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1. Bevezetés

A szamitégépes rendszerek haszndlata a mechanikus miveletek és az emberi munka
kivaltdsara mar a kezdetektdl fogva nyilvanvaldé volt. Az integracidés technoldgia
exponencidlis névekedése az 1970-es évek oOta lehetévé teszi szdmunkra, hogy egy
szamitogép kozponti feldolgozd egységét egyetlen integralt aramkorbe (chipbe)
helyezziink, de ezek a feldolgozo egységek még nagyon egyszerlek voltak. Az elsé
mikroprocesszort, az Intel 4004-et, egy szamolégéphez tervezték, ami nevezetesen egy
beagyazott rendszernek tekintheté. Mivel az integralt &ramkorok tervezése akkor is és ma
is draga és iddigényes folyamat, a hardver sokoldalu ujra felhasznaldsanak lehetésége a
szoftver moédositasaval kulcsfontossagu attorést jelentett.

Az integracios technolégia ma mar lehet6vé teszi, hogy egy teljes szamitogépet alakitsanak
ki egy chipen belil. Ez volt az egyik f6 hajtoereje a beadgyazott rendszerek
megjelenésének, amik hamar elterjedtek az ipar minden tertiiletén. Ami hatalmas 16kést
adott a bedgyazott rendszerek fejlédésének az az autdipar volt. A mai autdkban tobb, mint
100 beagyazott rendszer talalhato, amik a szoérakoztatd elektronikat, a motort, az
iizemanyag levegd keverését, a fékrendszert és még szamos egyéb alkatrészt vezérelnek.
A jarmiiparban jol megfigyelheté az egyre kifinomultban mikodtetés, amit bedgyazott
rendszerekkel lehetett megoldani.

Napjainkban, a mindennapi életiinkben is méar mindenhol taldlkozhatunk beagyazott
rendszerekkel. De pontosan mit is jelent a beagyazott rendszer kifejezés? Ha definialni
szeretnénk a beagyazott rendszereket vagy mas néven beagyazott szamitéogépeket,
akkor azt mondhatjuk, hogy egy beagyazott szamitogép egy eszkoz belsejében 1évo
szamitogép, amelyet egy eldre meghatarozott feladat végrehajtasara
hasznalnak. Bizonyos esetekben a bedgyazott rendszereket kiberfizikai
rendszereknek nevezik, ahol a fizikai rendszer, szorosan kolcsénhatdsba lép egy
szamitogépes rendszerrel. A cél, hogy a mechanikus miikodést egy kifinomultabb
vezérlérendszerrel helyettesitsék. A jarmiiparnal maradva, erre egy jo példa az
uzemanyag befecskendezés. A mechanikus elven miikodé karburatort ma mar felvaltott a
bedgyazott rendszeren alapu motorvezérlé, ami a motorba helyezett szenzorok mért

értékeire tdmaszkodva szamolja ki a megfeleld iizemanyag-levegd keverési aranyt.



Az is érdemes megemliteni, hogy minden eszkdz, ami a manapsag népszerdi dolgok
Internete (IoT) témakorbe tartozik, szintén bedgyazott rendszerek. Ahogy a név is utal
ra, ezek az eszkozok tobbnyire vezeték nélkiil, koézvetlen vagy kozvetett modon
kommunikélnak az Interneten keresztiil.

Ha szamitégéprél beszéliink, akkor a legtébb embernek a laptopja vagy az asztali
szamitogépje jut az eszébe. Viszont a teljes kép ett6l dsszetettebb, mivel a szdmitdgépes
rendszereket négy nagy csoportra tudjuk bontani. Ezek kozil az egyik a személyi
szamitogépek (PC) csoportja, amibe a hordozhaté és az asztali szamitogépek is
tartoznak. Ezeknek az eszkozoknek a k6zos jellemzdje, hogy altalanos felhasznalasi célra
lettek tervezve, igy szamos dolgot tudunk velik végezni a filmnézéstél a
szoftverfejlesztésig.

A kovetkezd kategoria a szerver szamitégépek kategoridja. A szerverek hasonlod
technologiaval késziilnek, mint az asztali szamitogépek, de nagyobb szamitasi, tarhely- és
ki-bemeneti kapacitast biztositanak. Ezen tul, két tovabbi fontos jellegzetességet kell
kiemelni a szerverek kapcsan. Az egyik az, hogy a felhasznalok tipikusan a szamitogépes
hélézatokon keresztil érik el a szervereket. A mésik, a megbizhatdésag, amit sok esetben
a redundancia biztosit. Mivel a fizikai eszkdz6k meghibasodnak (,,...ha valami egydltalan
elromolhat, az el is romlik”), ezért elére fel kell késziilni a meghibasodasra. Ez a
gyakorlatban azt jelenti, hogy a szervereken tarolt adatok tobb merevlemezen is
tarolodnak (redundéansan), illetve tobb tapegységgel vannak felszerelve igy, ha az egyik
meghibasodik, akkor a masik tapegység at tudja venni a helyét. A szerverek esetében nagy
figyelmet kap a megbizhat6sag, mert a szerver 6sszeomldésa tipikusan sokkal koltségesebb,
mint egyetlen felhasznal6 PC-jének a meghibasodasa.

