Dr. Varga Imre

Socket-programozas

C nyelven

FObb pontok

A kommunikéacio alapjai
Adatstrukturak és tipusok
Konvertald figgvények
Rendszerhivasok
Informacios fliggvenyek

Kliens & Server

Server szolgaltatast nyujt.
Kliens igénybe veszi a szolgaltatast.

Kommunikacio:
Server

— Kapcsolat-orientalt hd
— Kapcsolat nélkuli

Csatlakoz6 (socket) tipusok:
— SOCK_STREAM (TCP)

— SOCK_DGRAM (UDP) |

Kliens

Kapcsolat nelkuli idodiagram

Kliens Server

e socket e socket
o setsockopt » setsockopt

 bind
e sendto Kérés
e recvirom
valasz e sendto
e recvfrom —

e close e close

op!

Kapcsolat-orientalt idédiagram

Kliens Server
e socket e socket
e setsockopt » setsockopt
e bind
e |isten
e connect %
. e accept
e send Kérés

\, ° recv

valasz e send
¢ recv / \/

e close e close

op!

Adatstrukturak es tipusok

e sockaddr
e sockaddr _In
e In_addr
e hostent
e netent
* protent
e Servent

sockaddr

struct sockaddr {
unsigned short sa_family;
char sa_data[14];

%

o sa_ family: cim csalad, pl. AF_INET.
e sa_data: protokoll cim.

sockaddr _In

struct sockaddr_in {
short int sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char sin_zero|8],

I

sin_family: cim csalad.

sin_port: port szam (2 byte).

sin_addr: IP cim (4 byte) halozati byte sorrendben.
sin zero: kitoltd, hogy sockaddr meret legyen.

INn_addr

struct in_addr {
union {
struct {u_chars bl,s b2,s b3,s b4;}
S un_b;
struct { u_shorts wl,s w2;}
S _un_w;
u long S_addr;}
S _un;

I3
*Csak a 32 bites long valtozé (S _addr) hasznalt.
#define s _addr S_un.S_addr

INn_addr

*Ekvivalencia:
struct sockaddr_in address;

address.sin_addr.s_addr = IPCIM;

struct sockaddr_in address;
address.sin_addr.S _un.S_addr = IPCIM;

*A cimnek halozati byte sorrendben kell lennie.

hostent

struct hostent {
char *h_name; //hivatalos nev
char **h_aliases; //tovabbi nevek
Int h_addrtype; //cim csalad
Int h_length; //cim hossz
char **h_addr_list;//cimek listaja

%
#define h_addr h_addr_list[0]
e Host leird informaciok.

Konvertalo fuggvenyek

e Inet_addr(...)
 Inet_aton(...)
 Inet_ntoa(...)
e Inet_pton(...)
 Inet_ntop(...)
e htonl(...)
 htons(...)
e ntohl(...)
e ntohs(...)

IP cim kezelés

#include<sys/socket.h>
struct sockaddr_in address;

e char* = long
address.sin_addr.s_addr=inet_addr("127.0.0.1");

e char* = struct sockaddr_In
Inet_aton("127.0.0.1",&(address.sin_addr));

e struct sockaddr _in - char*
printf("IP: %s\n",inet_ntoa(address.sin_addr));

Byte sorrend konverzio

#include <netinet/in.h>

e gazdagep =2 halozati

uintl6 t htons(uintl6_t hostshort
uint32_t htonl(uint32_t hostlong

e haldzati > gazdageéep

uintl6 t ntohs(uint16_t netshort
uint32_t ntohl(uint32_t netlong)

Socket rendszerhivasok

e socket(...) e send(...)

» setsockopt(...) e sendto(...)

e bind(...) e sendmsg(...)
e listen(...) o write(..)

e connectf(...) e recv(...)

e accept(...) e recvfrom(...)
e close(...) e recvmsqg(...)
e shutdown(...) e read(...)

e select(...)

socket

Int socket(int family, int type,
Int protokcol);
e Socket létrehozasa.
o Visszatéresi ertek: OK: file leiro; hiba: -1
o family: AF_INET, PF_INET
e type: SOCK_STREAMSOCK DGRAM
e protocol: O (default a type és a family alapjan)
e #include<sys/socket.h>

setsockopt

Int setsockopt(int fd, int level,
Int cmd, char *arg, int len);

e Opciok beallitasa.

 fd: file leirg, amit a socket ad.

e level: SOL _SOCKET

« cmd: SO REUSEADDBO_ KEEPALIVE

e arg. mutato a kivant opciot tartalmazo bufferre.

e len: arg merete.
e #include<sys/socket.h>

bind

int bind(int fd,

struct sockaddr *addrp, int alen);
 Socket hozzarendelése haldzati cimhez.
e Visszatéresi ertek: OK: 0; hiba: -1
o fd: file leird, amit a socket ad.
o addrp: cimleird struktura cime.

e alen: a cimleird struktUra meérete
#include<sys/socket.n>

liIsten

Int listen(int fd, int backlog);

o Kapcsolatelfogadasi szandék es queue meret
beallitas.

o Visszatéresi ertek: OK: 0O; hiba: -1.

o fd: file leird, amit a socket ad.

