
mathematics

Article

Approximations in Performance Analysis
of a Controllable Queueing System
with Heterogeneous Servers

Dmitry Efrosinin 1,2 , Natalia Stepanova 3 , Janos Sztrik 4,* and Andreas Plank 1

1 Insitute for Stochastics, Johannes Kepler University, 4040 Linz, Austria; dmitry.efrosinin@jku.at (D.E.);
andreasplank@gmx.net (A.P.)

2 Department of Information Technologies, Faculty of Mathematics and Natural Sciences,
Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia

3 Laboratory N17, Trapeznikov Institute of Control Sciences of RAS, 117997 Moscow, Russia;
natalia0410@rambler.ru

4 Department of Informatics and Networks, Faculty of Informatics, University of Debrecen,
4032 Debrecen, Hungary

* Correspondence: sztrik.janos@inf.unideb.hu

Received: 21 September 2020; Accepted: 9 October 2020; Published: 16 October 2020
����������
�������

Abstract: The paper studies a controllable multi-server heterogeneous queueing system where
servers operate at different service rates without preemption, i.e., the service times are uninterrupted.
The optimal control policy allocates the customers between the servers in such a way that the mean
number of customers in the system reaches its minimal value. The Markov decision model and the
policy-iteration algorithm are used to calculate the optimal allocation policy and corresponding mean
performance characteristics. The optimal policy, when neglecting the weak influence of slow servers,
is of threshold type defined as a sequence of threshold levels which specifies the queue lengths
for the usage of any slower server. To avoid time-consuming calculations for systems with a large
number of servers, we focus here on a heuristic evaluation of the optimal thresholds and compare this
solution with the real values. We develop also the simple lower and upper bound methods based on
approximation by an equivalent heterogeneous queueing system with a preemption to measure the
mean number of customers in the system operating under the optimal policy. Finally, the simulation
technique is used to provide sensitivity analysis of the heuristic solution to changes in the form of
inter-arrival and service time distributions.

Keywords: heterogeneous servers; Markov decision process; policy-iteration algorithm;
mean number of customers; decomposable semi-regenerative process

1. Introduction

The study of multi-server queueing systems in most cases assumes the servers to be homogeneous
when the individual service rates are the same for all the servers in the system. However, in many
real applications, the assumption of the homogeneity cannot be valid, e.g., a group of servers with
different types of processors as a consequence of irregular system updates, nodes in telecommunication
networks with links of different unequal capacities and availability, nodes in wireless systems
serving different mobile users, peer-to-peer services for data streaming, file sharing and storage,
where heterogeneous servers arrive and depart randomly, multi-processor systems with heterogeneous
processor’s attributes like a throughput and an electric energy consumption, etc. Moreover,
in many cases the heterogeneous server system outperforms its homogeneous server counterpart.
This reality leads to necessity to analyse multi-server queueing systems with heterogeneous servers.
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The assumption of the heterogeneity of servers does not automatically mean that the stochastic
modelling of such a queueing system becomes more complex. If the customers can change the
server to a faster one during a service, in other words, the service is with a preemption, this is a
classic one-dimensional birth-and-death process, that can be analysed in a standard way. The task
of analysing a heterogeneous system becomes much more complex with the assumption that the
customer cannot change the server during a service time, i.e., service without any preemption. In this
case, on the one hand, the dimension of the corresponding random process increases and on the other
hand, a mechanism for allocation of customers between the servers must be introduced.

The systems with heterogeneous servers are mostly investigated with respect to heuristic
allocation policies, e.g., allocation according to the fastest server first (FSF) policy or the randomly
chosen server (RCS). The results dedicated to the heterogeneous systems operating under these
policies and some approximations of such models can be found in papers of Alves et al. [1], Bilgen and
Altintas [2], Melikov et al. [3], The question of how to allocate the customers between the heterogeneous
servers in order to minimize the mean number of customers in the system was studied for the queueing
system with two servers in terms of a Markov decision process (MDP), e.g., by Larsen [4], Larsen
and Agrawala [5], who conjectured the optimality of threshold policy that functions as follows: the
fastest server must be used whenever it is idle and the slower one must be used only if the number of
customers in the queue exceeds some prespecified threshold level q ≥ 1. Based on the MDP model, Lin
and Kumar in [6] considered a similar problem and proved the optimality of a threshold policy. Simple
proofs of corresponding results have later been given by Koole [7], Luh and Viniotis [8], Walrand [9]
and Weber [10]. The problem of an optimal control of a two-server queueing system with failures was
studied by Özkan and Kharoufeh [11]. The problem of the optimal control allocation in the systems
with more than two servers were investigated by Armony and Ward [12], Efrosinin [13], Rosberg and
Makowski [14], Viniotis and Ephremides [15]. Rykov in [16] gave evidence for certain monotonicity
properties of an optimal policy in case of the mean number of customers minimization. The techniques
to prove such results are based on monotonicity properties of the dynamic programming relative value
function. The case of infinitely many servers was proposed by Shenker and Weinrib [17], where an
asymptotic analysis of large heterogeneous queueing systems is performed.

