Digitális Technika

Dr. Oniga István Debreceni Egyetem, Informatikai Kar

7. Laboratóriumi gyakorlat

Aritmetikai-logikai egységek

- 4 bites összeadó/kivonó
- 1 bites ALU
- 4-bites ALU tervezése Verilog-ban
- 4-bites ALU eredmény megjelenítése 7 szegmenses kijelzőn

Lab7_1a: 4 bites kivonó

- Hozunk létre egy új projektet (Lab7_1)
- Adjunk hozzá (Add Copy of Source) a Lab6_5b feladathoz elkészített add4
 .v forrásfájlt és adjunk hozzá egy cin nevű bemenetet.
- A Processes ablakban válasszuk ki a Create Schematic Symbol (dupla klikk)
- Adjunk hozzá a projekthez egy új Schematic típusú forrásfájlt (Sub4)
- A rajz szerkesztőben a Categories ablakban válaszuk ki a aktuális munka mappát
- A Symbols ablakban meg találjuk az imént létrehozott add4 szimbólumát. Ezt adjuk hozzá a rajzlaphoz és fejezzük be a rajzott mind az a következő lapon látható

Lab7_1a: 4 bites kivonó

- A Nexysx.ucf fájl hozzáadása és adaptálása. Figyeljük meg a sw(3:0) busz illetve sw4, sw5, sw6, sw7 bitek (vezetékek) specifikálási módját az ucf fájlban
- Konfigurációs fájl generálása, letöltése és a működés tesztelése a kártyán

•	NET "sw<0>"	LOC=J15 IOSTANDARD=LVCMOS33; #IO_L24N_T3_RS0_1	15
---	-------------	--	----

- NET "sw<1>" LOC=L16 | IOSTANDARD=LVCMOS33; #IO_L3N_T0_DQS_EMCCLK_14
- NET "sw<2>" LOC=M13 | IOSTANDARD=LVCMOS33; #IO_L6N_T0_D08_VREF_14
- NET "sw<3>" LOC=R15 | IOSTANDARD=LVCMOS33; #IO_L13N_T2_MRCC_14
- NET "sw4" LOC=R17 | IOSTANDARD=LVCMOS33; #IO_L12N_T1_MRCC_14
- NET "sw5" LOC=T18 | IOSTANDARD=LVCMOS33; #IO_L7N_T1_D10_14
- NET "sw6" LOC=U18 | IOSTANDARD=LVCMOS33; #IO_L17N_T2_A13_D29_14
- NET "sw7" LOC=R13 | IOSTANDARD=LVCMOS33; #IO_L5N_T0_D07_14
- NET "led<0>" LOC=H17 | IOSTANDARD=LVCMOS33; #IO_L18P_T2_A24_15
- NET "led<1>" LOC=K15 | IOSTANDARD=LVCMOS33; #IO_L24P_T3_RS1_15
- NET "led<2>" LOC=J13 | IOSTANDARD=LVCMOS33; #IO_L17N_T2_A25_15
- NET "led<3>" LOC=N14 | IOSTANDARD=LVCMOS33; #IO L8P T1 D11 14
- NET "led<4>" LOC=R18 | IOSTANDARD=LVCMOS33; #IO_L7P_T1_D09_14

Lab7_1b: 4 bites összeadó/kivonó

(szorgalmi feladat)

- Hozunk létre egy új projektet (Lab7_1b)
- Adjunk hozzá (Add Copy of Source) a Lab6_4 feladathoz elkészített add1_full.v forrásfájlt.
- Ebül késztésünk egy új rajz szimbólumot.
- Adjunk hozzá a projekthez egy új Schematic típusú forrásfájlt (Lab7_1b.v)
- A rajz szerkesztőben készítsük el a következő rajzott
- A Nexysx.ucf fájl hozzáadása és adaptálása
- Konfigurációs fájl generálása, letöltése és a működés tesztelése a kártyán

Lab7_2: 1 bites ALU

- Hozunk létre egy új projektet (Lab7_2)
- Adjunk hozzá (Add Copy of Source) a Lab6_4 feladathoz elkészített add1_full .v forrásfájlt.
- A Processes ablakban válasszuk ki a Create Schematic Symbol (dupla klikk)
- Adjunk hozzá a projekthez egy új Schematic típusú forrásfájlt (Sub4)
- A rajz szerkesztőben a Categories ablakban válaszuk ki a aktuális munka mappát
- A Symbols ablakban meg találjuk az imént létrehozott add4 szimbólumát. Ezt adjuk hozzá a rajzlaphoz és készítsük el a következő rajzott.
- Hasonlóképen készítsünk egy multiplexer szimbólumot a Lab5_3c feladatnál használt Verilog kódból. (Alternatíva: a rajz szerkesztő programba létezik egy M4_1E szimbólum. Az E engedélyező lábát Vcc-re kell kötni))