A harmadik kategéria a szuperszamitogépeké. Ez a legmisztikusabb kategoria, mivel a
legtobb ember nem gyakran 1at szuperszamitégépet. A szuperszamitégépek tobb tizezer
processzort foglalnak magukba és hatalmas tarolasi kapacitdssal rendelkeznek. A
gyakorlatban nagy szdmitasi teljesitményt igénylé tudomanyos és mérnoki szamitdsok
elvégzésére haszndljak, mint példaul idGjaras elérejelzésre, olajleléhelyek felkutatasara,
genetikai projektek.

A legutolso és egyben legtagabb szamitogépes kategoria a beagyazott rendszereké. A
bedgyazott rendszerek mindenhol koril vesznek benntinket. Megtalalhatok a haztartasi

eszkozokben, a szorakoztatd elektronikai eszkozokben, a személy és teherautokban,



repilékben, gyermekjatékokban és még hosszasan lehetne sorolni az alkalmazasi
tertleteket.

Tehat egy PC-t nem tekintiink bedgyazott rendszernek, mivel az &ltaldnos felhasznalasi
célra lett 1étrehozva. Viszont egy fali termosztat mar beagyazott rendszer, hiszen csak a
fitési rendszer szabdlyozasara tudjuk hasznéalni. Fontos kihangsulyozni, hogy a
beagyazott rendszereket egyetlen alkalmazas megvaldsitasara tervezték! Itt is
fontos a megbizhatdsag, amit a beadgyazott rendszerek egy részénél az egyszert mikodési
elvre alapoznak, de a szervereknél megszokott redundancia is elé6fordul.

Most mar tudjuk, hogy minden szamitégépes rendszert, a négy nagy csoport
valamelyikébe sorolhat6. Azonban a csoporttdl fiiggetleniil, minden szamitogépes
rendszernél megtalalhaté az 1. dbran is lathaté harom f6 rendszerelem és az azokat
0sszekotd buszrendszer: kozponti feldolgoz6 egység vagy mas néven processzor
(CPU), a memoria (felejto és nem felejtd), valamint a ki-bemeneti (IO)
interfészek.

Az 1. dbran is lathaté f6 komponensek, minden szamitogépes rendszerben ugyanazokat
az alapvetd funkcidkat latjak el: adatok bevitele, adatok kivitele, adatok feldolgozasa és
adatok tarolasa. Logikailag a processzor tovabbi két f6 alkotoelemre bonthato fel. Az egyik
az adatut, amely a processzor és a memoria kdzotti adatcseréért és ennek feldolgozasaért
felel6s. A masik a vezérléegység, ami vezérls jeleket generdl az adatut, a memoria és az
IO komponensek mikodésének szabalyozasahoz a processzor altal aktualisan végrehajtott

utasitas alapjan.

Kimeneti

Interfész analég/digicdlis

Bemeneti

16g/digitalis
Interfész analég/digitdlis

|

|

|

|

Meméria I
|

|

—_

1. &bra. A szamitégépes rendszerek f6 komponensei.



Ahogy lattuk, a be és kimeneti interfészek minden egyes szamitégépes rendszernél fontos
szerepet toltenek be. Viszont, a szamitégépes rendszer tipusatol fliggben az interfészek
tipusai és a hozza kapcsolt periférias eszkozok (perifériak) teljesen eltéréek lehetnek.
Ha vesziink egy személyi szamitogépet, akkor ott a jol ismert periféridk a monitor,
billentylizet, nyomtatd stb. Ezzel szemben, a beadgyazott rendszereknél a periféridk
kiilénb6z6 szenzorok (hémeérd, gyorsulds, magneses tér stb.) és beavatkozok (motorok,
kapcsolok).

A f6 komponensek koziil, elsé6ként fokuszaljunk a CPU-ra, ami szamos belsé regiszterrel
rendelkezik. A regiszterek tobbsége egy program utasitasainak végrehajtasahoz sziikséges
informaciot taroljak. A belsé regiszterek kozott vannak specidlis feladatokat ellatok is. Az
egyik ilyen regiszter a programszamlalé (PC), amely a soron kovetkezd utasitas
memoriacimét tarolja. A PC tartalma alapjan, a CPU kiolvassa az utasitast a memoriabdl,
dekodolja és végrehajtja.

A memoria adatokat és utasitadsokat is tarol, és a sorai (mas szoval rekeszei vagy szavai)
a memoriacim megadasaval olvashato6 vagy irhat6. Az 1. dbran a memoria szemléltetése le
van egyszerUsitve, mert a legtobb rendszernél a memoéria tobb rétegb6l all és
hierarchikusan épil fel. S6t, a végrehajtandé program utasitasai és a program altal
felhasznalt adatok akar eltéré memoridkban lehetnek letarolva. Az olyan szamitdgépet,
amelynek memorigja adatokat és utasitasokat is tarol, Neumann architekturaju
szamitogépnek nevezzik (2. abra). Ebben az esetben, a processzor az adatokat és az

utasitasokat is ugyan abbdl a fizikai memoriabol olvassa ki.

