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Abstract
This paper deals with a retrial queuing system with a finite number of sources and collision
of the customers, where the server is subject to random breakdowns and repairs depending
on whether it is idle or busy. A significant difference of this system from the previous ones
is that the service time is assumed to follow a general distribution while the server’s life-
time and repair time is supposed to be exponentially distributed. The considered system is
investigated by the method of asymptotic analysis under the condition of an unlimited grow-
ing number of sources. As a result, it is proved that the limiting probability distribution of
the number of customers in the system follows a Gaussian distribution with given parame-
ters. The Gaussian approximation and the estimations obtained by stochastic simulations of
the prelimit probability distribution are compared to each other and measured by the Kol-
mogorov distance. Several examples are treated and figures show the accuracy and area of
applicability of the proposed asymptotic method.
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1 Introduction

Finite-source retrial queues are very useful and effective stochastic systems to model several
problems arising in telephone switching systems, telecommunication networks, computer
networks and computer systems, call centers, wireless communication systems, etc. To see
their importance the interested reader is referred to the following works and references cited
in them, for example Artalejo and Corral (2008); Dragieva and Phung-Duc (2017); Falin
and Artalejo (1998); Falin and Templeton (1997); Gómez-Corral and Phung-Duc (2016)
and Kim and Kim (2016).

Since in practice some components of the systems are subject to random breakdowns
it is of basic importance to study reliability of retrial queues with server’s breakdowns
and repairs. Finite-source retrial queues with an unreliable server have been investigated in
several recent papers, see for example Almási et al. (2005); Dragieva (2014); Gharbi and
Dutheillet (2011); Ikhlef et al. (2016); Roszik (2004); Wang et al. (2010, 2011) and Zhang
and Wang (2013).

Searching the scientific databases we have noticed that relatively just a small number of
papers have been devoted to systems when the arriving calls (primary or secondary) causes
collisions to the request under service and both go to the orbit, see for example Ali and
Wei (2015); Choi et al. (1992); Kim (2010); Kumar et al. (2010) and Peng et al. (2014). It
should be noted that collisions decrease the effectiveness of the system performance. That
is why new protocols should be developed to avoid the collision but unfortunately, it cannot
be neglected, see Cao et al. (2018); Jinsoo et al. (2018); Kwak et al. (2017, 2018), Wentink
(2017) and Yeo et al. (2017). This fact shows the importance of the mathematical modeling
of such systems.

A research group in Tomsk State University (Russian Federation) has developed a very
effective asymptotic method (Nazarov and Moiseeva 2006) by the help of which various
systems have been investigated. Concerning to finite-source retrial systems with collision
we should mention the following papers (Kvach 2014; Kvach and Nazarov 2015a, b, c;
Nazarov et al. 2014).

A research group in Univesity of Debrecen (Hungary) has been dealing with systems
with unreliable server/s as can be seen, for example in Almási et al. (2005); Sztrik (2005);
Sztrik et al. (2006) and Wüchner et al. (2010) and that is why it was understandable that the
two research groups started cooperation in 2017.

The present model is a generalization of the M/G/1//N retrial system treated in
Kvach and Nazarov (2015a) where the server was reliable and the M/M/1//N system
with unreliable server analyzed in Nazarov et al. (2019, 2019). The generalization has its
own importance since the resulting new Kolmogorov-equations are more complicated and
hence the solution needs more investigations. Even the method is the same but the system,
equations, and the solution are different. The situation is similar when we use generating
function, Laplace-transform, characteristic function approach for the solution of a given
problem. In Tóth et al. (2017) the present model has been analyzed employing stochastic
simulation and in Nazarov et al. (2019) by an algorithmic approach. The examples treated
in these papers are the test results for comparisons to the present paper.

In this paper, a finite-source M/GI/1 retrial queuing system with collisions of customers
and an unreliable server is considered. Applying the method of asymptotic analysis under
the condition of an unlimited growing number of sources it is proved that the limiting prob-
ability distribution of the central and the normalized number of customers in the system
follows a normal law with given parameters. Based on the first two asymptotic moments
a Gaussian approximation is constructed. Accuracy and the range of applicability of the
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proposed approximation are analyzed. Based on these results in a consecutive paper by plan
the asymptotic distribution of the waiting time distribution will be analyzed.