As it was shown in [18,19], also taking into account the incompleteness of the theoretical proof
noticed by Vericourt and Zhou in [20], the optimal allocation policy, which minimizes the mean number
of customers in heterogeneous queueing system without preemption, belongs to a set of structural
policies. According to this policy for the servers’ enumeration (1) the first server is used whenever it is
free and there is a waiting customer in the queue, while the empty server with a number k + 1 must be
occupied only if the first k faster servers are busy and the number of customers in the queue reaches
some threshold level qk+1 ≥ 1. Numerical analysis shows that the threshold level qk in general case can
have a very weak dependence of slower servers’ states. Due to our observations, the optimal threshold
may vary by at most 1 when the state of a slower server changes. Moreover, since this deviation
has no influence on the mean number of customers in the system, it can be neglected. Hence the
optimal allocation policy can be defined as a classic threshold one through a sequence of threshold
levels 1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞, that is the first k servers must be occupied whenever there are q
customers in the queue and qk ≤ q ≤ qk+1 − 1.

While there is a certain amount of work being done on heterogeneous systems, there are still
many open questions related to the accurate and quick calculation of the optimal control policy and the
resulting performance characteristics. Searching for optimal values q2, . . . , qK by a direct minimizing
the mean number of customers in the system can be performed only for small K by solving the
system of difference equations for the steady-state probabilities or by means of a matrix geometric
approach introduced by Neuts [21]. However, when K is large, these methods become too complicated.
For example, the involved in computation matrix sizes become infeasible large even for the moderate
numbers of servers like K ≥ 4, see e.g., [22]. To calculate the optimal threshold levels the MDP
model and a policy iteration algorithm [23–25], which constructs a sequence of improved policies
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that converges to optimal one, can also be used. While this approach is a powerful tool for solving
many optimization tasks, it has significant limitations on dimension of the model, number of states,
convergence in a heavy traffic case due to processing time and memory requirements. The contribution
of the paper is three-fold. First, we provide a simple heuristic solution (HS) for a sub-optimal policy in
order to avoid the time-consuming search for the optimal one in case of an arbitrary number of servers.
Second, we investigate the possibility to use the equivalent queueing system with a preemption
and a threshold-based policy to evaluate the lower and upper boundaries for the optimal mean
number of customers in the system without preemption. Third, we check by means of a simulation,
whether the proposed heuristic solution for the optimal thresholds is insensitive to changes in the form
of inter-arrival and service time distributions.

This paper is organized as follows. In Section 2 we discuss a queueing model, formulate
the corresponding MDP and specify a policy-iteration algorithm used for evaluation the optimal
threshold policy. Section 3 introduces a heuristic solution for the optimal threshold levels based on
a simple discrete fluid approximation, that turn out to be nearly optimal. In Section 4 we propose
approximations to calculate the lower and upper bounds for the mean number of customers in the
system under the optimal allocation policy. In Section 5 the simulation is used to provide sensitivity
analysis of the heuristic solution to changes in inter-arrival and service time distributions. Finally,
we make some conclusions and remarks.

2. Mathematical Model and MDP Formulation

Consider an infinite-capacity M/M/K queueing system with K heterogeneous servers and one
common queue, see Figure 1. The customers arrive to the system according to a homogeneous Poisson
process with a rate λ. The jth server has an exponentially distributed service time with a rate µj.
The server j is called an available server if it is idle. The service of customers is has no preemption,
i.e., a customer being served on a server cannot change it. In this case a threshold-based policy defined
below which is used for the customer allocation has sense. The inter-arrival and service times are
assumed to be mutually independent. Assume that the servers are enumerated in a way

µ1 ≥ · · · ≥ µK. (1)

Figure 1. Controllable multi-server queueing system with heterogeneous servers.

The stability condition is obviously defined through the inequality

λ <
K

∑
j=1

µj. (2)

The controller or decision maker has a full information about system states. It allocates customers
between servers according to a control policy f either to one of available servers or to queue at a new
arrival and service completion epoch if it occurs with a nonempty queue. The system dynamics is
common for the systems with one common queue and heterogeneous servers. At each arrival epoch
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the customer joins the queue and the controller can allocate the customer staying at the head of the
queue to an available server j. At service completion epochs the controller may decide to allocate
the customer from the head of nonempty queue to an available server or leave the customer in the
queue. As it was mentioned above, the optimal control policy f , which minimizes the mean number of
customers in the system with servers ordered according to (1), belongs to a set of threshold policies
defined as a sequence of threshold levels

1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞. (3)

According to this policy the first k servers must be occupied whenever there are q customers in the
queue and qk ≤ q ≤ qk+1 − 1 for k = 1, . . . , K− 1, and qk ≤ q < ∞ for k = K. For example, the policy
f for the system M/M/5 with K = 5 servers and thresholds (q1, q2, . . . , q5) = (1, 3, 4, 5, 12) means that
the fastest server is used whenever upon arrival of a customer it is free and there are q customers in
the queue with 1 ≤ q ≤ 2. The first two servers are used when q = 3. The first three servers must be
occupied whenever there are q = 4 customers in the queue, the first four customers are used when
5 ≤ q ≤ 11. All servers must be used when the queue length exceeds the level q ≥ 12. When the queue
length drops below a specific threshold level, then the corresponding busy server remains idle after a
service completion. As thresholds can take on different values, there are a huge number of admissible
threshold policies. Hence the main goal is to calculate the optimal values for threshold levels qk and
the minimized mean number of customers in the system.

We formulate the above optimization problem as a Markov decision process associated with a
multi-dimensional continuous-time Markov chain

{X(t)}t≥0 = {Q(t), D1(t), . . . , DK(t)}t≥0 (4)

with a set of admissible actions A = {0, 1, . . . , K} with elements a, where a = 0 means the allocation
of the customer to the queue and a = j 6= 0 – to the jth server. The term Q(t) ∈ N0 in (4) denotes the
number of customers in the queue at time t, Dj(t) ∈ {0, 1} – the state of server j at time t, where

Dj(t) =

{
0 if server j is idle

1 if server j is busy.