Memoriacim
Memdria - Adat > Processzor
ADDr5,rl, 13 |€—————+ —- Programszdmlalé

2. abra. Neumann architektura.

A Neumann memoriaszervezés alternativija a Harvard architektura, amely majdnem

olyan régi, mint a Neumann. Itt két kilénall6 fizikai memoria van fenntartva a program
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utasitasainak és az adatok tdrolasdra (3. &bra). Mivel dedikdlt memoéria van az
utasitasoknak, igy programszamlalé a programmemoridra mutat, nem pedig az
adatmemoriara. A program és az adatmemoria szétvalasztdsa nagyobb teljesitményt
biztosit az altal, hogy a memoria kiolvasas parhuzamosithaté. Ebbdl fakadéan, a Harvard
architekturat ma is széles korben alkalmazzadk a digitalis jelfeldolgozoé

processzoroknal (DSP).

Memoriacim
Adatmemoria Adat Processzor
- > o
Programszimlalé
Memoriacim
Programmemc’)ria L,
Utasitdsok

3. abra. Harvard architektura.



2. CPU karakterisztika

A szamitégépes rendszer tipusatol fiiggetleniil, mindegyikben megtaldlhaté legalabb egy
processzormag (1. abra). Viszont attdl fiiggéen, hogy milyen szamitégépes rendszerrél van
sz0, a processzormagok karakterisztikaja nagyon eltéré lehet. Az egyik fontos jellemzéje a
processzormagnak, a belsé regisztereinek a mérete. Ennek alapjan megkiilénboztetiink 8,
16, 32, és 64-bites processzormagokat. Ezek a méretek a 8 tobbszorosei és nem véletleniil.
Korabbi tantargyaknal mar mindenki talalkozott a bajt fogalméval, ami 8-bit. Ezt vették
alapul a regiszter méretek meghatdrozasanal, aminek eredményeként egy 32 vagy 64 bites
regiszterbe 4 és 8 bajtnyi informaciot tudunk tdrolni. Napjainkban, a személyi
szamitogépek szinte mindegyike 64-bites processzormagokat haszndl. Ezzel szemben a
beagyazott rendszerek vezérl6egységeinél a 8-bites processzorok sem ritkak. Erre egy jo
példa az Arduino Uno mikrovezérlé kartyan is hasznalt 8-bites ATmega328P mikrovezérl6,
amit sok esetben haszndlnak bedgyazott rendszerek vezérlésére. A 8 bites
processzormaggal ellatott vezérléegységeket alacsony koltségli alkalmazasokhoz
tervezték. A 16 bites maggal rendelkezéket, a mar kifinomultabb alkalmazasokhoz, mig a
32 vagy 64 biteseket a szamitasigényes alkalmazasokhoz.

A processzormagnak egy masik fontos jellemzére, a miikodést ilitemezd Orajel
frekvencidja. Ez néhany megahertz (MHz) és tébb, mint 3 gigahertz (GHz) koz6tt mozog.
A személyi szamitogépeknél ez tobbnyire 3 GHz felett van. Ezzel szemben, ha ismét az
ATmega328P mikrovezérl6t hozzuk fel példaként, akkor ennek az orajel 16 MHz.

Egy tovabbi fontos jellemz8, a processzor utasitaskészletének komplexitdsa. Egy
processzor utasitaskészlete alatt azokat az elemi utasitdsokat értjilk, amelyeket a
processzor képes dekodolni és elvégezni. Azt is szoktak mondani, hogy az utasitas készlet
interfészként mukoddik a programoz6 és a processzor kozétt. Habar ma mar szinte
mindenki valamilyen magas szintli programozasi nyelvet hasznal szoftverfejlesztésre, de
ahhoz, hogy megértsiik a programok hatékonysagat tisztaban kell lenniink azzal, hogy a
programot futtaté processzor milyen elemi utasitdsokat képes végrehajtani. Szamos
processzor létezik, amelyek eltérd utasitaskészlettel rendelkeznek. Ha a beagyazott
rendszerek vilagara gondolunk, ott is rengeteg, eltérd célra létrehozott processzor tipust

tudunk megnevezni, mint példaul a ARM, a RISC-V, PICx vagy a C55x és C64x



processzorok. Ha a processzorokat az utasitas készletilk komplexitdsa alapjan akarjuk
kategorizalni, akkor két kategoridba lehet 6ket bontani. Léteznek komplex utasitaskészlet
processzorok (CISC) és csokkentett utasitdskészletd processzorok (RISC). A CISC
processzorok nagy mennyiségi (tipikusan tobb szaz), kilonféle utasitast biztositanak,
amelyek Osszetett feladatokat hajthatnak végre, mint példaul a karakterlanc-keresést.
Altalaban tobb, kiilonbozé hosszisagu utasitasformatumot hasznalnak. Ezzel szemben a
RISC processzorok kevesebb (kevesebb, mint 100) és egyszerlibb utasitasokat képesek
végrehajtani. Ezek a processzorok, altaldban a  betoltés/visszairds alapu
utasitasvégrehajtast kovetik- Ez annyit takar, hogy a muveletek nem hajthatok végre
kozvetlenill a memoridban, csak a regisztereken, ezért az operandusokat be kell tolteni a
regiszterekbe, majd a muvelet elvégzését kovetden, az eredményt vissza kell irni a
memoriaba.