* backlog: hany feldolgozatlan connect kérest

tarol.
e #include<sys/socket.h>

connect

Int connect(int fd,
struct sockaddr *addrp, int alen);

o Kapcsolat Iétrehozasa.

o Visszatéresi ertek: OK: 0O; hiba: -1.
o fd: file leird, amit a socket ad.

o addrp: cel (server) cim.

o alen: a cimleird struktlra merete.
e #include<sys/socket.h>

accept

int accept(int fd,
struct sockaddr *addrp, int *alenp);

o Kapcsolat elfogadasa.

o Visszatéresi ertek: OK: yj file leird fd
tulajdonsagaival; hiba: -1.

o fd: file leird, amit a socket ad.

« addrp: kliens cime ide kerdl.

» alenp: hivaskor addrp hossza, visszateréskor
kapott cim hossza.

e #include<sys/socket.h>

send

int (int fd, char *buff, int len,
Int flags);
« Kapcsolat-orientalt adat kildés.
o Visszatéresi ertek: OK: atvitt byte szam; hiba: -1.
o fd: file leird, amit a socket ad.
e buff: az Gzenet.
e len: az Uzenet hossza.
o flags: 0; MSG_OQOHBagy prioritas.
e #include<sys/socket.h>

sendto

int (int fd, char *buff, int len,
Int flags, struct *addrp, int alen);

 Nem kapcsolat-orientalt adat ktldes.

o Visszatéresi ertek: OK: atvitt byte szam; hiba: -1.
o fd, buff, len, flags: mint a send eseteéen.

e addrp, alen: mint connect eseten.

e #include<sys/socket.h>

recv

Int (int fd, char *buff,
Int maxlen, int flags);
o Kapcsolat-orientalt adat fogadas.
o Visszatéresi ertek: OK: kapott byte szam; hiba: -1.
 fd: file leirg, amit a socket ad.
e buff: az Uzenet.

 maxlen: a buffer hossza.

o flags: pl. 0; MSG_OOBsak az igy kuldott adatot
Veszi.

e #include<sys/socket.h>

recvirom

Int (int fd, char *buff, int maxlen,
Int flags, struct *addrp, int *alenp);

 Nem kapcsolat-orientalt adat ktldes.

o Visszatéresi ertek: OK: kapott byte szam; hiba: -1.
« fd, buff, maxlen, flags: mint recv eseten.

addrp, alenp: mint accept esetén.

e #include<sys/socket.h>

write, read

int write(int fd, char *buff, int len);
int read(int fd, char *buff, int mlen);

o Kapcsolat-orientalt esetben hasznalhato kildésre,
fogadasra.

o Visszatéresi ertek: OK: byte szam; hiba: -1.
o fd: file leird, amit a socket ad.

o buff: Uzenet.

 mlen, len: (max) Uzenet hossz.

e #include<unistd.h>

close

Int close(int fd);

e |Lezarja a socket-et.

o Visszeteresi értek: OK: 0; hiba: -1.
o fd: file leird, amit a socket ad.

e #include<unistd.h>

shutdown

int shutdown(int fd, int how);

o Kapcsolat-orientalt socket egyiranyu lezarasa.
o Visszatéresi ertek: OK: 0O; hiba: -1.

o fd: file leird, amit a socket ad.

e how: 0: nem lehet adatot atvenni téle; 1 nem
lehet adatot atadni neki; 2: egyik sem (close).

e #include<sys/socket.h>

Informacids fluggvenyek

e getpeername(...)
e gethostname(...)
 gethostbyname(...)
e gethostbyaddr(...)
 getservbyname(...)
e getservbyport(...)

e getsockname(...)

getpeername

Int getpeername(int fd,
struct sockaddr *addrp, int *alenp);

o Partner socket cim lekérdezés.

o Visszateresi érték: hiba esetéen -1.
e fd: ezen a csatlakozon érhetd el.
e addrp: ide keril a tavoli gép ciminformacio.
e alenp: cim hossz.
#include<sys/socket.h>

gethostname

Int gethostname(char *hname,
size_tlen);

* Helyi gép neve.

* Visszatéresi ertek: hiba esetén -1.

 hname: ide kerul a helyi gép neve.

* |len: név hossz.
#include<sys/socket.h>

gethostbyname

struct hostent *gethostbyname(
char *hname);

Tavoli fél azonositas nev alapjan.
Visszatéresi ertek: hiba esetén NULL.
hname: a tavoli gép neve.
#include<netdb.h>

gethostbyaddr

struct hostent *gethostbyaddr(
char *addrp, int len, int family);

o Tavoli fél azonositas cim alapjan.
o Visszaterési ertek: hiba esetén NULL.
o addrp: keresett cim.

e |len: cim hossz.

o family: cim csalad, pl. AF_INET.
#include<sys/socket.h>