For any fixed allocation policy f we wish to guarantee that the process {X(t)}t≥0 is an irreducible,
positive recurrent Markov chain with a state space E = {x = (q(x), d1(x), . . . , dK(x))} ≡ N0 × {0, 1}K

and infinitesimal generator Λ f which depend on the policy f . The notations q(x) and dj(x) will be
used further in the paper to specify the components of the vector state x ∈ E, where q(x) denotes the
queue length in state x and dj(x) – the state of the jth server in state x. We use next the notations

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}

to specify respectively a set of idle and busy servers in state x, A(x) = J0(x) ∪ {0} ⊆ A the subset of
admissible actions in state x and ej stands for a vector of dimension K + 1 with 1 in the jth position
(j = 0, 1, . . . , K) and 0 elsewhere.

For the ergodic Markov decision process a long-run average cost in the system per unit of time
for the policy f coincides with the corresponding assemble average, i.e.,

g f = lim sup
t→∞

1
t

V f (x, t) = ∑
y∈E f

l(y)π f
y < ∞, (5)
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where l(y) = q(y) + ∑K
j=1 dj(y) in our model is a number of customers in state y ∈ E,

V f (x, t) = E f
[ ∫ t

0

(
Q(t) +

K

∑
j=1

Dj(t)
)

dt|X(0) = x
]

denotes the total average number of customers up to time t given initial state is x and
π

f
y = P f [X(t) = y] is a stationary state probability of the process under given policy f . The policy f ∗

is said to be optimal when for g f defined in (5) we evaluate

g∗ = inf
f

g f = min
q2,...,qK

g(q2, . . . , qK). (6)

One fruitful approach to finding optimal policy f ∗ is through solving the Bellman’s optimality
equation, which in our case is of the form

Bv(x) = (λ + ∑
j∈J1(x)

µj)v(x) + g, (7)

where B is a dynamic programming operator acting on a relative value function v : E → R which
indicates a transient effect of an initial state x to the total average cost, and, according to Howard [23],
the following asymptotic relation for the function V f (x, t) in case of a Markov-chain with one ergodic
class holds,

V f (x, t) = g f t + v f (x) + o(1), x ∈ E, t→ ∞. (8)

The functions v f and g f further in the paper will be denoted by v and g without upper index f .

Proposition 1. The Bellman’s optimality Equation (7) is defined as follows

Bv(x) = l(x) + λ min
a∈A(x)

v(x + ea) + ∑
j∈J1(x)

µjv(x− ej)1{q(x)=0}+ (9)

+ ∑
j∈J1(x)

µj min
a∈A(x−ej−e0)

v(x− ej − e0 + ea)1{q(x)>0},

where the notation 1{A} specifies the indicator function, which takes the value 1 if the event A holds, and 0
otherwise.

Proof. According to [26], the behaviour of the function V(x, t) in the interval [t, t + dt) by letting
t → ∞ and taking into account the asymptotic relation (8) can be represented as a system of linear
equations, which in general case is of the form

v(x) = min
a

{ 1
λx(a)

[
c(x) + ∑

y 6=x
λxy(a)v(y)− g

]}
.

Evaluating these equations for analyzed queueing system and taking into account the transition
rates of the specified Markov decision model we get

v(x) =
1

λ + ∑j∈J1(x) µj
[Bv(x)− g].

The relation for Bv(x) contains the term l(x) specifying a number of customers in state x ∈ EX,
the second term represents the changing of the state accompanying with a new arrival which occurs
with a rate λ. The third and the fourth terms represent transitions due to service completions at server
j with a rate µj by en empty and non-empty queue respectively.
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To generate a data-set for the queueing system under study which includes optimal threshold
levels and corresponding values of the system parameters the policy-iteration Algorithm 1 is used.
For numerical results the truncated equivalent system with a buffer size W is considered. The algorithm
consists of two main steps: policy evaluation and policy improvement. In the first step, for a given
control policy f the system of linear equations for the relative value function v(x), x ∈ E \ {(0, 0, . . . , 0)}
must be solved together with an equation g = λv(e1). In the second step, the obtained in the first
step relative function is used to improve the current policy. The algorithm stops when a new policy
coincides with a previous one. As an initial policy the FSF allocation policy is used.

Algorithm 1 Policy-iteration algorithm

1: procedure PIA(K, W, λ, µj, j = 1, 2, . . . , K)
2: f (0)(x) = argmaxj∈J0(x)

{
µj

}
. Initial policy

3: n← 0
4: g(n) ← λv(n)(e1) . Policy evaluation
5: for x = (0, 1, 0, . . . , 0) to (N, 1, 1, . . . , 1) do
6:

v(n)(x)← 1
λ + ∑j∈J1(x) µj

[
l(x)− g(n) + λv(n)(x + e f (n)(x))

+ ∑
j∈J1(x)

µjv(n)(x− ej)1{q(x)=0}

+ ∑
j∈J1(x)

µjv(n)(x− ej − e0 + e f (n)(x−ej−e0)
)1{q(x)>0}

]
7: end for
8: . Policy improvement

f (n+1)(x)← argmina∈A(x) v(n)(x + ea)

9: if f (n+1)(x)← f (n)(x), x ∈ E then return f (n+1)(x), v(n)(x), g(n)

10: else n← n + 1, go to step 4
11: end if
12: end procedure

We convert by implementing the Algorithm 1 the K + 1-dimensional state space E of the Markov
decision process ordered in a certain way to a one-dimensional equivalent state space N0, ∆ : E→ N0,
for state x = (q(x), d1(x), . . . , dK(x)) ∈ E,

∆(x) = q(x)2K +
K

∑
i=1

di(x)2i−1. (10)

Therefore, in one-dimensional case the changing of the state x due to adding or removing a
customer from the queue and due to occupation or departure of a customer from the jth server can be
respectively represented in the form,

∆(x± e0) = (q(x)± 1)2K +
K

∑
i=1

di(x)2i−1 = ∆(x)± 2K,

∆(x± ej) = q(x)2K +
K

∑
i=1

di(x)2i−1 ± 2j−1 = ∆(x)± 2j−1, j = 1, 2, . . . , K.