Az alapvetd RISC/CISC jellemzésen tul, a processzorokat annak alapjan is jellemezhetjiik,
hogy milyen cimzési modokat tamogat az operandusok elérésére, az adatfeldolgozé
utasitasok hany operandussal képesek dolgozni, illetve, hogy rendelkeznek e hardveres

gyorsitoval bizonyos miiveletekhez.



3. Beagyazott rendszerek vezérléegységei

A beéagyazott rendszerek vezérlésére tobb, eltéré képeséggel bird szamitogépes egység is
hasznalhato a rendszer feladatatol fiiggéen. Ezek koziil a legnépszeriibb a mikrovezérlé.
A mikrovezérl6 egy egychipes szamitdgép, amely processzort, memoriat és ki-bemeneti
interfészeket tartalmaz. A mikrovezérlé kifejezés altaldban egy viszonylag szerény
szémitasi kapacitdsu CPU-val rendelkez6 szamitégépre utal, ami egyetlen integralt
aramkorben (IC) van kialakitva. A mikrovezérléknek létezik egy specidlis valtozata, amit
dedikaltan digitalis jelfeldolgozasi célokra hoztak létre. Ezzel, majd egy késébbi fejezetben
fogunk foglalkozni. Ha mar mikrovezérlérél van sz, akkor szeretném felhivni a figyelmet
arra, hogy a mikrovezérl6 és a mikroprocesszor két teljesen eltéré fogalom, amit a
hallgatok sokszor ©sszekevernek. A mikrovezérlé egy teljes szamitogépes rendszer
processzorral, memoriaval és ki-bemeneti interfészekkel. Ezzel szemben, a
mikroprocesszor kifejezéssel tipikusan a személyi szamitogépek processzordra szoktak
hivatkozni.

A beagyazott rendszereknek egy masik gyakori vezérléegysége, az egykartyas
szamitégép. A név onnan ered, hogy egyetlen nyomatott dramkori lapbol all, amelynek
a legfontosabb eleme a System on Chip (SoC). Az SoC is egy teljes értéki szamitogépes
rendszer egyetlen IC-be integrdlva, hasonléan a mikrovezérl6khoz. Viszont szamos
lényeges eltérés van a mikrovezérlék és az SoC-k kozott, ami kiterjed a szamitogépes
rendszerek mindharom f6 komponensére. Ezek az eltérések arra is visszavezethet6k, hogy
az SoC-k integraltsagi foka magasabb a mikrovezérlékhoz képest. Az integraltsagi fok
alatt az IC-ben taldlhatd tranzisztorok szamat értjilkk (késébb ezzel részletesebben is
foglalkozunk). Az SoC-ben 4&ltalaban tobb processzor mag talalhatd, amelyek szamitasi
teljesitményben  felilmuljadk a  mikrovezérl6k  processzorait. Az  SoC-k
memoriakapacitasban is felilmuljak a mikrovezérléket és a ki-bemeneti interfészeik tipusa
is részben eltéré. Habar a ki-bemeneti interfészek kdzott vanna olyanok, amelyek mindkét
eszkdzben megtaldlhatoak, mint példaul a soros kommunikaciét tdmogatdk, de az SoC-
kndl olyan specidlis interfészek is fellelhet6k, amik a mikrovezérlékben nem. Erre egy jo
példa a kijelzé vezérls, amely azért fontos az SoC-kban, mert a mobil eszkdzeinkben

(PMD) is SoC-k toltik be a vezérléegység szerepét. De, miel6tt teljesen leirnank a



mikrovezérlét az SoC-vel szemben, ki kell emelni, hogy ma mar a legtobb mikrovezérlé
beépitetten tartalmaz analdg-digitalis atalakitét, ami az SoC-kbdl hianyzik. Ezen feliil, az
energiafogyasztas is a mikrovezérl6k mellett szol. Egyrészt, a mikrovezérl6k kevesebb
energiat haszndlnak fel az SoC-khez képest. Masrészt, az iddzitett alvo allapot sem oldhato
meg olyan egyszerien az SoC-val ellatott egykartyds szamitogépeknél, mint a
mikrovezérl6knél, holott ennek nagyon fontos szerepe van az energiamegtakaritasban.