The rest of the paper is organized as follows. In Sections 2 and 3 the full description
of the model is given with the help of the corresponding two-dimensional Markov process.
Using a supplementary variable of residual service time the corresponding Kolmogorov-
equations are derived in steady-state. Sections 4 and 5 are devoted to the first and second-
order asymptotic. In Section 6 a Gaussian approximation is proposed to get the prelimit
distribution of the number of customers in the system. We deal with several examples and
comparisons showing the advantage of the asymptotic methods, and some comments are
made. Finally, the paper ends with a Conclusion and some plans are highlighted.

2 Model Description and Notation

Let us consider (Fig. 1) a retrial queuing system of type M/GI/1//N with the collision of
the customers and an unreliable server. The number of sources is N and each of them can
generate a primary request with the rate λ/N . A source cannot generate a new call until the
end of the successful service of this customer. If a primary customer finds the server idle
and not failed he enters into service immediately in which the required service time has a
probability distribution function B(x). Let us denote the service rate function by μ(y) =
B ′(y)(1 − B(y))−1 and it’s Laplace -Stieltjes transform by B∗(y), respectively. Otherwise,
if the server is busy an arriving (primary or repeated) customer involves in collision with
the customer under service and they both move into the orbit. The retrial time of requests
is exponentially distributed with the rate σ/N . We assume that the server is unreliable. The
lifetime is supposed to be exponentially distributed with failure rate γ0 if the server is idle
and with the rate γ1 if it is busy. When the server breaks down it is immediately sent for
repair and the recovery time is assumed to be exponentially distributed with the rate γ2. We
deal with the case when the server is down all sources continue the generation of customers
and send it to the orbit. Similarly, customers may retry from the orbit to the server but all
arriving customers immediately go into the orbit. Furthermore, in this unreliable model, we
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Fig. 1 Finite-source M/GI/1 retrial queueing system with collision of the customers and unreliable server
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suppose that the interrupted request goes to the orbit immediately and its next service is
independent of the interrupted one. All the above mentioned random variables are assumed
to be independent of each other.

Let Q(t) be the number of customers in the system at time t , that is, the total number of
customers in the orbit and in service. Similarly, let C(t) be the server state at time t , that is

C(t) =
⎧
⎨

⎩

0, if the server is idle at time t,

1, if the server is busy at time t,

2, if the server is down (under repair) at time t .

Thus, we will investigate the process {C(t),Q(t)} which is not Markov. Using the sup-
plementary variable method let us introduce the random process z(t) equals to the residual
service time, that is the time interval from the moment t until the end of the successful
service of the customer.

As we can see {C(t), Q(t), z(t)} is multi-dimensional Markov process, the component
z(t) is determined only in those moments when the server is busy, that is when C(t) = 1.

3 Kolmogorov-Equations for the Steady-Steady Probability
Distribution of the Number of Customers in the System

The present paper is a continuation of investigations published in Nazarov et al. (2017a).
However, for a better understanding and compactness of our research, we repeat some parts
of the above-mentioned paper.

Let us define the following probabilities

Pk(j, t) = P {C(t) = k,Q(t) = j}, k = 0, 1, 2
P1(j, z, t) = P {C(t) = 1,Q(t) = j, z(t) < z}.

It is easy to see that P1(j, t) = lim
z→∞ P {C(t) = 1,Q(t) = j, z(t) < z}.

In a standard way, we can write the corresponding steady-state Kolmogorov-equations
as follows

−
[

λ
N − j

N
+ σ

j

N
+ γ0

]

P0(j) + ∂P1(j + 1, 0)

∂z
+ λ

N − j + 1

N
P1(j − 1)

+j − 1

N
σP1(j) + γ2P2(j) = 0 ,

∂P1(j, z)

∂z
− ∂P1(j, 0)

∂z
−

[

λ
N − j

N
+ σ

j − 1

N
+ γ1

]

P1(j, z)

+λ
N − j + 1

N
B(z)P0(j − 1) + j

N
σB(z)P0(j) = 0 ,

−
[

λ
N − j

N
+ γ2

]

P2(j) + λ
N − j + 1

N
P2(j − 1) + γ0P0(j) + γ1P1(j) = 0 . (1)