For further details about derivation of the dynamic programming equation needed to evaluate
the optimal policy the interested readers are referred to [13]. The infinite buffer queueing system is
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approximated by a finite buffer equivalent system in such a way that the loss probability does not
exceed some specified small number ε > 0.

Remark 1. For the bounded buffer size W the number of states is

|E| = 2K(W + 1).

If the queue length q ≥ qK, all servers must be busy and the system behaves like a M/M/1 queueing system
with a service rate ∑K

j=1 µj. The stationary state probabilities π(q,1,...,1), q ≥ qK, satisfy the difference equation

λπ(q−1,1,...,1) −
(

λ +
K

∑
j=1

µj

)
π(q,1,...,1) +

K

∑
j=1

µjπ(q+1,1,...,1) = 0,

which has a solution in a geometric form, π(q,1,...,1) = π(qK ,1,...,1)ρ
q−qK , q ≥ qK. For details and theoretical

substantiation see e.g., [27]. The threshold level qK can be estimated using HS (11). The buffer size W is chosen
in such a way that it satisfies the condition for the loss probability

∞

∑
q=W

π(q,1,...,1) = πqK

∞

∑
q=W

ρq−qK ≤
∞

∑
q=W

ρq−qK =
ρW−qK

1− ρ
< ε,

where ρ = λ

∑K
j=1 µj

. After simple algebra it implies

W >
log ε(1− ρ)

log(ρ)
+ qK.

The algorithm was implemented in C++ and tested for model problems up to 10 servers and
a queue of size W = 100. It shows matching results to the proposed heuristic solution but is only
viable for relative small number of servers. For system with 100 servers the maximum number of
states would be in the order of 2100 which makes a reasonable usage of the policy-iteration algorithm
impossible.

Example 1. Consider the system M/M/5 with K = 5 and λ = 15. The service rates take the following
values: (µ1, µ2, µ3, µ4, µ5) = (20, 8, 4, 2, 1). The buffer size is W = 80 which for ε = 0.0001 guaranties that
W >

log 0.0001(1−14/36)
log(14/36) + q5 = 22.2734, where q5 = 12 is evaluated by (11). The table of evaluated control

actions f (x) for selected system states x is of the form:

System state x Queue length q(x)

d = (d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2

(1,1,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3

(1,1,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4

(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 5 5 5

(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Threshold levels qk, k = 1, . . . , K = 5, can be evaluated by comparing the optimal actions
f (q, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) < f (q + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) for q = 0, . . . , W − 1. In this example the optimal

policy f ∗ is defined here through a sequence of threshold levels (q2, q3, q4, q5) = (3, 4, 5, 12) and g∗ = 4.92897.
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3. Heuristic Solution

As it was mentioned above, the policy iteration algorithm has restrictions on dimension of the
model, number of states, convergence in a heavy traffic case. In this section we derive a heuristic
solution (HS) to estimate threshold levels qk, k = 2, . . . , K, for the arbitrary K using a simple discrete

fluid approximation Q(t)−Q
(

t + 1
∑k−1

j=1 µj−λ

)
= 1, t = 0, 1

∑k−1
j=1 µj−λ

, . . . , qk−1
∑k−1

j=1 µj−λ
, for the queue length

at time t, as illustrated in Figure 2.

Figure 2. Fluid approximation.

We now explain how this fluid model can be employed for our aim. Assume that qk
is an optimal threshold to allocate the customer to server k in state (qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

),

where the first k − 1 servers are busy. Now we compare the queues of the system given initial
state is x0 = (qk, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is not used for a new customer,

and y0 = (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is occupied by a waiting customer. It is

assumed that the stability condition holds. In Figure 2, the queue lengths are labeled by A = qk and
B = qk − 1. If the queue dynamics corresponded to the deterministic fluid, it would decrease at the
rate ∑k−1

j=1 µj − λ. When this rate is maintained until the queue is empty, it occurs respectively at points

D = qk

∑k−1
j=1 µj−λ

and C = qk−1
∑k−1

j=1 µj−λ
. The total holding times of customers in a queue with lengths qk and

qk − 1 are equal obviously to the areas

FAOD =
qk(qk + 1)

2
· 1

∑k−1
j=1 µj − λ

and FBOC =
qk(qk − 1)

2
· 1

∑k−1
j=1 µj − λ

of triangles AOD and BOC. The mean service time of customers by first k− 1 busy servers until the
queue is empty starting from state x0 is equal to

qk

( 1
µ1

µ1

∑k−1
j=1 µj

+ · · ·+ 1
µk−1

µk−1

∑k−1
j=1 µj

)
= qk

k− 1

∑k−1
j=1 µj

,

where µi

∑k−1
j=1 µj

is a probability to be served by the ith server, and starting from state y0—is equal to

(qk − 1) k−1
∑k−1

j=1 µj
.

