Digital Design Laboratory

Dr. Oniga István University of Debrecen, Faculty of Informatics

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

6. Laboratory assignments

- Arithmetical and Logical Unit
 - 4-bits adders/subtractors
 - 1-bit ALU
 - 4-bits ALU description using VERILOG
 - 4-bits ALU results display on 7 segment display

Lab6_1a: 4-bits subtractor

- Create a new HDL project (Lab6_1)
- Add (Add Copy of Source) the Verilog source add4.v file created for assignment Lab5_5b. Add a new input named cin to this source.
- In the Processes window double click on Create Schematic Symbol
- Add a new Schematic source file subb4.v.
- In the schematic editor in Categories window choose the actual folder
- In Symbols window find the previously created add4 symbol. Add this symbol to page and finish the schematic as it can be seen in the next page.

Lab6_1a: 4-bits subtractor

- Add and adapt the Nexysx.ucf file. Note the difference between the specification of a bus: sw(3:0) and wire sw4, sw5, sw6, sw7 in the ucf file
- Generate the configuration file, download to board and test

•	NET "sw<0>"	LOC=J15 IOSTANDARD=LVCMOS33; #IO_L24N_T3_RS0_15
•	NET "sw<1>"	LOC=L16 IOSTANDARD=LVCMOS33; #IO_L3N_T0_DQS_EMCCLK_14
•	NET "sw<2>"	LOC=M13 IOSTANDARD=LVCMOS33; #IO_L6N_T0_D08_VREF_14
•	NET "sw<3>"	LOC=R15 IOSTANDARD=LVCMOS33; #IO_L13N_T2_MRCC_14
•	NET "sw4"	LOC=R17 IOSTANDARD=LVCMOS33; #IO_L12N_T1_MRCC_14
•	NET "sw5"	LOC=T18 IOSTANDARD=LVCMOS33; #IO_L7N_T1_D10_14
•	NET "sw6"	LOC=U18 IOSTANDARD=LVCMOS33; #IO_L17N_T2_A13_D29_14
•	NET "sw7"	LOC=R13 IOSTANDARD=LVCMOS33; #IO_L5N_T0_D07_14
•	NET "led<0>"	LOC=H17 IOSTANDARD=LVCMOS33; #IO_L18P_T2_A24_15
•	NET "led<1>"	LOC=K15 IOSTANDARD=LVCMOS33; #IO_L24P_T3_RS1_15
•	NET "led<2>"	LOC=J13 IOSTANDARD=LVCMOS33; #IO_L17N_T2_A25_15
•	NET "led<3>"	LOC=N14 IOSTANDARD=LVCMOS33; #IO_L8P_T1_D11_14
٠	NET "led<4>"	LOC=R18 IOSTANDARD=LVCMOS33; #IO_L7P_T1_D09_14

Lab6_2: 1 bit ALU

- Create a new project (Lab6_2)
- Add (Add Copy of Source) the add1_full .v source file created for a Lab5_4.
- In Processes window duble click on Create Schematic Symbol
- Add a new Schematic file (Sub4)
- In schematic editor in the Categories window choose the current work folder
- In the Symbols window find the symbol for add4 and add it to the schematic page and finish the following schematic.
- Ad to project the Verilog description of the multiplexer used in Lab4_3c, and create a schematic symbol from this. Add it to schematic page and connect it as in the next figure.

Lab6_2: 1 bits ALU

- Add and adapt the Nexysx.ucf file.
- Generate the configuration file, download to board and test. (Fill the next tables)

Logical operations

Arithmetical operations

F1	FO	Α	В	Cin	F	Cout
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	0		
1	0	0	0	1		
1	0	0	1	1		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	0		
1	1	1	0	0		
1	1	1	1	0		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

R [7:0]

- Create a new projectLab6_3
- Add a new "Verilog" sorce file (alu_top). This module will connect the ALU modules

<pre>module alu_top(input [3:0] a, b, input [2:0] f, output [7:0] r); wire</pre>
[3:0] addmux_out, submux_out;
<pre>wire [7:0] add_out, sub_out, mul_out;</pre>
<pre>mux2_4 adder_mux(b, 4'd1, f[0], addmux_out);</pre>
<pre>mux2_4 sub_mux(b, 4'd1, f[0], submux_out);</pre>
<pre>add4 our_adder(a, addmux_out, add_out);</pre>
<pre>sub4 our_subtracer(a, submux_out, sub_out);</pre>
<pre>mul4 our_multiplier(a,b,mul_out);</pre>
<pre>mux3_8 output_mux(add_out, sub_out, mul_out, f[2:1], r);</pre>
endmodule

- Add a new "Verilog" source file (alu4_modules)
- Replace the content created automatic with the modules description on the next page.

Modules description

```
module mux2 4(input [3:0] i0, i1, input sel, output [7:0] out);
         assign out = sel ? i1 : i0;
endmodule
module mux3_8(input [7:0] i0, i1, i2, input [1:0] sel, output reg [7:0] out);
    always @(i0 or i1 or i2 or sel)
         begin
              case (sel)
                   2'b00: out = i0;
                  2'b01: out = i1:
                  2'b10: out = i2;
                  default: out = 8'bx;
              endcase
         end
endmodule
module add4(input [3:0] i0, i1, output [7:0] sum);
         assign sum=i0+i1;
endmodule
module sub4(input [3:0] i0, i1, output [7:0] diff);
         assign diff=i0-i1;
endmodule
module mul4(input [3:0] i0, i1, output [7:0] prod);
         assign prod=i0*i1;
endmodule
```

ALU implementation and test

- Add and adapt the Nexysx.ucf file (F[2:0] <=> sw [15:13]; a [3:0] <=> sw [3:0], b [3:0]
 <=> sw [7:4], r [7:0] <=> led [7:0])
- Generate the configuration file, download to board and test. (Fill the next tables)
- Using sw [7:0] set the following input operands:
 - a = 3, b = 2 and using sw [15:13] set the 5 possible operations. In each case fill in the table the result.

