
Socket-programozás

Dr. Varga Imre

C nyelven

Főbb pontok

• A kommunikáció alapjai
• Adatstruktúrák és típusok
• Konvertáló függvények
• Rendszerhívások• Rendszerhívások
• Információs függvények

Kliens & Server

• Server szolgáltatást nyújt.
• Kliens igénybe veszi a szolgáltatást.
• Kommunikáció:

– Kapcsolat-orientált
Server

– Kapcsolat-orientált
– Kapcsolat nélküli

• Csatlakozó (socket) típusok:
– SOCK_STREAM (TCP)
– SOCK_DGRAM (UDP)

Kliens

Hálózat

Kapcsolat nélküli idődiagram
Kliens

• socket

• setsockopt

Server
• socket

• setsockopt

• bind

• sendto

• recvfrom

…
• close

• recvfrom

• sendto

…
• close

id
ő

Kapcsolat-orientált idődiagram
Kliens

• socket

• setsockopt

Server
• socket

• setsockopt

• bind

• listen

• connect

• send

• recv

• close

• listen

• accept

• recv

• send

• close

id
ő

Adatstruktúrák és típusok

• sockaddr

• sockaddr_in

• in_addr

• hostent

• netent

• protent

• servent

sockaddr

struct sockaddr {
unsigned short sa_family;
char sa_data[14];

};

• sa_family: cím család, pl. AF_INET.

• sa_data: protokoll cím.

sockaddr_in

struct sockaddr_in {
short int sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8]; unsigned char sin_zero[8];

};

•sin_family: cím család.
•sin_port: port szám (2 byte).
•sin_addr: IP cím (4 byte) hálózati byte sorrendben.

•sin_zero: kitöltő, hogy sockaddr méretű legyen.

in_addr

struct in_addr {
union {

struct {u_char s_b1,s_b2,s_b3,s_b4;}
S_un_b;

struct { u_short s_w1,s_w2; } struct { u_short s_w1,s_w2; }
S_un_w;

u_long S_addr;}
S_un;

};

•Csak a 32 bites long változó (S_addr) használt.

#define s_addr S_un.S_addr

in_addr

•Ekvivalencia:
struct sockaddr_in address;

address.sin_addr.s_addr = IPCIM;

struct sockaddr_in address;

address.sin_addr.S_un.S_addr = IPCIM;

•A címnek hálózati byte sorrendben kell lennie.

hostent

struct hostent {
char *h_name; //hivatalos nev
char **h_aliases; //tovabbi nevek
int h_addrtype; //cim csalad
int h_length; //cím hosszint h_length; //cím hossz
char **h_addr_list;//cimek listaja
};

#define h_addr h_addr_list[0]

• Host leíró információk.

Konvertáló függvények

• inet_addr(…)
• inet_aton(…)
• inet_ntoa(…)
• inet_pton(…)• inet_pton(…)
• inet_ntop(…)

• htonl(…)
• htons(…)
• ntohl(…)
• ntohs(…)

IP cím kezelés
#include<sys/socket.h>

struct sockaddr_in address;

• char* � long
address.sin_addr.s_addr=inet_addr("127.0.0.1");

• char* � struct sockaddr_in
inet_aton("127.0.0.1",&(address.sin_addr));

• struct sockaddr_in � char*
printf("IP: %s\n",inet_ntoa(address.sin_addr));

Byte sorrend konverzió

#include <netinet/in.h>

• gazdagép � hálózati
uint16_t htons(uint16_t hostshort)

uint32_t htonl(uint32_t hostlong)

• hálózati � gazdagép
uint16_t ntohs(uint16_t netshort)

uint32_t ntohl(uint32_t netlong)

Socket rendszerhívások
• socket(…)
• setsockopt(…)
• bind(…)
• listen(…)

• send(…)
• sendto(…)
• sendmsg(…)
• write(..)• listen(…)

• connect(…)
• accept(…)
• close(…)
• shutdown(…)
• select(…)

• write(..)
• recv(…)
• recvfrom(…)
• recvmsg(…)
• read(…)

socket

int socket(int family, int type,
int protokcol);

• Socket létrehozása.
• Visszatérési érték: OK: file leíró; hiba: -1• Visszatérési érték: OK: file leíró; hiba: -1
• family: AF_INET , PF_INET

• type: SOCK_STREAM, SOCK_DGRAM

• protocol: 0 (default a type és a family alapján)
• #include<sys/socket.h>

setsockopt

int setsockopt(int fd, int level,
int cmd, char *arg, int len);

• Opciók beállítása.
• fd: file leíró, amit a socket ad.
• level: • level: SOL_SOCKET

• cmd: SO_REUSEADDR, SO_KEEPALIVE

• arg: mutató a kívánt opciót tartalmazó bufferre.
• len: arg mérete.
• #include<sys/socket.h>

bind

int bind(int fd,
struct sockaddr *addrp, int alen);

• Socket hozzárendelése hálózati címhez.
• Visszatérési érték: OK: 0; hiba: -1• Visszatérési érték: OK: 0; hiba: -1
• fd: file leíró, amit a socket ad.

• addrp: címleíró struktúra címe.
• alen: a címleíró struktúra mérete
• #include<sys/socket.h>

listen

int listen(int fd, int backlog);

• Kapcsolatelfogadási szándék és queue méret
beállítás.