According to a specified deterministic fluid schema we formulate
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Proposition 2. The optimal thresholds qk, k = 2, . . . , K, are defined by

qk ≈ q̂k = min
{

q̂k−1,
⌊( k−1

∑
j=1

µj − λ
)( 1

µk
− k− 1

∑k−1
j=1 µj

)⌋
+ 1
}

. (11)

Proof. Denote by V(x) the overall average holding time of customers until the system is empty
given initial state is x ∈ E. The decision to perform the allocation to the kth server in state
(qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) must lead to a reduction of the overall holding time under fluid schema, i.e.,

V(x0)−V(y0) > 0. (12)

where

V(x0) = FAOD + qk
k− 1

∑k−1
j=1 µj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), (13)

V(y0) =
1
µk

+ V(qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

)

=
1
µk

+ FBOC + (qk − 1)
k− 1

∑k−1
j=1 µj

+ V(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

).

After substitution of (13) into (12) and some simple manipulations we get that the heuristic
solution for the optimal threshold qk is defined then as the integer larger then 1 and the smallest integer
(11) satisfying the inequality (12).

Example 2. Consider a queueing system from previous example for K = 5. We generate a data-set S in form of
a list

S = (14){
(λ, µ1, . . . , µK)→ (q2, . . . , qK) : λ ∈ [1, 45], µ1, . . . , µK ∈ [1, 40], λ <

K

∑
j=1

µj, µ1 ≥ · · · ≥ µK

}
.

and evaluate with HS for the corresponding thresholds qk, k = 1, . . . , K. Confusion matrices in Figure 3 visualize
the performance of proposed heuristics respectively for the threshold levels (q2, q3, q4, q5). Each row of these
matrices represents the instances in a predicted value while each column represents the instances in an actual
value. We notice the heavily diagonally dominant matrices that indicates a very good classification. This fact is
confirmed also by overall accuracies. Such metrics describe the closeness of the heuristic measurements to a real
threshold value and are calculated through the ratio of correct predictions to total predictions. Calculations of the
overall accuracies as well as the accuracies for results with an acceptable deviation of threshold values by ±1
from the real value are summarized in Table 1.

Table 1. Accuracy for prediction with heuristic solution (HS).

HS q2 q3 q4 q5

Accuracy 0.8430 0.8778 0.7899 0.6282
Accuracy ±1 0.9861 0.9884 0.9871 0.9769
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Figure 3. Confusion matrices (a–d) for prediction of q2, q3, q4 and q5 using HS.

Example 3. Consider the queueing system M/M/K with a different number of servers K = 2, 3, . . . , 8. Service
rates take the values as given in Table 2.

Table 2. Service rates µk, k = 1, . . . , K.

HHH
HHµk

K 2 3 4 5 6 7 8

µ1 34 32 28 20 18 16 14
µ2 1 2 4 8 8 8 6
µ3 - 1 2 4 4 4 5
µ4 - - 1 2 2 3 4
µ5 - - - 1 2 2 2
µ6 - - - - 1 1 2
µ7 - - - - - 1 1
µ8 - - - - - - 1

Table 3 lists values of optimal thresholds qk and corresponding heuristic solutions q̂k. As we see it,
the maximum deviation of the optimal thresholds from the heuristic solution is 1 independently of the number
of servers.

Table 3. Threshold values qk and q̂k, k = 2, . . . , K.

PPPPPPP(qk, q̂k)
K 2 3 4 5 6 7 8

(q2, q̂2) (24,24) (11,11) (5,4) (1,1) (1,1) (1,1) (1,1)
(q3, q̂3) - (23,23) (10,10) (4,4) (3,3) (3,3) (2,2)
(q4, q̂4) - - (22,22) (9,9) (8,9) (4,5) (2,2)
(q5, q̂5) - - - (21,22) (8,9) (8,8) (7,7)
(q6, q̂6) - - - - (20,21) (19,20) (7,8)
(q7, q̂7) - - - - - (19,20) (19,19)
(q8, q̂8) - - - - - - (19,20)
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The large number of numerical experiments carried out using the policy-iteration algorithm and simulations
allows us to conclude that deviations of certain thresholds by 1 have practically no effect on the value of the
minimised function. Thus, we believe that the proposed heuristic solution is effective for an arbitrary number
of servers.

4. Simple Bounds for the Optimal Mean Number of Customers in the System

As established in previous section, the estimation of the optimal threshold policy is possible
by means of a simple heuristic solution. Nevertheless, with this knowledge it is quite complicated
to calculate the optimal mean number of customers in the system with a high number of servers.
A possible solution for this problem consists in construction a proper approximation of the original
system with a preemption by an equivalent system without preemption. In this case a multidimensional
Markov-chain can be described by an one-dimensional process. In this section we develop
approximations for the low L̄l and upper L̄u bounds for the optimal gain function g = L̄, L̄l ≤ L̄ ≤ L̄u.

To calculate the lower bound L̄l we use a heterogeneous queueing system with a preemption
and threshold-based control policy denoted by Sl Further define by {Yl(t)}t≥0 the corresponding
continuous-time Markov chain with a state space El = {y : y ∈ N0} describing the number of
customers in the system. The state transition diagram of this system is illustrated in Figure 4.

Figure 4. The state transition diagram for the queueing system Sl .

The optimal threshold levels qk, k = 2, . . . , K are calculated using the heuristic solution (11).
Obviously, since the customer being served in a slower server can change it as the faster one
becomes empty, the mean number of customers in the system must be lower comparing to an original
queue. The steady-state probabilities πy = limt→∞ P[Yl(t) = y] obviously exist under the stability
condition (2).