Denoting the partial characteristic functions by

Hk(u) =
N∑

j=0
eiujPk(j) , k = 0, 2 ,

H1(u, z) =
N∑

j=1
eiujP1(j, z) , H1(u) = lim

z→∞ H1(u, z),

(2)
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where i = √−1 is the imaginary unit then system (1) can be rewritten as

− (λ + γ0)H0(u) +
[
λeiu − σ

N

]
H1(u) + γ2H2(u)

+e−iu ∂H1(u, 0)

∂z
+ i

(σ − λ)

N
H ′

0(u) + i
(λeiu − σ)

N
H ′

1(u) = 0 ,

λeiuB(z)H0(u) −
[
λ + γ1 − σ

N

]
H1(u, z) + ∂H1(u, z)

∂z

−∂H1(u, 0)

∂z
+ i

(
λeiu − σ

)

N
B(z)H ′

0(u) + i
(σ − λ)

N

∂H1(u, z)

∂u
= 0 ,

γ0H0(u) + γ1H1(u) +
[
λ

(
eiu − 1

)
− γ2

]
H2(u) + i

λ

N

(
eiu − 1

)
H ′

2(u) = 0 .

(3)

Summarizing the equations of the system (3) and letting z → ∞ we obtain

λ [H0(u) + H1(u) + H2(u)] + i
λ

N

[
H ′

0(u) + H ′
1(u) + H ′

2(u)
] − e−iu ∂H1(u, 0)

∂z
= 0 .

(4)
We aim to solve systems (3)–(4) by the method of asymptotic analysis under the limiting

condition of an unlimited growing number of sources. Since for finite values N the authors
do not know any method for solving systems of linear differential equations with variable
coefficients we apply N → ∞. Besides, to the best knowledge of the authors, such systems
do not have an analytical solution.

4 Asymptotic of the First Order

Theorem 1 Let Q(∞) be the number of customers in the system in steady-state then

lim
N→∞ Eexp

{

iw
Q(∞)

N

}

= exp {iwκ1} , (5)

where the value of parameter κ1 is the positive solution of the equation

λ (1 − κ1) − a[κ1] [R0[κ1] − R1[κ1]] + γ1R1[κ1] = 0, (6)

here a [κ1] is

a [κ1] = λ (1 − κ1) + σκ1, (7)

and the stationary distributions of probabilities Rk[κ1] of the service state k are defined as
follows

R0[κ1] =
{

γ0 + γ2

γ2
+ γ1 + γ2

γ2
· a [κ1]

a [κ1] + γ1

[
1 − B∗(a[κ1] + γ1)

]
}−1

,

R1[κ1] = R0[κ1] a [κ1]

a [κ1] + γ1
· [

1 − B∗(a[κ1] + γ1)
]
,

R2[κ1] = 1

γ2
[γ0R0[κ1] + γ1R1[κ1]] . (8)
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The proof of the theorem was published earlier in Nazarov et al. (2017a) therefore we
give only the system of equations from the proof of Theorem 1 which we will need in the
proof of Theorem 2, namely

R′
1(0) − aR0 + [a + γ1] R1 = 0,

R′
1(0) = aR0B

∗(a + γ1),

γ0R0 + γ1R1 − γ2R2 = 0,

R′
1(0) − λ(1 − κ1) = 0.

(9)

Besides, R1(z) denotes the steady-state probability that the server is busy and the residual
service time is less than z which was obtained in the following form

R1(z) = e[δ(κ)+γ1]z
z∫

0

e−[δ(κ)+γ1]x {
R′

1(0) − δ(κ)R0B(x)
}
dx. (10)

If we denote by R∗
1(w) its Laplace-Stieltjes transform then it is not difficult to show that

R∗
1(a + γ1) = −aR0B

∗′
(a + γ1).

Furthermore, R0, R1 stand for the steady-state probability that the server is idle, busy,
respectively. Here for the simplified notation, we do not show the dependence on κ1 of the
corresponding quantities, since as soon as κ1 is obtained they are defined. We will return to
this system later in the proof of Theorem 2.

Here we should mention that the solution of Eq. 6 is not unique as we could see in
the paper (Nazarov et al. 2017b). In that work an example was given for the reliable case
with gamma-distributed service time and very special input parameters. The bi-stability
phenomenon is very seldom was treated and explained.

In the following, we assume that the solution is unique. This could be validated, for
example with the help of simulation by drawing the steady-state distribution of the number
of customers in the system.

