rates result in a greater mean waiting time
in both operation methods, but especially in the case of non-blocking. A significant difference can be
noted among the values of the mean waiting time using various sets of parameters for the service time.
An increasing tendency is observed with the increment in values of α and β. The same phenomenon
takes place as in the previous figures in connection with the mean waiting time in that when α = β = 2,
the cases of non-blocking and blocking are closer to each other compared to α = β = 0.5.

4. Conclusions

A retrial queuing model is presented with finite source and an unreliable server where collisions can
occur. The goal of this paper was to provide a sensitivity analysis using various distributions. The
results of the blocking case are compared with the results of the non-blocking case. From these, it is
evident that when blocking is applied, the customers spend more time in the source instead of the system,
resulting in lower mean waiting times. With the help of SimPack the effect of disparate distributions of
service times on several main performance measures was investigated.
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