Proposition 3. The steady-state probabilities πy of the Markov chain {Yl(t)}t≥0 are given by

π0 =
[
1 +

q2

∑
y=1

( λ

µ1

)y
+

K

∑
k=3

qk

∑
y=qk−1

( λ

∑k−1
j=1 µj

)y−qk−1
·

k−2

∏
i=1

( λ

∑i
j=1 µj

)qi+1−qi
+

+
K−1

∏
i=1

( λ

∑i
j=1 µj

)qi+1−qi
· λ

∑K
j=1 µj − λ

]−1
,

πy =


π0 ·

(
λ
µ1

)y
, 1 ≤ y ≤ q2

π0 ·∏k−2
i=1

(
λ

∑i
j=1 µj

)qi+1−qi
·
(

λ

∑k−1
j=1 µj

)y−qk−1
, qk−1 ≤ y ≤ qk, 3 ≤ k ≤ K

π0 ·∏K−1
i=1

(
λ

∑i
j=1 µj

)qi+1−qi
·
(

λ

∑K
j=1 µj

)y−qK
, y ≥ qK + 1

Proof. The proposition follows directly from the properties of the ergodic birth-and-death process
{Yl(t)}t≥0 [28].

From the probabilities πy it is possible to derive the performance measures of the system,
e.g., the mean number of customers in the system L̄ and the mean number of customers in the
queue Q̄.
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Corollary 1. The mean number of customers in the system Sl satisfies the relation

L̄l =
∞

∑
y=0

πy =
qK

∑
y=0

πy +
λ(∑K

j=1 µj + (∑K
j=1 µj − λ)qK)

(∑K
j=1 µj − λ)2

πqK . (15)

The upper bound L̄u for the optimal mean number of customers in the system can be obtained
from an equivalent system under the FSF policy, see a state transition diagram in Figure 5, where qk = 1
for k = 1, . . . , K.

Figure 5. The state transition diagram for the heterogeneous queueing system with the fastest server
first (FSF) policy.

In this diagram the group of states with a certain number of busy servers are labeled by
(q, ∑K

j=1 dj) according to the number of busy servers in a state. An analytical solution for the
heterogeneous queueing system with the FSF policy, where all states of servers are taken into account,
although possible, but it is limited by the number of servers in the system. The latter system can be
approximated in turn by a heterogeneous system Su with a preemption with appropriate evaluated
service rates mj, j = 1, . . . , K. The dynamics of the system Su is described by the continuous-time
Markov-chain {Yu(t)} with a state space Eu = {y : y ∈ N0}, where Yu(t) specifies the number of
customers in the system at time t. The state transition diagram for this Markov-chain is presented in
Figure 6.

Figure 6. The state transition diagram for the queueing system Su.

The approximations for mj are based on the observation that the incentive to occupy the slower
servers is getting higher as arrival rate increases.

Proposition 4. The service rates mj, j = 1, . . . , K− 1, of the queueing model {Yu(t)}t≥0 can be approximated
by the following relations

mj =


∑

j
i=1 µi, 0 < λ ≤ ∑

j−1
i=0 µK−i

∑
j−1
i=0

µK−i
λ ∑

j
i=1 µi + ∑

k−j
i=1

(
µK−i−j+1

λ ∑k
n=1 µn+i

)
+
(

1−∑k−1
i=0

µK−i
λ

)
∑k+1

i=k−j+2 µj, ∑k−1
i=0 µK−i < λ ≤ ∑k

i=0 µK−i, j ≤ k ≤ K− 1,

mK =
K

∑
i=1

µi. (16)
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Proof. For small arrival rate, e.g., 0 < λ ≤ µK, most probably that only the first server which is
the fastest one will be occupied and hence it will have the main contribution to the service rate m1.
When the values λ are larger, e.g., µK < λ ≤ µK−1 + µK, the first server will have a contribution
to µ1 with a probability µK

λ and the second server—with a complementary probability (1 − µK
λ ).

For larger values of λ, µK−1 + µK < λ ≤ µK−2 + µK−1 + µK the first three servers will contribute to

µ1 with probabilities µK
λ , µK−1

λ and
(

1− µK−1+µK
λ

)
. Similarly we may derive the contribution of the

servers larger values of λ up to the condition µ2 + . . . ,+µK < λ ≤ µ1 + µ2 + · · ·+ µK. To evaluate
the contribution to the service rate m2 in a state with two busy servers the same schema can be
used. When λ is small, 0 < λ ≤ µK−1 + µK, the first two servers will form the service rate µ2.
If µK−1 + µK < λ ≤ µK−2 + µK−1 + µK, the first three servers will have a contribution to µ2, the first
and second servers contribute with a probability µ1+µ2

λ , the second and fourth – with a probability(
1− µ2+µ3

λ

)
. When ∑2

j=0 µK−j < λ ≤ ∑3
j=0 µK−j, the four faster servers will serve the customers,

the first and second server with probability µK−1+µK
λ , the second and third server with probability µ3

λ

and the third and fourth with probability
(

1− µK−2+µK−1+µK
λ

)
. The procedure can be continued for

larger values of λ in a similar way as before. The proposed arguments can be summarized for all service
rates mj, j = 1, . . . , K, and the arbitrary number of servers K in form of the approximation (16).

It can be verified that for any j the quotient λ
mj

< 1 and λ < mK = ∑K
j=1 µj. Now we can use the

approximation (16) to derive the steady-state distribution.

Proposition 5. The steady-state probabilities πy of the Markov-chain {Yu(t)}t≥0 are given by

π0 =
[
1 +

K−1

∑
y=1

λy

∏
y
j=1 mj

+
λK+1

(mK − λ)∏K
j=1 mj

]−1
,

πy =


π0 · λy

∏
y
j=1 mj

1 ≤ y ≤ K,

π0 · λy

my−K
K ∏K

j=1 mj
y ≥ K + 1.