Hence the prelimit value of the average number of customers in the system, that is when
N is fixed can be approximated by

E {Q(∞)} ≈ Nκ1.

5 Asymptotic of the Second Order

The novelty of the paper is in this section since we will get a second-order approximation
for a system with an unreliable server. The method is the same as in Kvach and Nazarov
(2015a) but in this case, the system of Kolmogorov-equations is more complicated due to
the unreliability of the server. To get the solution we need more steps and the structure of
the solution is different. To get the variance is not obvious even in a special case when
the failure rates of the server are zero which is the model treated in Kvach and Nazarov
(2015a). To obtain a better approximation we need the variance that is the reason we state
the following theorem
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Theorem 2

lim
N→∞ Eexp

{

iw
Q(∞) − κ1N√

N

}

= exp

{
(iw)2

2
κ2

}

, (11)

the value of parameter κ2 is defined by expression

κ2 =
λ (1 − κ1)

{

b2 [1 − b3] + λ (1 − κ1) (a + γ1)R2 + b1 [R0 − b3]

}

λb2 + (σ − λ)
{

(b1 + b2)
[
b3 − R∗

1(a + γ1)
] − b1 [R0 − R1]

} , (12)

where

b1 = λ (1 − κ1) (γ1 + γ2), b2 = γ2 [a + γ1] , b3 = R0B
∗(a + γ1),

and R∗
1(a + γ1) is the Laplace-Stieltjes transform of R1(z) given by eq.(10).

Proof Introducing the following replacement in systems (3)–(4)

Hk(u) = H
(2)
k (u)eiuNκ1 , k = 0, 1, 2,

H1(u, z) = H
(2)
1 (u, z)eiuNκ1 ,

(13)

and denoting a = a(κ1) = λ(1 − κ1) + σκ1, we obtain system of equations for function
H

(2)
0 (u), H

(2)
1 (u, z), H

(2)
1 (u) and H

(2)
2 (u) in the form

− [a + γ0] H
(2)
0 (u) +

[
λeiu(1 − κ1) + σκ1 − σ

N

]
H

(2)
1 (u) + γ2H

(2)
2 (u)

+i
(σ − λ)

N
H

(2)′
0 (u) + i

(
λeiu − σ

)

N
H

(2)′
1 (u) + e−iu ∂H

(2)
1 (u, 0)

∂z
= 0 ,

[
λeiu(1 − κ1) + σκ1

]
B(z)H

(2)
0 (u) −

[
a + γ1 − σ

N

]
H

(2)
1 (u)

+i

(
λeiu − σ

)

N
B(z)H

(2)′
0 (u, z) + i

(σ − λ)

N

∂H
(2)
1 (u, z)

∂u

+∂H
(2)
1 (u, z)

∂z
− ∂H

(2)
1 (u, 0)

∂z
= 0 ,

γ0H
(2)
0 (u) + γ1H

(2)
1 (u) +

[
λ (1 − κ1)

(
eiu − 1

)
− γ2

]
H

(2)
2 (u)

+i
λ

N

(
eiu − 1

)
H

(2)′
2 (u) = 0 ,

λ (1 − κ1)
[
H

(2)
0 (u) + H

(2)
1 (u) + H

(2)
2 (u)

]
− e−iu ∂H

(2)
1 (u, 0)

∂z

+i
λ

N

d

du

[
H

(2)
0 (u) + H

(2)
1 (u) + H

(2)
2 (u)

]
= 0 .

(14)

Introducing the following substitutions

1

N
= ε2 , u = εw ,

H
(2)
k (u) = F

(2)
k (w, ε) , k = 0, 1, 2 ; H

(2)
1 (u, z) = F

(2)
1 (w, z, ε) .

(15)
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system (14) can be rewritten as

− [a + γ0] F
(2)
0 (w, ε) +

[
λeiεw(1 − κ1) + σκ1 − ε2σ

]
F

(2)
1 (w, ε)

+γ2F
(2)
2 (w, ε) + εi (σ − λ)

∂F
(2)
0 (w, ε)

∂w

+εi
(
λeiεw − σ

) ∂F
(2)
1 (w, ε)

∂w
+ e−iεw ∂F

(2)
1 (w, 0, ε)

∂z
= 0 ,

[
λeiεw(1 − κ1) + σκ1

]
B(z)F

(2)
0 (w, ε) −

[
a + γ1 − ε2σ

]
F

(2)
1 (w, z, ε)