Végil, az FPGA (Field Programmable Gate Array) is hasznalhaté bedagyazott
rendszerek vezérléegységeként. Ez egy kicsit kilég a sorbol, mivel az FPGA-kat aramkorok
tervezésére készitették és nem egy szoftver utasitasainak végrehajtasra. Az utasitasok
végrehajtasahoz processzorra van sziikség. Az ujabb FPGA-k koziil mar toébb is tartalmaz
fizikai processzor magot, igy az utasitas végrehajtas is megoldhaté. De, ha fizikailag nem
is érhet6 el processzor mag, akkor is ki lehet alakitani ugynevezett 1agy processzor
magokat az FPGA ,szovetében”. Sajatot is lehet tervezni, de a gyartok is biztositanak lagy

processzor magokat a fejleszték szamara, ami jocskan megkonnyiti a fejleszték életét.



4. Integralt aramkori technolégia

Napjainkban az okos eszkozok korszakat éljik. Ahogy mar kordbban emlitettem, az okos
eszkodzokben, valamint az egykartyas szamitogépeknél valamilyen SoC t6lti be a kozponti
vezérléegység szerepét. Az SoC egy teljes szamitogépes rendszert takar, ami egy
megkozelitbleg 2x2 cm méretd [C-be van integralva. Azokban, akiknek van vagy volt
asztali szamitdgépe, felmeriilhet a kérdés, hogy hogyan tudnak egy teljes szamitdgépes
rendszert, tipikusan tobb processzor maggal (errél késébb) kialakitani egy ilyen kicsi IC-
ben? Erre az integralt aramkori technologia fejlédése valaszol.

Gordon Moore, az Intel egyik alapitoja, 1965-ben azt a figyelemre mélto joslatot tette, hogy
az integralt aramkordkben 1évé tranzisztorok szama évente meg fog duplazodni. Ezt a
joslatot Moore torvénynek nevezték el (nem tul megfontoltan). Egy évtizeddel késébb,
a joslata annyival modosult, hogy a tranzisztorszam kétévente duplazédott. Ez a joslata
hosszu ideig pontosnak bizonyult, és a Moore torvénye 50 évig érvényes volt, ahogy azt a
4. dbra is szemlélteti. Az abran az Intel cég processzorait latjuk, a megjelenési éviik és a
benniik taldlhato tranzisztorok szama fliggvényében. A grafikon egy exponencialisan

novekvo tendenciat mutat a tranzisztorszam novekedésben.
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4. 4abra. Tranzisztorszam névekedés az Intel processzorokban.

A Moore torvény exponencialis tendencigjat kovetve, az évek soran, a tranzisztorok szama
tobb szdzrol tobb szaz milliora novekedett az integralt aramkorokben. Sajnos, a 2010-es
éveket kovetben a Moore joslat mar nem allta meg a helyét! Ennek szemléltetésére

vegylnk egy 2010-ben megjelent Intel mikroprocesszort, ami 1 170 000000 tranzisztorral
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rendelkezett. A Moore térvény szerint a varhato tranzisztorszam 2016-ban 18 720 000000
kellett volna lennie. Ehelyett, az adott évben megjelent Intel mikroprocesszor ,,minddssze”
1 750 000000 tranzisztorral rendelkezett (kozel tizszeres eltérés). Habar a félvezetd
technologia még most is fejlédik, de lassabban és nem olyan elére megjosolhaté médon,
mint a multban.

Eddig tranzisztorokroél beszéltiink, de miért olyan fontos a tranzisztorszam? Egyszertien
azért, mert a tranzisztor a digitalis aramkorok elemi ,,épitékovének” tekinthetd. Ebben a
jegyzetben, egy tranzisztort, elektromos drammal vezérelt, kétallasos kapcsolonak fogunk
tekinteni, ami nyitott és zart allapotban lehet. Ha vannak tranzisztoraink, akkor azokbol
barmelyik elemi logikai kaput fel tudjuk épiteni. Ennek szemléltetésére vegyik a
legegyszerlbbet, az inverz kaput, aminek a szimbdluma, felépitése és igazsag tablaja az 5.
abran lathat6. A kapuk megvalésitasahoz MOSFET (Metal-Oxid-Semiconductor Field-
Effect-Transistor) térvezérlésil tranzisztorokat szoktak hasznalni, abbél is mind a P, mind
az N tipusut. A P és N tipusu tranzisztorokat vegyesen alkalmazzék a kapu létrehozasahoz,
ahol a P tipusu tranzisztor fogja a kapu kimenetét a tapfesziltségre (VDD) felhuzni, mig az
N tipusu huzza le a kimenetet a foldre (GND). Az 5. abran jol lathato, hogy a bemeneti
érték (A) vezérli a tranzisztorok kapuit. Ha A = 0, akkor a P1-el jelolt tranzisztor zar és a
kimenet Y = 1. Ha A = 1, akkor az N1-el jelolt tranzisztor keril zart allapotba és igy Y =
0. Ha ezt a miikddési elvet 6sszevetjiik a tranzisztor igazsagtablazataval (5. abra), akkor azt
a konkluziét vonhatjuk le, hogy ha egy P és egy N csatornas MOSFET tranzisztort az 5.
abran lathaté moédon kotink 6ssze, azzal egy inverz kaput hozunk létre. Ez a kapu
igazsagtablajaval igazolhato, hiszen az 6sszes bemeneti kombinaciora a megfeleld kimeneti

értéket adja.