F2 sw[15]	F1 sw[14]	F0 sw[13]	r[7]	r[6]	r[5]	r[4]	r[3]	r[2]	r[1]	r[0]
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	Х								

- Test again using new operands: a = 10, b = 12. The result of subtraction is correct?
- How much will the highest result of multiplication be?

NET	"a<0>"	LOC=J15	IOSTANDARD=LVCMOS33;
NET	"a<1>"	LOC=L16	IOSTANDARD=LVCMOS33;
NET	"a<2>"	LOC=M13	IOSTANDARD=LVCMOS33;
NET	"a<3>"	LOC=R15	IOSTANDARD=LVCMOS33;
NET	"b<0>"	LOC=R17	IOSTANDARD=LVCMOS33;
NET	"b<1>"	LOC=T18	IOSTANDARD=LVCMOS33;
NET	"b<2>"	LOC=U18	IOSTANDARD=LVCMOS33;
NET	"b<3>"	LOC=R13	IOSTANDARD=LVCMOS33;
NET	"f<0>"	LOC=U12	IOSTANDARD=LVCMOS33;
NET	"f<1>"	LOC=U11	IOSTANDARD=LVCMOS33;
NET	"f<2>"	LOC=V10	IOSTANDARD=LVCMOS33;
## 1 NET NET NET NET NET	EDS "r<0>" "r<1>" "r<2>" "r<3>" "r<4>"	LOC=H17 LOC=K15 LOC=J13 LOC=N14 LOC=R18	IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33;
NET	"r<5>"	LOC=V17	IOSTANDARD=LVCMOS33;
NET	"r<6>"	LOC=U17	IOSTANDARD=LVCMOS33;
NET	"r<7>"	LOC=U16	IOSTANDARD=LVCMOS33;

Lab6_3b: 4-bits ALU – simulation (not mandatory)

ALU test modul description

Name

a[3:0]

b[3:0]

f[2:0]

Checking the status of internal wires

Checking the status of internal wires

Name	Value														
🕨 🖏 a(3:0)	7		2	X	3		4			5			6	Х	7
🕨 🚮 b[3:0]	3			1				2						3	
🕨 📑 sum(7:0)	10	1/2/1/2/1/2/	3	X	4		6/5/6/5/6	(5)6)(5)	767	676	7/6/9	DD	9797	(9)7X	
🕨 📑 diff[7:0]	00000100	000000	000000)1	00000010							20	0000		
🕨 📑 prod[7:0]	00010101	00000000 X	000000	.0 X	00000011		0000100)0)	00	001010			00010010	X	00010101
🕨 📷 f[2:0]	4	2/3/4/5/6/7/	01/2/3/4	5670)1)2)3)4)5)	67	0/1/2/3/4	<u>(5)6</u> (7)	012	3(4)(5)	x6X7X0		2/3/4/5	x6)7X	0)(1)(2)(3
🕨 式 r[7:0]	00010101	()(00000)(XX)	<u>00) (00) (00</u>))(XX)(O	0)(00)	(XX)	0))(XX)		()00)	(XX)(X	V	(XX)	
🕨 📑 i0[3:0]	3			1				2						3	
🕨 📑 i1[3:0]	1						1								
l <mark>II</mark> sel	0														
🕨 📑 out(7:0)	3	0/1/0/1/0/		1			2/1/2/1/2	(1)(2)(1)	212	1/2/1	(2)(1)(3)		3(1)(3)(1	31	3/1/3/1
🕨 📑 i0[7:0]	00001010	000000	000000	1 X	00000100		00000	000	000			X	0000		
🕨 📑 i1[7:0]	00000100	000000	000000)1 X	00000010			000				X	00000		
🕨 📑 12[7:0]	00010101	X	000000	.o X	00000011		0000100)0)	00	001010			00010010	X	00010101
🕨 📲 sel[1:0]	10			0 \ 11 \ (00 (01 (10)	(11)	00 (01) 1	0 (11)		1 (10)	(11)	00)	01 \ 10	(11)	00 🛛 01
▶ 📲 out[7:0]	00010101	()(00000)(XX)	<u>00X00X00</u>)) <mark>(XX</mark>)(0	0)(00)(00)	(XX))) <mark>(XX</mark>)		()(00)	(XX)		())(00	XXX	

Lab6_4:

4-bits ALU result display on 7segments display

- Create a new project Lab6_4
- Add (Add copy of source) all files from Lab6_3 (alu_top, alu4_modules, Nexysx.ucf).
- Add a copy of the file created hex7seg on a previous lab (Lab3_3).
- Add a new "Verilog" source file (alu4_top). This will connect the alu_top and hex7seg modules.

endmodule

ALU implementation and test

- Add and adapt the Nexysx.ucf file (F[2:0] <=> sw [15:13]; a [3:0] <=> sw [3:0], b [3:0]
 <=> sw [7:4], a_to_g [6:0] <=> a_to_g [6:0], an[7:0] <=> an[6:0], dp <=> dp)
- Generate the configuration file, download to board and test.
- Using sw [7:0] set the following operands:
 - a = 3, b = 2
- Using sw [15:13] set the 5 possible operations. In each case observe the correctness of the result.

F2 F	=1 F0	Function	F2 sw[15]	F1 sw[14]	F0 sw[13]	
0	0 0	A + B	0	0	0	
0	0 1	A + 1	0	0	1	
ŏ	1 1	A - 1	0	1	0	
1	0 X	A * B	0	1	1	
			1	0	Х	