Digital Design Laboratory

Dr. Oniga István University of Debrecen, Faculty of Informatics

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

2. Laboratory assignments

- Boolean algebra
 - Associative rules
 - Distributive rules
 - Absorption rules
 - De Morgan rules
- Implementation of for variable functions AND, OR, XOR and NOR
- Simulation using test vectors

Lab2_1a assignment:

3 variable logic function implementation - Associative rules -

 $A \bullet (B \bullet C) = (A \bullet B) \bullet C$

- Create a new project A(BC) В Add a new "schematic" source (AB)C BC Draw the schematic presented on this slide. A + (B + C) = (A + B) + CAdd and adapt the constraints file Nexysx.UCF A+(B+C) В (A+B)+C Inputs: *sw[2:0]* B+C
 - sw0 -> A; sw1 -> B; sw2->C
 - Outputs: *led[3:0]*
- Generate the configuration file, download to board, test the project
- Note your experience in the Laboratory's Report Questionnaire

Lab2_1a Results

• Using switches sw0, sw1 and sw2 make all 8 possible combinations and note the corresponding state of the LEDs on the following table

sw0	sw1	sw2	led1 A(BC)	led2 (AB)C	led3 A+(B+C)	led4 (A+B)+C
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Lab2_1b assignment:

3 variable logic function implementation - Distributive rules -

- Generate the configuration file, download to board, test the project
- Note your experience in the Laboratory's Report Questionnaire

Lab2_1b Results

• Using switches sw0, sw1 and sw2 make all 8 possible combinations and note the corresponding state of the LEDs on the following table

sw0	sw1	sw2	led1 A(B+C)	led2 AB+AC	led3 A+BC	led4 (A+B)*(A+C)
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Lab2_1c assignment:

- Absorption rules -

- Create a new project
- Add a new "schematic" source
- Draw the schematic presented on this slide.
- Add and adapt the Nexysx.UCF file
 - Inputs: *sw[1:0]*
 - sw0 -> A; sw1 -> B
 - Outputs: *led[1:0]*

$$A + A \bullet B = A$$

- Generate the configuration file, download to board, test the project
- Note your experience in the Laboratory's Report Questionnaire

Lab2_1c Results

• Using switches sw0 and sw1 make all 4 possible combinations and note the corresponding state of the leds on the following table

sw0	sw1	led1 A(A+B)	led2 A+AB
0	0		
0	1		
1	0		
1	1		

Lab2_2a assignment:

De Morgan rules for 2 variables

 $\overline{\mathbf{A} \bullet \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

- $\overline{A+B} = \overline{A} \bullet \overline{B}$
- Create a new project
- Add a new "schematic" source
- Draw the schematic presented on this slide.
- Add and adapt the Nexysx.UCF file
 - Inputs: sw[1:0]

sw0 -> A sw1 -> B

Outputs: led[3:0]

- Generate the configuration file, download to board, test the project
- Note your experience in the Laboratory's Report Questionnaire

Lab2_2a Results

• Using switches sw0 and sw1 make all 4 possible combinations and note the corresponding state of the LEDs on the following table

sw0	sw1	led1 /(AB)	led2 /A+/B	led3 /(A+B)	led4 /A*/B
0	0				
0	1				
1	0				
0	1				

Lab2_2b assignment:

De Morgan rules for 3 variables

- $\overline{A \bullet B \bullet C} = \overline{A} + \overline{B} + \overline{C}$ $\overline{A + B + C} = \overline{A} \bullet \overline{B} \bullet \overline{C}$
- Create a new project
- Add a new "schematic" source
- Draw the schematic.
- Add and adapt the Nexysx.UCF file
 - Inputs: *sw[2:0]*
 - sw0 -> A; sw1 -> B; sw2 -> C
 - Outputs: *led[3:0]*

sw0	sw1	sw2	led1 /(ABC)	led2 /A+/B+/C	led3 /(A+B+C)	led4 /A*/B*/C
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

- Generate the configuration file, download to board, test the project
- Using switches sw0, sw1 and sw2 make all 8 possible combinations and note the corresponding state of the LEDs on the following table
- Note your experience in the Laboratory's Report Questionnaire

Lab2_2c (optional assignment):