+εi
(
λeiεw − σ

)
B(z)

∂F
(2)
0 (w, ε)

∂w
+ εi (σ − λ)

∂F
(2)
1 (w, z, ε)

∂w

+∂F
(2)
1 (w, z, ε)

∂z
− ∂F

(2)
1 (w, 0, ε)

∂z
= 0 ,

γ0F
(2)
0 (w, ε) + γ1F

(2)
1 (w, ε) +

[
λ (1 − κ1)

(
eiεw − 1

)
− γ2

]
F

(2)
2 (w, ε)

+εiλ
(
eiεw − 1

) ∂F
(2)
2 (w, ε)

∂w
= 0 ,

λ (1 − κ1)
[
F

(2)
0 (w, ε) + F

(2)
1 (w, ε) + F

(2)
2 (w, ε)

]
− e−iεw ∂F

(2)
1 (w, 0, ε)

∂z

+εiλ
∂

∂w

[
F

(2)
0 (w, ε) + F

(2)
1 (w, ε) + F

(2)
2 (w, ε)

]
= 0 .

(16)

Our method is constructive. We show that the solution of this system can be written in
the form of decomposition

F
(2)
k (w, ε) = Φ2(w) {Rk + iεwfk} + o(ε) , k = 0, 1, 2

F
(2)
1 (w, z, ε) = Φ2(w) {R1(z) + iεwf1(z)} + o(ε) .

(17)

Substituting this form (17) into (16) keeping in mind the notion of o(ε) after simplifica-
tions we receive the following system of equations

− [a + γ0] {R0 + iεwf0} + a {R1 + iεwf1} + iεwλ(1 − κ1)R1 + iεwf ′
1(0)

+γ2 {R2 + iεwf2} + (1 − iεw)R′
1(0) + iε (σ − λ) (R0 − R1)

Φ ′
2(w)

Φ2(w)
= o(ε) ,

aB(z) {R0 + iεwf0} − [a + γ1] {R1(z) + iεwf1(z)}
+iεwλ(1 − κ1)B(z)R0 + R′

1(z) − R′
1(0) + iεw

[
f ′

1(z) − f ′
1(0)

]

+iε (λ − σ) [R0B(z) − R1(z)]
Φ ′

2(w)

Φ2(w)
= o(ε) ,

γ0 {R0 + iεwf0} + γ1 {R1 + iεwf1} − γ2 {R2 + iεwf2}
+iεwλ (1 − κ1) R2 = o(ε) ,

λ (1 − κ1) {1 + iεw (f0 + f1 + f2)} − (1 − iεw)R′
1(0) − iεwf ′

1(0)

+iελ
Φ ′

2(w)

Φ2(w)
= o(ε) .
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After some calculations it can be seen that as ε → 0 this system can be rewritten in the
form

− [a + γ0] f0 + af1 + γ2f2 + f ′
1(0) = −λ (1 − κ1) R1 + R′

1(0)

− (σ − λ) (R0 − R1)
Φ ′

2(w)

w Φ2(w)
,

aB(z)f0 − [a + γ1] f1(z) + f ′
1(z) − f ′

1(0) = −λ (1 − κ1) B(z)R0

+ (σ − λ) [R0B(z) − R1(z)]
Φ ′

2(w)

w Φ2(w)
,

γ0f0 + γ1f1 − γ2f2 = −λ (1 − κ1) R2 ,

λ (1 − κ1) [f0 + f1 + f2] − f ′
1(0) = −R′

1(0) − λ
Φ ′

2(w)

w Φ2(w)
.

(18)

From these systems we get that function Φ2(w) can be written as

Φ2(w) = exp

{
(iw)2

2
κ2

}

, (19)

coinciding with (11).

From (19) it follows that the expression
Φ ′

2(w)

w Φ2(w)
is constant and has a form

Φ ′
2(w)

wΦ2(w)
= −κ2 .

Thus, system (18) can be rewritten as

− [a + γ0] f0 + af1 + γ2f2 + f ′
1(0) = −λ (1 − κ1) R1 + R′

1(0)

+ (σ − λ) (R0 − R1) κ2 ,

aB(z)f0 − [a + γ1] f1(z) + f ′
1(z) − f ′

1(0) = −λ (1 − κ1) B(z)R0
− (σ − λ) [R0B(z) − R1(z)] κ2 ,

γ0f0 + γ1f1 − γ2f2 = −λ (1 − κ1) R2 ,

λ (1 − κ1) [f0 + f1 + f2] − f ′
1(0) = λκ2 − R′

1(0) .