• Visszatérési érték: OK: 0; hiba: -1.• Visszatérési érték: OK: 0; hiba: -1.
• fd: file leíró, amit a socket ad.
• backlog: hány feldolgozatlan connect kérést

tárol.
• #include<sys/socket.h>

connect

int connect(int fd,
struct sockaddr *addrp, int alen);

• Kapcsolat létrehozása.
• Visszatérési érték: OK: 0; hiba: -1.• Visszatérési érték: OK: 0; hiba: -1.
• fd: file leíró, amit a socket ad.

• addrp: cél (server) cím.
• alen: a címleíró struktúra mérete.
• #include<sys/socket.h>

accept

int accept(int fd,
struct sockaddr *addrp, int *alenp);

• Kapcsolat elfogadása.
• Visszatérési érték: OK: új file leíró fd • Visszatérési érték: OK: új file leíró fd

tulajdonságaival; hiba: -1.
• fd: file leíró, amit a socket ad.

• addrp: kliens címe ide kerül.
• alenp: híváskor addrp hossza, visszatéréskor

kapott cím hossza.
• #include<sys/socket.h>

send

int (int fd, char *buff, int len,
int flags);

• Kapcsolat-orientált adat küldés.
• Visszatérési érték: OK: átvitt byte szám; hiba: -1.• Visszatérési érték: OK: átvitt byte szám; hiba: -1.
• fd: file leíró, amit a socket ad.

• buff: az üzenet.
• len: az üzenet hossza.
• flags: 0; MSG_OOB: nagy prioritás.
• #include<sys/socket.h>

sendto

int (int fd, char *buff, int len,
int flags, struct *addrp, int alen);

• Nem kapcsolat-orientált adat küldés.
• Visszatérési érték: OK: átvitt byte szám; hiba: -1.• Visszatérési érték: OK: átvitt byte szám; hiba: -1.
• fd, buff, len, flags: mint a send esetén.
• addrp, alen: mint connect esetén.
• #include<sys/socket.h>

recv

int (int fd, char *buff,
int maxlen, int flags);

• Kapcsolat-orientált adat fogadás.
• Visszatérési érték: OK: kapott byte szám; hiba: -1.• Visszatérési érték: OK: kapott byte szám; hiba: -1.
• fd: file leíró, amit a socket ad.

• buff: az üzenet.
• maxlen: a buffer hossza.
• flags: pl. 0; MSG_OOBcsak az így küldött adatot

veszi.
• #include<sys/socket.h>

recvfrom

int (int fd, char *buff, int maxlen,
int flags, struct *addrp, int *alenp);

• Nem kapcsolat-orientált adat küldés.
• Visszatérési érték: OK: kapott byte szám; hiba: -1.• Visszatérési érték: OK: kapott byte szám; hiba: -1.
• fd, buff, maxlen, flags: mint recv esetén.
• addrp, alenp: mint accept esetén.
• #include<sys/socket.h>

write, read

int write(int fd, char *buff, int len);

int read(int fd, char *buff, int mlen);

• Kapcsolat-orientált esetben használható küldésre,
fogadásra.fogadásra.

• Visszatérési érték: OK: byte szám; hiba: -1.
• fd: file leíró, amit a socket ad.

• buff: üzenet.
• mlen, len: (max) üzenet hossz.

• #include<unistd.h>

close

int close(int fd);

• Lezárja a socket-et.
• Visszetérési érték: OK: 0; hiba: -1.
• fd: file leíró, amit a socket ad.• fd: file leíró, amit a socket ad.
• #include<unistd.h>

shutdown

int shutdown(int fd, int how);

• Kapcsolat-orientált socket egyirányú lezárása.
• Visszatérési érték: OK: 0; hiba: -1.
• fd: file leíró, amit a socket ad.• fd: file leíró, amit a socket ad.

• how: 0: nem lehet adatot átvenni tőle; 1 nem
lehet adatot átadni neki; 2: egyik sem (close).

• #include<sys/socket.h>

Információs függvények

• getpeername(…)

• gethostname(…)

• gethostbyname(…)

• gethostbyaddr(…)

• getservbyname(…)

• getservbyport(…)

• getsockname(…)

getpeername

int getpeername(int fd,
struct sockaddr *addrp, int *alenp);

• Partner socket cím lekérdezés.
• Visszatérési érték: hiba esetén -1.• Visszatérési érték: hiba esetén -1.
• fd: ezen a csatlakozón érhető el.

• addrp: ide kerül a távoli gép címinformáció.
• alenp: cím hossz.
• #include<sys/socket.h>

gethostname

int gethostname(char *hname,
size_t len);

• Helyi gép neve.
• Visszatérési érték: hiba esetén -1.• Visszatérési érték: hiba esetén -1.
• hname: ide kerül a helyi gép neve.
• len: név hossz.
• #include<sys/socket.h>

gethostbyname

struct hostent *gethostbyname(
char *hname);

• Távoli fél azonosítás név alapján.
• Visszatérési érték: hiba esetén NULL.• Visszatérési érték: hiba esetén NULL.
• hname: a távoli gép neve.
• #include<netdb.h>

gethostbyaddr

struct hostent *gethostbyaddr(
char *addrp, int len, int family);

• Távoli fél azonosítás cím alapján.
• Visszatérési érték: hiba esetén NULL.• Visszatérési érték: hiba esetén NULL.
• addrp: keresett cím.

• len: cím hossz.
• family: cím család, pl. AF_INET .
• #include<sys/socket.h>