De Morgan generalization

	sw0	sw1	sw2	led1 X1	led2 X2	led3 Y1	led4 Y2
$X = A \bullet B + A \bullet \overline{C} + ABC = \overline{A \bullet B} \bullet A \bullet \overline{C} \bullet \overline{ABC}$	0	0	0				
$Y = (A \bullet B + A \bullet \overline{C}) \bullet (ABC + \overline{B}C) = A \bullet B + A \bullet \overline{C} + ABC + \overline{B}C$	0	0	1				
Create a new project	0	1	0				
 Add a new "schematic" source 	0	1	1				
 Draw the schematic. Add and adapt the Nexysx UCE file 	1	0	0				
 inputs: <i>sw[2:0]</i> 	1	0	1				
sw0 -> A; sw1 -> B; sw2 -> C	1	1	0				
 Outputs: <i>led[3:0]</i> 	1	1	1				

- Generate the configuration file, download to board, test the project
- Using switches sw0, sw1 and sw2 make all 8 possible combinations and note the corresponding state of the LEDs on the following table
- Note your experience in the Laboratory's Report Questionnaire

Lab2_3a assignment:

- Implementation of AND, OR, XOR and NOR functions
 - Inputs: DIP switches lower 4 bits
 - Outputs: lower 4 LEDs
- Simulation generating the test vectors using "for" loop

Follow the flow on the previous week flow presented in <u>"DDL_1.pdf</u>"

- Start ISE, create a new project
- Add a new Verilog file Lab2_3a.v
- Add copy of source: Nexys4.UCF file, adapt to actual inputs and outputs
- Edit Lab2_3a.v adding the needed functionality
- Functional simulation
- Generate configuration file, download to board, test.

Lab2_3a assignment:

• Input signals specification as individual bits

```
module Lab2 3a(
21
       input [3:0] sw,
22
23
     output [3:0] ld
24
       );
25
26 assign ld[0] = sw[3] & sw[2] & sw[1] & sw[0] ; // 4 változó ÉS függvénye
27 assign ld[1] = sw[3] | sw[2] | sw[1] | sw[0] ; // 4 változó VAGY függvénye
28 assign ld[2] = sw[3] ^ sw[2] ^ sw[1] ^ sw[0] ; // 4 változó XOR függvénve
   assign ld[3] = ~sw[3] & ~sw[2] & ~sw[1] & ~sw[0] ; // 4 változó NOR függvénye
29
30
31 endmodule
```

• Using bit reduction operators on vectors

```
module Lab2 3a(
34
     input [3:0] sw,
35
36
      output [3:0] 1d
37
       );
38
39 assign ld[0] = &sw[3:0]; // ÉS kapcsolat a 4 bites változó bitjeire // 1111?
40 assign ld[1] = |sw[3:0]; // VAGY kapcsolat a 4 bites változó bitjeire
41 assign ld[2] = ^sw[3:0]; // XOR kapcsolat a 4 bites változó bitjeire
42 assign ld[3] = ~|sw[3:0]; // NOR kapcsolat a 4 bites változó bitjeire // 0000?
43
   endmodule
44
```

Lab2_3a assignment: simulation

- Change to simulation Mode
- Creating the text fixture and specifying the text vectors
- Add a new source: Project / New Source Verilog Test Fixture. The file name: Lab2_3_TF !
- Select the module to be tested.

Lab2_3a assignment: simulation

Desig	Design ↔ □ 🗗 🗙		15	// Verilog Test Fixture created by ISE for module: Lab2 3a
F #	View: 🔿 🔯 Implementation 💿 詞 Simulation		16	//
	Behavioral		17	// Dependencies:
d l		Ξ	18	//
6	Hierarchy	10	19	// Revision:
	🔄 Lab2_3a	_	20	// Revision 0.01 - File Created
őő	🖮 🛄 xc7a100t-3csg324	=	21	// Additional Comments:
E	🖮 💟 Lab2_3_TF (Lab2_3_TF.v)	2	22	//
<u>ee</u>	🦢 💟 uut - Lab2_3a (Lab2_3a.v)	_	23	///////////////////////////////////////
		A	24	
E)		%	25	module Lab2_3_TF;
		126	26	
		<i>(</i> ,)	27	// Inputs
		<u>;</u> 20-	28	reg [3:0] sw;
			29	
			21	wire [3:0] ld:
		\mathbf{e}	32	wife [5.0] id,
			33	// Instantiate the Unit Under Test (UUT)
			34	Lab2 3a uut (
			35	.sw(sw),
	No Processes Running		36	.ld(ld)
ENH.		i I	37);
Ţ₽,	No single design module is selected.		38	
ЭĽ,	🗄 🥍 🛛 Design Utilities		39	initial begin
ENH			40	// Initialize Inputs
1			41	sw = 0;
			42	
			43	<pre>// Wait 100 ns for global reset to finish</pre>
			44	#100;
			45	
			46	// Add stimulus here
			47	
			48	ena
			49	endmodule
			50	endilocate