Proof. The proposition follows from the properties of the ergodic birth-and-death process
{Yu(t)}t≥0 [28].

Corollary 2. The mean number of customers in the system Su satisfies the relation

L̄u =
∞

∑
y=0

πy =
K

∑
y=0

πy +
λ(mK + (mK − λ)K)

(mK − λ)2 . (17)

Example 4. Consider the M/M/K queueing system with a total service intensity equal to ∑K
j=1 µj = 35.

Here we analyse the systems with different number of servers and their heterogeneity.
A Gini’s index G(µ), 0 ≤ G(µ) ≤ 1, can be used to measure the inequality for individual data µ, see for

details [29], and hence is quite appropriate as a metric for the heterogeneity of servers. This index can be obtained
by computing the moments of the data set µ = {µK, µK−1, . . . , µ1} with µj sorted in increasing order,

G(µ) =
2Cov[µ, nK]

Kµ̄
, µ̄ =

1
K

K

∑
j=1

µj, nK = {1, 2, . . . , K}.

The Gini’s index ranges from a minimum value of zero, when all individuals are equal, e.g., for the
homogeneous servers G(µ) = 0, to a theoretical maximum of one when every individual except one has a
value zero. Two different values of heterogeneity are studied within this example, namely G(µ) = 0.63 and
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G(µ) = 0.40. The corresponding values of service intensities for three types of systems with K = 3, K = 5 and
K = 8 are presented in Table 4.

Table 4. Service intensities versus Gini’s index.

K µ G(µ) K µ G(µ)

3 (1,11,23) 0.63 3 (5,11,19) 0.40
5 (1,2,4,8,20) 0.63 5 (2,4,6,10,13) 0.40
8 (0.5,1,1.5,2,2.5,3,7,17.5) 0.63 8 (1.5,1.5,2,3,4,6,8,9) 0.40

In Figures 7–9 we display the values L̄ with bounds L̄l and L̄u calculated respectively by the policy-iteration
Algorithm 1 and by expressions (15) and (17) as functions of λ and number of servers K = 3, 5, 8. The Gini’s
index G(µ) = 0.63 in a figures labeled by (a) and G(µ) = 0.40—by (b). The curves in figures show, that the
mean number of customers as well as the size of the gap between the lower and upper bounds increases with
increasing values of K. As expected, the low and upper bounds must coincide with a mean value L̄ for the system
with homogeneous servers, where G(µ) = 0. Indeed, in figures with less heterogeneity of servers the curves for
L̄ L̄u and L̄l are getting closer, as the Gini’s index decreases. Moreover, we notice that the functions take similar
values in a light traffic case when λ << ∑K

j=1 µj and tend to the same values as the traffic becomes heavier,
i.e., if λ→ ∑K

j=1 µj.

(a) (b)
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Figure 7. Mean value L̄ with the bounds versus λ.
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Figure 8. Mean value L̄ with the bounds versus λ.



Mathematics 2020, 8, 1803 15 of 18

(a) (b)

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
● ●

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■ ■
■

■
■

■
■

■

■

■

■

■

0 5 10 15 20 25 30

0

2

4

6

8

λ

L
,L
l
,L
u

■ Ll

▲ L

● Lu

● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■

■
■

■
■

■
■

■
■

■

■

■

■

■

0 5 10 15 20 25 30

0

2

4

6

8

λ

L
,L
l
,L
u

■ Ll

▲ L

● Lu

Figure 9. Mean value L̄ with the bounds versus λ.

5. Sensitivity Analysis of the Heuristic Solution to Changes in Distribution

Another natural method to calculate the mean number of customers in the system and to
check whether a certain policy leads to a reduction of this value is a simulation. This approach,
while time-consuming, also makes it possible to examine the sensitivity of the optimal control policy f
and the corresponding mean performance characteristics to changes in distribution types other than
exponential. An implementation of a simulation model is shown in the Figure 10 bellow.

Figure 10. Simulation of the heterogeneous queueing system without preemption.

For this specific implementation it is possible to set the number of servers, the buffer capacity,
threshold levels (limits), the arrival and service rates. The customers are indicated by a black circle,
and are numbered accordingly to their arrival times. On the graphical interface there are also fields
that show the actual amount of customers in the system, the average number and the total number
of customers in the system including the already processed customers, the number of lost customers
due to the truncated buffer capacity. The stability condition is taken into account and the buffer size is
big enough so there should be hardly any lost customers. Hence the results with a truncated queue
are comparable to systems with infinite queue lengths. Unfortunately, simulations are also unfit to
solve systems with a large number of servers and states, as one would need to simulate a large number
of different configurations with thousands of customers to get acceptable results. This fact further
confirms the relevance of the results obtained in the previous sections.
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The inter-arrival A and service times Bj, j = 1, 2, . . . , K, of customers follow exponential, gamma,
Pareto, log-normal and hyper-exponential distributions. To get comparable results the parameters of
the distributions are chosen to have the same means E[A] = 1

λ , E[Bj] =
1
µj

, j = 1, 2, . . . , K, and variances

V[A] = 1
λ2 , V[Bj] =

1
µ2

j
, j = 1, 2, . . . , K, as the system driven by exponential distribution. For this

purpose we use formulas describing the parameters in terms of the mean and variance given by
Toth et al. [30]. The main goal of the simulation experiments consists in understanding weather the
heuristic solution (11) for λ = 1

E[A]
and µj =

1
E[Bj ]

is insensitive to changes in forms of distributions.