(20)

Let us consider in more detail the second equation of the system (20). Using standard
methods it is not difficult to see that the solution of this equation is

f1(z) = e[a+γ1]z
z∫

0

e−[a+γ1]y [
f ′

1(0) + (σ − λ)κ2R1(y)

− {
af0 + (σ − λ)R0κ2 + λ(1 − κ1)R0

}
B(y)

]
dy.

(21)

Execute the limiting transition at z → ∞ and take into account that the first factor of
the right part of equality (21) in a limiting condition tends to infinity. Thus we can conclude
that the second factor is equal to zero, that is

f ′
1(0)

∞∫

0

e−[a+γ1]ydy + (σ − λ)κ2

∞∫

0

e−[a+γ1]yR1(y)dy

− [af0 + (σ − λ)R0κ2 + λ(1 − κ1)R0]

∞∫

0

e−[a+γ1]yB(y)dy = 0 .

Performing simple calculations we obtain

f ′
1(0) − [af0 + (σ − λ)R0κ2 + λ(1 − κ1)R0] B∗(a + γ1)

+(σ − λ)κ2R
∗
1(a + γ1) = 0 .

(22)
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Taking into account the obtained equality (22) let us rewrite system (20) in the following
form

− [a + γ0] f0 + af1 + γ2f2 + f ′
1(0) = −λ (1 − κ1) R1 + R′

1(0)

+ (σ − λ) (R0 − R1) κ2 ,

f ′
1(0) − aB∗(a + γ1)f0 = λ(1 − κ1)R0B

∗(a + γ1)

+(σ − λ)κ2
[
R0B

∗(a + γ1) − R∗
1(a + γ1)

]
.

γ0f0 + γ1f1 − γ2f2 = −λ (1 − κ1) R2 ,

λ (1 − κ1) [f0 + f1 + f2] − f ′
1(0) = λκ2 − R′

1(0) .

(23)

Solution of the system (23) can be obtained in several steps, namely Step 1. Add the first
and third equations of system (23) and subtract the second equation of system (23) from
their sum then we obtain

−a
[
1 − B∗(a + γ1)

]
f0 + [a + γ1] f1 = −λ(1 − κ1)

[
R0B

∗(a + γ1) + R1 + R2
]

+(σ − λ)κ2
{
R0

[
1 − B∗(a + γ1)

] − R1 + R∗
1(a + γ1)

} + R′
1(0) .

(24)

From the fourth equation of system (9) it follows that R′
1(0) = λ(1 − κ1). Also it is not

difficult to get that a
[
1 − B∗(a + γ1)

] = R1

R0
(a+γ1). Then we can rewrite (24) in the form

−R1 [a + γ1] f0 + R0 [a + γ1] f1 = λ(1 − κ1)R
2
0

[
1 − B∗(a + γ1)

]

+(σ − λ)κ2R0
{
R0

[
1 − B∗(a + γ1)

] − R1 + R∗
1(a + γ1)

}
,

from which we obtain

R0f1 − R1f0 = λ(1 − κ1)

a + γ1
R2

0

[
1 − B∗(a + γ1)

]

+ (σ − λ)κ2

a + γ1
R0

{
R0

[
1 − B∗(a + γ1)

] − R1 + R∗
1(a + γ1)

}
.

(25)

Step 2.
Let us consider the third equation of the system (23). Multiplying term by term on λ(1 −

κ1) = aR0B
∗(a+γ1) which follows from the second and fourth equations of the system (9)

we obtain an equation of the form

aR0B
∗(a + γ1)

{
γ0

γ2
f0 + γ1

γ2
f1

}

− λ(1 − κ1)f2 = − 1

γ2
[λ(1 − κ1)]

2 R2.

Adding the received equation to the second and fourth equations of system (23) we have

aB∗(a + γ1)

{[
γ0 + γ2

γ2
R0 − 1

]

f0 + γ1 + γ2

γ2
R0f1

}

= λκ2

+(σ − λ)κ2
[
R0B

∗(a + γ1) − R∗
1(a + γ1)

] − 1

γ2
[λ(1 − κ1)]

2 R2

+λ(1 − κ1)
[
R0B

∗(a + γ1) − 1
]

.