VDD

P1
A+><}Y A Y
N1

GND

= Ol
o <

5. dabra. Az inverz kapu szimboéluma (baloldalt), felépitése (kozépen) és igazsagtablaja (jobboldalt).
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Ahogy digitédlis technikan tanultdl réla, ha vannak logikai kapuink, akkor azokbol
tetsz6leges kombinacids logikai aramkoroket lehet kialakitani. Példaul komparétor,
0sszeadd, szorzo, oszto, vagy dekddold aramkort. S6t, logikai kapukbdl tarolokat is meg
tudunk valositani, gondolj csak a latch-ekre. Ha elérheték a sziikséges kombinacids
aramkori komponensek és vannak taroldink is, akkor ezek felhasznalasaval létre tudunk
hozni egy processzort. Azt kell latni, hogy a digitalis &ramkordk hierarchikusan éptlnek
fel, ahol a tranzisztorok toltik be az elemi épitékovek szerepét. Ha van elegendd tranzisztor,
akkor ez lehet6vé teszi a teljes szamitdgépes rendszer kialakitasat egyetlen IC-ben.

Mivel a tranzisztorszam (integraltsagi fok) egy nagyon fontos jellemzéje az integralt
aramkoroknek, igy nem meglepd modon az integralt aramkorok osztalyozasara killonbozé
kategoriakat vezettek be (SSI, MSI stb.), a tranzisztorszam alapjan. Ennek egy
osszefoglalasa talalhatd az 1. tablazatban. Annak ellenére, hogy létezik ULSI (ultra nagy
1éptéki) kategodria a tobb tizmillio tranzisztort magaba foglalé IC-kre, de ennek ellenére, a

gyakorlatban sokszor ezekre is VLSI IC-ként szoktak hivatkozni.

Kategoria Tranzisztorszam Megjegyzés
SSI  (Small-Scale | 10— 100 Egyszert logikai kapuk, flip-flopok, pl.
Integration) 7400 sorozat NAND kapu
MSI (Medium- | 100 — 1000 Multiplexerek, szamlalék, dekodolok
Scale Integration)
LSI  (Large-Scale | 1000 — 100000 Egyszert mikroprocesszorok,
Integration) memoriak (pl. 1 Kbit RAM)
VLSI (Very Large- | 100000 — 10 000000 Mikroprocesszorok, mikrokontrollerek
Scale Integration) (pl. Intel 80486)

ULSI (Ultra Large- | 10 000000 — 100 000000+ | Modern CPU-k, GPU-k, SoC-k

Scale Integration)

1. tablazat. Integralt aramkori kategériak.
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6.Beagyazott rendszerek jellemz6i

6.1 Beagyazott rendszerek korlatjai

A beagyazott rendszerek szamos korlatozds néznek szembe az altalanos célua
szamitogépekkel szemben. Ezek kozil az egyik a méretbeli megkotés, ami
nagymeértékben fiigg a felhasznalas jellegétél. Vegyiink példaul egy orvosdiagnosztikai
eszkozt, mondjuk egy vércukorszintmérdt, amit a megfigyelt személynek egész nap magan
kell viselni. Ahhoz, hogy az eszkdz ne zavarja a visel6jét, az eszkdznek kis méretiinek és
kénnytnek kell lenni. Ebbél adédéan ez egy fontos tervezési szempont a gyartok szamara.
Egy masik fontos megkotés a beagyazott rendszerekkel szemben az
energiafelhasznalas. A rendszerek tobbsége akkumulétorrél izemel, ahol a cél az, hogy
egy teljesen feltoltott akkumulatorral a lehetd leghosszabb ideig mukodjenek. Ehhez
szikség van az energia felhasznalasat minimalizaljuk. Szemléltetésként, a személyi
szamitogépek atlagos energiafelhasznalasa néhany szaz watt, ezzel szemben a beagyazott
rendszerek tobbsége csak néhany wattot (vagy mikrowattot) fogyasztanak. Az
energiafogyasztashoz kapcsoléddan azt gondolhatnank, hogy a beagyazott rendszerben a
legtébb energiat a vezérléegység hasznalja fel. De ez sok esetben nem igaz, mert
amennyiben a rendszer tartalmaz kijelz6t, akkor ennek az energiafogyasztasa
meghaladhatja a vezérl6egységét. A kijelz6 a felhasznalasi feliiletet biztositja. Ez egy
fontos része szamos beagyazott rendszernek, igy akar annak alapjan is lehet csoportositani
a rendszereket, hogy rendelkeznek kijelzével (headed) vagy sem (headless).