Test vectors generation

- Change the automatically generated Verilog Test Fixture file
- 4 variable function
 - Max. 16 combinations

Test vector generation using for loop

```
25 module Lab2 3 TF;
    // Inputs
26
27
    reg [3:0] sw;
28 // Outputs
29
    wire [3:0] ld;
    // Instantiate the Unit Under Test (UUT)
30
31
     Lab2 3a uut (
32
          .sw(sw),
33
          .ld(ld)
34
      );
35
36 integer i ;
     initial begin
37
38
        // Initialize Inputs
39
          sw = 0:
40
         // Wait 100 ns for global reset to finish
41
          #100;
42
          // Add stimulus here
43
   // Teljes tesztvektorkészlet ciklussal generálva
44
           for (i = 0 ; i<=15; i = i+1)</pre>
45
46
           begin
47
             #100 sw = i;
48
           end
49
50
       end
51 endmodule
```

Test vector generation using linear code

25	module Lab2 3 TF;										
26	// Inputs										
27	reg [3:0] sw;										
28	// Outputs										
29	wire [3:0] ld;										
30	<pre>// Instantiate the Unit Under Test (UUT)</pre>										
31	Lab2_3a uut (
32	.sw(sw),										
33	.ld(ld)										
34);										
35											
36	integer i ;										
37	initial begin										
38	// Initialize Inputs										
39	sw = 0;										
40	<pre>// Wait 100 ns for global reset to finish</pre>										
41	#100;										
42	// Add stimulus here										
43	// Teljes tesztvektorkészlet lineáris felsorolással										
44	#100 sw = 4'h0;										
45	#100 sw = 4'h1;										
46	#100 sw = 4'h2;										
47	#100 sw = 4'h3;										
48	#100 sw = 4'h4;										
49	#100 sw = 4'h5;										
50	#100 sw = 4'h6;										
51	$\pm 100 sw = 4'h7;$										
52	#100 sw = 4'h8;										
53	$\#100 sw = 4^{1}n9;$										
54	$\#100 sw = 4^{1}ha;$										
55	#100 SW = 4'ND;										
56	$\frac{1}{100}$ sw = 4.hd;										
57	$\frac{1}{100}$ sw = 4 ha;										
58	$\frac{1}{100}$ sw = 4 ne;										
59	#100 SW - 4.UI;										
60	and										
61	endule										
62	endilodate										

Simulation

- **Project Navigator program View: Simulation, in Hierarchy** select the testfixture (*Lab2_3_TF*).
- · In Processes window choose ISim Simulator /Simulate Behavioral Model.

Lab2_3a results

• Simulation results

− LD[0] → AND, LD[1] → OR, LD[2] → XOR, LD[3] → NOR

2	Name	Value	0 ns			500 ns				1,000 n	S			1,500 ns	
~	🔻 式 Id[3:0]	8		8	6	2	6	2	χ (2	6	2	6	3
~	Ц [3]	1													
	1 [2]	0													
9	1 [1]	0													
1	16 [0]	0													
∌ r∣	🔻 📷 sw[3:0]	0		0	1 2	3	4	5 6	7	8	9 10	11	12	13 14	15
-	Ъ [3]	0													
ĭ	16 [2]	0													
1°	16 [1]	0													
^ 1	16 [0]	0													

- Design implemenation:
 - Generate .bit file
 - Download and test in board
- Note your experience in the Laboratory's Report Questionnaire