(26)

Thus it is not difficult to see that
γ0 + γ2

γ2
R0 − 1 = −γ1 + γ2

γ2
R1. Substituting it into

equality (26) we obtain equality in the form

γ1 + γ2

γ2
aB∗(a + γ1) {R0f1 − R1f0} = λ(1 − κ1)

[
R0B

∗(a + γ1) − 1
]

+(σ − λ)κ2
[
R0B

∗(a + γ1) − R∗
1(a + γ1)

] − 1

γ2
[λ(1 − κ1)]

2 R2 + λκ2 ,
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from which it follows that

R0f1 − R1f0 = γ2

γ1 + γ2
· 1

aB∗(a + γ1)
·
{

− 1

γ2
[λ(1 − κ1)]

2 R2

+(σ − λ)κ2
[
R0B

∗(a + γ1) − R∗
1(a + γ1)

] + λκ2 ,

+λ(1 − κ1)
[
R0B

∗(a + γ1) − 1
]

}

. (27)

Step 3.
As a result, it can be seen that the left-hand side of equalities (25) and (27) coincide.

Thus let us equate the right-hand side and after simple calculations, we receive the value of
parameter κ2 in the form (12).

Due to the structure and functional coefficients of the system of equations (3)–(4) and
then (16) we cannot show formally that (17) is the asymptotic solution. It was a procedure
using constructive steps from our previous experiments to get somehow a solution. In this
sense, it is not rigorous proof. As we mentioned earlier to the best of our knowledge there
is no analytical solution to this kind of system thus we cannot expect rigorous proof. All in
our previous papers the goodness of the proposed asymptotic solutions were tested by either
numerical or simulation results which justified our constructiveness concerning the form of
a solution, see for example Nazarov et al. (2018, 2019, b, c). In this paper, we follow this
method and in the next section, the comparisons are made. The theorem is proved.

From the proved theorem it follows that if N → ∞ the limiting distributions for the
centered and normalized number of customers in the system has a Gaussian distribution
with variance κ2 defined by the expression (12).

Owing to replacements (13) and (15) in prelimit case the average and variance of the
number of customers in the system can be approximated by Nκ1 and Nκ2, respectively. As
a consequence the number of customers in the system follows a normal distribution with
parameters Nκ1 and Nκ2.

It is not difficult to see, that in the case when γ0 = γ1 = 0, that is with a reliable server
our results coincide with the ones published in Kvach and Nazarov (2015c). Furthermore,
after elementary calculations we can obtain the formulas for the case when the service
time is exponentially distributed with intensity μ, that is for the M/M/1//N system with
unreliable server analyzed in Nazarov et al. (2019).

6 Examples and Comparisons

In this section we would like to show the effectiveness of the proposed approximation
comparing the results to the estimations obtained by numerical and to the simulation
calculations, see Nazarov et al. (2019) and Tóth et al. (2017), respectively.

6.1 Gaussian Approximation

Previously it was obtained that the limiting distribution for the centered and normalized
number of customers in the system has a Gaussian distribution with mean Nκ1 and variance
Nκ2.
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We propose to approximate the prelimit discrete probability distribution Π(j) of the
number of customers in the system obtained with the help of either numerical algorithm or
simulation, by a normal distribution with the above parameters.

Approximation of discrete distribution by a continuous Gaussian distribution can be
executed in various ways. We will use the following form.

Let us denote by G(x) the distribution function of the Gaussian distribution with mean
Nκ1 and variance Nκ2.

Furthermore, let us denote by Pas(i) the asymptotic discrete distribution obtained with
the help of Gaussian approximation, that is

Pas(i) = {G(i + 0.5) − G(i − 0.5)} [G(N + 0.5) − G(−0.5)]−1 , i = 0, N (28)

which is called the Gaussian approximation of the prelimit distribution Π(i).

6.2 Numerical Results and Comparative Analysis

For the considered retrial queuing system we choose gamma-distributed service time S with
shape parameter α and scale parameter β with Laplace-Stieltjes transform B∗(δ) of the form

B∗(δ) =
(

1 + δ

β

)−α

,

in the case when α = β, that is when the average service time is equal to unit.
It can be shown that

E(S) = α

β
, V ar(S) = α

β2
, V 2

S = 1

α
,

where V 2
S denotes the squared coefficient of variation of S. This distribution allows us to

show the effect of the distribution on the main performance measures because dealing with
the same mean we can see the impact of the variance, too.