Tegyiik fel, hogy a te feladatot a rendszer megtervezése és ugy dontesz, hogy az
energiafelhasznélds csokkentése érdekében nem haszndlsz kijelzét. Viszont ebben az
esetben is meg kell oldani a felhasznalé és a rendszer kézotti kommunikaciot. Erre tébb
lehet&ség is van. Az egyik, hogy egy parancssoros feliiletet és egy parancsértelmezét
implementdlsz a rendszert vezérlé szoftverbe. Tipikusan, a felhaszndl6 valamilyen soros
kommunik&ciés protokollon (ezek késébb keriilnek bemutatasra) keresztiil tudja elérni ezt
a feliiletet. Egy masik megoldas, amivel a routereknél taladlkozhattdl, az a webes
felhasznaldi feliilet, ami szintén a rendszert vezérlé szoftverbe van implementalva.

A rendszer komponenseinek megfontolt kivalasztdsan tdl, egy masik nagyon fontos
lehet6ség az energiafelhaszndlds csokkentésére a vezérl6egység alvé allapotanak
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kihaszndldsa. Szdmos beagyazott rendszernél nincs sziikség arra, hogy egész nap
folyamatosan tizemeljen. S6t vannak olyan rendszerek, amelyek naponta csak néhany
percet tizemelnek és a nap hatralévé részében tizemen kiviil vannak. Erre egy automatizalt
rovarcsapdat emlitenék meg példaként, aminek én voltam a fejlesztéje. A csapda vaza
polikarbonat lapokbdl lett létrehozva, amiben egy kamerat tartalmazo bedgyazott
rendszer és a feromonkapszulaval ellatott ragacsos lap kapott helye. A csapda muiikodési
elve az volt, hogy minden nap reggel kapcsoljon be, készitsen egy képet és egy tanulod
modellre tdmaszkodva szdmolja meg az elfogott rovarokat, majd az eredmény vezeték
nélkili kapcsolaton keresztiil kiildje el egy tavoli szervernek. Ennek a rendszernek
naponta csak néhany percre kellett aktiv allapotba keriilni, majd ezt kdvetéen alvd
allapotba kellett 4tmennie.

Szoftveres szempontbdl, a vezérléegységnek alvé allapotba kiildése egyszerd. A
vezérléegység felébresztése viszont mar mas kérdés. Erre két lehetéség koziil szoktak
vélasztani. Az egyik a kiils6 labon keresztiil érkez6 ébreszté esemény. Amit egyszertien
ugy lehet elképzelni, hogy ha egy adott laban a vezérld egységnek megvaltozik a
fesziiltség érték, akkor ez felébreszti a vezérléegységet alvo allapotbol. A masik, talan az
el6z6nél is praktikusabb ébreszté esemény, a belsé szamlalék altal generalt ébresztés.
Ekkor elére, programozott médon meg tudjuk adni, hogy az alvo allapotba kiildéstél

szamitottan mennyi idé mulva kell a vezérl6egységet felébreszteni.
6.2 Megbizhatdsag

A megbizhatésag minden szoftvernél és rendszernél fontos, de ez még nagyobb
hangsulyt kap a beagyazott rendszereknél. Gondoljunk csak abba, hogy egy olyan
rendszert terveziink, amit majd orszagszerte szétszorva kell telepiteni, mint példaul egy
meteorolégiai allomast. Ha ezek meghibasodnak valamilyen hardveres vagy szoftveres
hiba miatt, akkor a javitdsuk sokkal toébb id6ébe és sokkan nagyobb koltségbe fog kertilni,
mint a hibak javitasa példaul a webes alkalmazdsoknal. Sok bedgyazott rendszernek akar
évekig kell miikodnie barmilyen emberi beavatkozas nélkiil. Ilyen hosszu tavon a kisebb
hibék is, mint példaul a meméria szivargas id6ével komoly probléméava valhatnak. Ebbél
adodoan fontos a rendszer alapos, sokszor heteken keresztiil torténé tesztelése és a

rendszer erdéforrasainak monitorozasa.
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6.3 Valos idejii miikodés

Sok beagyazott rendszernél a feladatok elvégzése hataridéhoz kotoétt. A hataridé az az
id6pont, ameddig a feladat elvégzéséhez sziikséges szamitasokat be kell fejezni. Miutan a
rendszert vezérld szoftver megkapja a bemeneti adatokat, a kivant kimenetet el6 kell
allitani a hataridéig, kiilénben a program nem mukodik megfeleléen, még akkor sem, ha
végil az el6allitott kimenet funkciondlisan helyes.