Lab7_2: 1 bites ALU

- A Nexysx.ucf fájl hozzáadása és adaptálása.
- Konfigurációs fájl generálása, letöltése és a működés tesztelése a kártyán

Logikai műveletek

Aritmetikai műveletek

F1	FO	Α	В	Cin	F	Cout
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	0		
1	0	0	0	1		
1	0	0	1	1		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	0		
1	1	1	0	0		
1	1	1	1	0		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

R [7:0]

- Hozunk létre egy új projektet Lab7_3
- Adjunk hozzá egy új "Verilog" forrásfájlt (alu_top). Ez a modul köti össze az ALU moduljait

<pre>module alu_top(input [3:0] a, b, input [2:0] f, output [7:0] r); wire</pre>
[3:0] addmux_out, submux_out;
<pre>wire [7:0] add_out, sub_out, mul_out;</pre>
<pre>mux2_4 adder_mux(b, 4'd1, f[0], addmux_out);</pre>
<pre>mux2_4 sub_mux(b, 4'd1, f[0], submux_out);</pre>
<pre>add4 our_adder(a, addmux_out, add_out);</pre>
<pre>sub4 our_subtracer(a, submux_out, sub_out);</pre>
<pre>mul4 our_multiplier(a,b,mul_out);</pre>
<pre>mux3_8 output_mux(add_out, sub_out, mul_out, f[2:1], r);</pre>
endmodule

- Adjunk hozzá egy új "Verilog" forrásfájlt (alu4_modulok)
- A forrásfájlok specifikálása (Másoljuk bele a következő oldalon lévő modul leírásokat)

Modulok leírása

```
module mux2 4(input [3:0] i0, i1, input sel, output [7:0] out);
         assign out = sel ? i1 : i0;
endmodule
module mux3_8(input [7:0] i0, i1, i2, input [1:0] sel, output reg [7:0] out);
    always @(i0 or i1 or i2 or sel)
         begin
              case (sel)
                  2'b00: out = i0;
                  2'b01: out = i1:
                  2'b10: out = i2;
                  default: out = 8'bx;
              endcase
         end
endmodule
module add4(input [3:0] i0, i1, output [7:0] sum);
         assign sum=i0+i1;
endmodule
module sub4(input [3:0] i0, i1, output [7:0] diff);
         assign diff=i0-i1;
endmodule
module mul4(input [3:0] i0, i1, output [7:0] prod);
         assign prod=i0*i1;
endmodule
```

ALU implementálása és tesztelése

- A Nexysx.ucf fájl hozzáadása és adaptálása (F[2:0] <=> sw [15:13]; a [3:0] <=> sw [3:0], b [3:0] <=> sw [7:4], r [7:0] <=> led [7:0])
- Konfigurációs fájl generálása, letöltése és a működés tesztelése a kártyán
- A sw [7:0] kapcsolókkal alítsa be a következő operandusokat:
 - a = 3, b = 2 és sw [15:13] kapcsolok segítségével alítsa be egymás után az 5 lehetséges műveletet. Minden estben írja be a táblázatba a művelet eredményét és véleményezze a helyességét.

F2 sw[15]	F1 sw[14]	F0 sw[13]	r[7]	r[6]	r[5]	r[4]	r[3]	r[2]	r[1]	r[0]
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	Х								

- Végezze el a fenti méréseket újabb operandusokkal: a = 10, b = 12 és véleményezze az eredmények helyességét. Bizonyítsa be algebrai módszerekkel hogy a bináris kivonás jól működik vagy nem.
- Mennyi lesz a szorzás legnagyobb eredménye?

NET "a<0>"	LOC=J15	IOSTANDARD=LVCMOS33;
NET "a<1>"	LOC=L16	IOSTANDARD=LVCMOS33;
NET "a<2>"	LOC=M13	IOSTANDARD=LVCMOS33;
NET "a<3>"	LOC=R15	IOSTANDARD=LVCMOS33;
NET "b<0>"	LOC=R17	IOSTANDARD=LVCMOS33;
NET "b<1>"	LOC=T18	IOSTANDARD=LVCMOS33;
NET "b<2>"	LOC=U18	IOSTANDARD=LVCMOS33;
NET "b<3>"	LOC=R13	IOSTANDARD=LVCMOS33;
NET "f<0>" NET "f<1>" NET "f<2>" ## LEDS	LOC=U12 LOC=U11 LOC=V10	IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33; IOSTANDARD=LVCMOS33;
NET "r<0>"	LOC=H17	IOSTANDARD=LVCMOS33;
NET "r<1>"	LOC=K15	IOSTANDARD=LVCMOS33;
NET "r<2>"	LOC=J13	IOSTANDARD=LVCMOS33;
NET "r<3>"	LOC=N14	IOSTANDARD=LVCMOS33;
NET "r<4>"	LOC=R18	IOSTANDARD=LVCMOS33;
NET "r<5>"	LOC=V17	IOSTANDARD=LVCMOS33;
NET "r<6>"	LOC=U17	IOSTANDARD=LVCMOS33;
NET "r<7>"	LOC=U16	IOSTANDARD=LVCMOS33;