To compare the prelimit probabilities Π(j) of the number of customers in the system
and its Gaussian approximation Pas(j) at various N we give some graphical illustrations.
As an example, the following parameters were chosen

λ = 1 , σ = 5 , γ0 = 0.1 , γ1 = 0.2 , γ2 = 1 , α = β = 1.778 .

Figures 2, 3, 4a demonstrate the difference between the prelimit distribution Π(j) (solid
line) and its Gaussian approximation Pas(j) (dashed line) at various values of N . As we can
see for the case N = 10 the difference is noticeable. With increasing N the difference begins
to decrease for the case N = 30 it is still distinguishable but for N = 50 it is practically
invisible. From the presented Figures it is possible to draw an obvious conclusion that with
an increase of N the effectiveness of the proposed approximation improves noticeably.

In Figs. 2–4 (b) the difference between the distribution function F(j) (solid line) and its
normal approximation Fas(j) (dashed line) is presented as the values of N increases. On
each Figure we can see that the curves are very close to each other and already at N = 30
the difference is practically not noticeable.
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Fig. 2 Comparison of the Gaussian approximation and numerical results in the case N = 10 of the a discrete
distribution of the number of customers in the system, b distribution function of the number of customers in
the system

Fig. 3 Comparison of the Gaussian approximation and numerical results in the case N = 30 of the a discrete
distribution of the number of customers in the system, b distribution function of the number of customers in
the system

Fig. 4 Comparison of the Gaussian approximation and numerical results in the case N = 50 of the a discrete
distribution of the number of customers in the system, b distribution function of the number of customers in
the system
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Table 1 Kolmogorov-distance between prelimit distribution Π(j) and its normal approximation Pas(j) for
various values of N and α = β

V N 5 10 20 30 50 100

0,5 α = 4 0.090 0.068 0.039 0.030 0.024 0.018

0,75 α = 1, 778 0.065 0.042 0.029 0.023 0.018 0.013

1 α = 1 0.037 0.023 0.017 0.014 0.011 0.007

1,5 α = 0, 444 0.029 0.006 0.004 0.004 0.003 0.002

3 α = 0, 111 .0101 0.068 0.030 0.019 0.016 0.014

We think that visual comparison is not enough to determine the range of applicability
of the approximation. To determine the accuracy and area of applicability of the Gaussian
approximation we will use the Kolmogorov-distance which can be defined as follows

Δ = max
0≤j≤N

∣
∣
∣
∣
∣
∣

j∑

n=0

(Π(n) − Pas(n))

∣
∣
∣
∣
∣
∣

.

Table 1 represents the values of Kolmogorov-distance for the same set of parameters as
for graphic illustrations, except for N, α.

We choose the criterion for the applicability of the approximation as follows: the accept-
able error must not exceed the value 0.05, that is Δ ≤ 0.05.

From Table 1 we can see that practically in the whole spectrum of values of the variables
α = β and N the Kolmogorov-distance does not exceed the set value 0.05 and therefore in
this situation the application of Gaussian approximation is preferable.

7 Conclusion

In this paper a closed retrial queuing system of type M/GI/1 with collisions of customers
and an unreliable server was considered. Applying the method of asymptotic analysis under
the condition of an unlimited growing number of sources it was proved that the limiting
probability distribution of the central and the normalized number of customers in the system
follows a normal law with given parameters. Accuracy and the range of applicability of the
proposed approximation were treated. In the future, for the considered system we plan to
investigate the number of transitions of the customer into the orbit, the sojourn time of the
customer in the orbit/system, and other system performance measures.
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Sudyko E, Nazarov A, Sztrik J (2019) Asymptotic waiting time analysis of a finite-source M/M/1 retrial
queueing system. Probab Eng Inf Sci 33:387–403

Sztrik J (2005) Tool supported performance modelling of finite-source retrial queues with breakdowns. Public
Math 66:197–211

Sztrik J, Almási B, Roszik J (2006) Heterogeneous finite-source retrial queues with server subject to
breakdowns and repairs. J Math Sci 132:677–685
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