Example 5. As a reference, we first simulate the system M/M/5 with an arrival rate λ = 25,
(µ1, µ2, µ3, µ4, µ5) = (20, 8, 4, 2, 1). Table 6 lists the mean number of customers in the system the optima,
heuristic, FSF policies as well for other threshold policies with lower and higher values of thresholds.

We now simulate the systems like GI/M/5, M/G/5 as well as GI/G/5 with heterogeneous servers
and threshold-based allocation policy where either the inter-arrival times, the service time or both follow one
of the distributions mentioned above. For all the following simulation results we hereby want to find the mean
number of customers in the system L̄ for the policies specified in the preceding table for the markovian queueing
system M/M/5. Table 6 provide a sensitivity and comparative analysis of the system performance obtained by
employing different inter-arrival and service time distributions.

Of course, finding the optimal control policy through a simulation modelling is not an easy task. But in our
example, we do not want to find the real values of the optimum thresholds, but rather to understand whether the
optimum control and heuristic solution changes drastically when the distribution of the corresponding random
values characterising the behaviour of a queueing system changes. Note that L̄ for the optimal and heuristic
policy takes always the values between those corresponding to the policies with lower and higher thresholds. The
results of this example, as well as numerous other results carried out for systems with other parameters, show
that while the absolute values of the mean number of customers vary as distributions change, the values of the
optimal and heuristic thresholds are concentrated sufficiently close to the respective thresholds for markovian
systems. Thus, we strongly believe, it is possible to use a heuristic solution with the replacement of exponential
intensities by intensities of arbitrary distributions as a quasi-optimal solution in the problem of minimising the
mean number of customers in the system with non-exponential inter-arrival and service time distributions.

Table 5. Simulation results for the M/M/5 queueing system.

Exponential Distribution

Optimal Solution Heuristic Solution FSF Lower Thresholds Higher Thresholds

q2 = 1 q2 = 1 q2 = 1 q2 = 1 q2 = 2
q3 = 2 q3 = 2 q3 = 1 q3 = 1 q3 = 3
q4 = 4 q4 = 3 q4 = 1 q4 = 2 q4 = 4
q5 = 9 q5 = 8 q5 = 1 q5 = 7 q5 = 9
L = 4.082 L = 4.189 L = 4.860 L = 4.213 L = 4.674

Table 6. Simulation results for the GI/M/5, M/G/5 and GI/G/5 queueing systems.

gamma distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.491 GI/M/5: L = 4.499 GI/M/5: L = 5.230 GI/M/5: L = 4.375 GI/M/5: L = 5.002
M/G/5: L = 4.527 M/G/5: L = 4.646 M/G/5: L = 5.011 M/G/5: L = 4.742 M/G/5: L = 5.223
GI/G/5: L = 4.048 GI/G/5: L = 4.154 GI/G/5: L = 4.827 GI/G/5: L = 4.352 GI/G/5: L = 4.719

Pareto distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 3.857 GI/M/5: L = 3.958 GI/M/5: L = 4.426 GI/M/5: L = 3.889 GI/M/5: L = 4.561
M/G/5: L = 4.211 M/G/5: L = 4.321 M/G/5: L = 4.870 M/G/5: L = 4.477 M/G/5: L = 4.913
GI/G/5: L = 3.385 GI/G/5: L = 3.473 GI/G/5: L = 3.837 GI/G/5: L = 3.461 GI/G/5: L = 4.051
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Table 6. Cont.

log-normal distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.366 GI/M/5: L = 4.479 GI/M/5: L = 4.911 GI/M/5: L = 4.509 GI/M/5: L = 5.037
M/G/5: L = 4.429 M/G/5: L = 4.545 M/G/5: L = 4.870 M/G/5: L = 4.824 M/G/5: L = 5.139
GI/G/5: L = 3.821 GI/G/5: L = 3.921 GI/G/5: L = 4.636 GI/G/5: L = 3.975 GI/G/5: L = 4.593

hyper-exponential distribution

optimal solution heuristic solution FSF lower thresholds higher thresholds

GI/M/5: L = 4.043 GI/M/5: L = 4.148 GI/M/5: L = 4.771 GI/M/5: L = 4.129 GI/M/5: L = 4.645
M/G/5: L = 4.024 M/G/5: L = 4.129 M/G/5: L = 4.707 M/G/5: L = 4.167 M/G/5: L = 4.801
GI/G/5: L = 4.021 GI/G/5: L = 4.126 GI/G/5: L = 4.709 GI/G/5: L = 4.233 GI/G/5: L = 4.768

6. Conclusions

The queueing systems with heterogeneous servers have many real applications. The optimal
control policy which minimizes the mean number of customers in the system without preemption
under certain assumptions belongs to a threshold policy. Classical methods, such as the solution
of difference equations, matrix-analytic and dynamic-programming approach, have significant
restrictions due to the dimension of the random processes involved. A heuristic solution is obtained
for the optimal threshold levels in a system with an arbitrary number of servers. The simple lower
and upper bounds for the minimal mean number of customers in the system are derived using one
dimensional processes for the equivalent heterogeneous queues with a preemption. The gap between
the bounds increases with increasing of the servers’ heterogeneity and the number of servers in the
system. We have further conducted simulation to provide sensitivity analysis of the obtained HS to
changes in inter-arrival and service time distributions. Simulation results showed that the optimal
thresholds are likely to depend on the mean inter-arrival and service times and hence the proposed
heuristic solution can be used as a quasi-optimal in systems with arbitrary distributions.
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