Lab7_3b: 4 bites ALU – szimuláció

(szorgalmi feladat)

ALU teszt modul leírása

Name

a[3:0]

b[3:0]

f[2:0]

Belső vezetékek állapotának megvizsgálása

Belső vezetékek állapotának megvizsgálása

Name	Value								
🕨 🌃 a(3:0)	7	1	2	3	χ4	5	X	6	χ_7
🕨 🚮 b[3:0]	3		1	1	χ		X	3	
🕨 📑 sum(7:0)	10	1/2/1/2/1/2		4)6/5/6/5/6/5/6/5	7)6)7)6)7)6)7)6	X9 X7	97979797	XXIIX
🕨 📑 diff[7:0]	00000100		00000001	X00000010	\square	000000000	XIIX	020020	XXXX
🕨 📑 prod[7:0]	00010101	0000000	00000010	00000011	X 00001000)	00001010	X	00010010	χ00010101
▶ 📑 f[2:0]	4	2334757677	0/1/2/3/4/5/6/7)	XOX1X2X3X4X5X6X7	7)0)1)2)3)4)5)6)7)	0/1/2/3/4/5/6/7	X0X1	2/3/4/5/6/7	<u>XO(1)(2)(3</u>
🕨 式 r[7:0]	00010101	(X00000)(XX)	00X00X00XXX)	X 00 X 00 X 00 X XX	.)	() () () () (00) (XX)		(X)(00)(XX	<u>XX</u>
▶ 📑 i0[3:0]	3		1	1	χ2		X	3	
▶ 📑 i1[3:0]	1				1				
🏰 sel	0								
🕨 📲 out[7:0]	3	0110110	1)2/1/2/1/2/1/2/1	2)1)2)1)2)1)2)1	(3)(1)	3(1)3(1)3(1)3/1/3/1
🕨 📲 i0[7:0]	00001010	000000	00000011	00000100)00000000000000000000000000000000000000	000000000	XIIX	020020	XX:::XX::
🕨 📲 i1[7:0]	00000100	000000	00000001	00000010	\square	000000000	XIIX	020020)))))))))))))))))))))))))))))))))))))))
🕨 📲 i2[7:0]	00010101	00000000	00000010	00000011) 00001000	00001010	X	00010010	<u>) (00010101</u>
🕨 📲 sel[1:0]	10	01 (10 (11)	00 \ 01 \ 10 \ 11	00 01 10 11	00 01 10 11	00 01 10 11	X 00	01 \ 10 \ 11	<u>) 00 (01</u>
🕨 📲 out[7:0]	00010101	(X00000)(XX)	00X00X00XX)	X 00 X 00 X 00 X XX	.)	() () () () (00) (XX		(X)(00)(XX	X = 0

Lab7_4:

4-bites ALU eredménye 7szegmenses kijelzőn

- Hozunk létre egy új projektet Lab7_4
- Adjunk hozzá (Add copy of source) a Lab7_3 feladat összes forrásfájlját (alu_top, alu4_modulok).
- Adjunk hozzá a Lab4_3 feladatnál elkészített hét szegmenses kijelző leírásának egy másolatát (hex7seg.v)
- Adjunk hozzá egy új "Verilog" forrásfájlt (alu4_top). Ez a modul köti össze az alu_top és a hex7seg modulokat.

endmodule

ALU implementálása és tesztelése

- A Nexysx.ucf fájl hozzáadása és adaptálása (F[2:0] <=> sw [15:13]; a [3:0] <=> sw [3:0], b
 [3:0] <=> sw [7:4], a_to_g [6:0] <=> a_to_g [6:0], an[7:0] <=> an[7:0], dp <=> dp)
- Konfigurációs fájl generálása, letöltése és a működés tesztelése a kártyán
- A sw [7:0] kapcsolókkal alítsa be a következő operandusokat:
 - a = 3, b = 2 és sw [15:13] kapcsolok segítségével alítsa be egymás után az 5 lehetséges műveletet. Minden esetben jegyezze fel a kijelzőn látható eredményét és véleményezze a helyességét.

F2	F1	FO	Function	F2 sw[15]	F1 sw[14]	F0 sw[13]	
0	0	0	A + B	0	0	0	
0	0	1	A + 1	0	0	1	
0	1	1	A - B	0	1	0	
1	-	1		0	1	1	
1	0	~	A ~ B	1	0	Х	

- Végezze el a fenti méréseket újabb operandusokkal: és véleményezze az eredmények helyességét.
- Milyen korlátai vannak az fenti áramkörnek?
- Mennyi lesz a szorzás legnagyobb eredménye?