A valos ideji miikddés alapjan, a beagyazott rendszereket két kategoridba sorolhatjuk:
kemény (hard) és lagy (soft). Mindkét esetben a rendszernek egy elére megszabott
hataridén beliil kell elvégezni a feladatat. A f6 kilénbség abbodl fakad, hogy milyen
kovetkezményekkel jar ennek a kovetelménynek a megsértése. A kemény valods idejd
rendszereknél, ha a kimenet nem 4ll el6 a megszabott hatarid6ig, az meghibasodast vagy
akar a rendszer Osszeomlasat eredményezi. Itt a hataridd tullépése életeket is
veszélyeztethet. Gondoljuk csak a jarmivek ABS (Anti-lock Braking System) rendszerére.
A lagy rendszereknél a hataridé elmulasztdsa nem okoz biztonsagi problémakat, de romlo
teljesitményt és elégedetlen iigyfeleket eredményez. Itt példaként gondolhatunk egy

nyomtatora, ahol a hataridék elmulasztédsa kevert oldalakhoz vezet.
6.4 Biztonsag

Sok beagyazott rendszerben nem forditanak figyelmet a biztonsagi szempontokra, ami
sebezhet6vé teszi a rendszereket a tdmadasokkal és az adatlopéassal szemben. Ez egyre
kritikusabb kérdés, mivel egyre tobb beagyazott rendszert hasznalnak biztonsagkritikus
eszkozokben, amelyeket az emberek naponta hasznalnak. Példdul gondoljunk a
jarmiivekre vagy az orvosi berendezésekben. Raadasul ezen rendszerek kozil sok
kozvetleniil vagy kozvetett moédon csatlakozik az Internethez (IoT).

A biztonsadg a rendszer azon képességére vonatkozik, hogy megakadalyozza a
rosszindulatu tdmadésokat. A biztonsag harom tényez6tél fiigg. Az egyik a titkositas,
amely biztositja, hogy csak a felado és a cimzett legyen képes értelmezni az iizenet
tartalmat (az eszkoz altal generalt vagy a hozza érkez6 adatokat tizenetekbe csomagoljuk).
Ez ugy érhet6 el, hogy a felad¢ titkositja (kddolja) az tizenetet kikiildés el6tt, mig a fogadd
visszafejti (dekddolja) azt a beérkezést kovetden. Az iizenet kodolasanak a célja az, hogy

azt az Uzenetet elfogd tdmado ne tudja kozvetlentil elolvasni. Egy fontos kritérium a
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koédolassal szemben, hogy a kodolt tizenetnek nehezen feltorhetének kell lennie. Erre a
feladatra kétféle titkositasi modszert is alkalmazhatunk. Az egyik a szimmetrikus kulcsu
titkositds, a masik az aszimmetrikus kulcsu titkositds. A szimmetrikus kulcsu
titkositasnal az AES-t (Advanced Encryption Standard) hasznaljdk standard titkositasi
algoritmusként. Az AES 128 bites blokkokban koédolja az adatokat, és harom kiilonb6z6
méretl kulcsot tud hasznalni: 128, 192 vagy 256 bit.

Az aszimmetrikus kulcsu titkositas két részre osztja a kulcsot: egy privat kulcsra és egy
publikus kulcsra. A kett6 ugy kapcsolddik 6ssze, hogy a privat kulccsal titkositott tizenet
visszafejtheté a publikus kulcs segitségével, de a privat kulcs nem kovetkeztetheté ki a
publikus kulcsbél. Mivel a publikus kulcs nem arul el informaciot az tizenet kodolasarol,
nyilvanos helyen tarolhatd, hogy barki felhasznalhassa. Ezt az elvet haszndlja az RSA
(Rivest, Shamir, Adleman) is, amely talan a legismertebb kétkulcsos algoritmus.

A biztonsadg masodik tényezdje az azonositas. Ez abban segit, hogy egyértelmien be
lehessen azonositani az tizenet kiildéjét, ezzel elkeriilve a harmadik féltél szarmazo
~megtévesztd” lizenetek feldolgozasat. Az ilizenet kiild6jének azonositdsdra hasznalt
technika, a digitalis alairas, ami szintén az RSA algoritmusra tdmaszkodik. A digitélis
alairas elképzelése az, hogy az ilizenetr6l egy lenyomatot készit, amit bekddol és az
uizenettel egyiitt tovabbitja.

Az tizenet lenyomaténak (vagy kivonat) elkészitéséhez hash fiiggvényeket hasznalnak.
A lenyomat generalas célja az alairas méretének csokkentése (ne a teljes tizenetet kelljen
haszndlni), igy a lenyomat &ltaldban révidebb, mint maga az lzenet, és nem fedi fel
kozvetlenill az lizenet tartalmat. Mivel a hash fliiggvény tetszélege hosszusagu iizenethez
egy n-bit hosszuisagu lenyomatot készit, igy eléfordulhat, hogy eltérd tizenetekhez ugyan
az alenyomat generalodik, de ennek a valoszintisége nagyon kicsi. Tehat, a digitalis alairas
generalas az aszimmetrikus titkositdsra és a hash fliggvényekre tadmaszkodik, annak
érdekében, hogy az tizenet fogaddja egyértelmien be tudja azonositani a feladot.

A digitélis alairds nem csak a felad6é beazonositasdban, hanem az iizenet integritdsdnak
ellenérzésében is segit. Az lizenet integritasanak vizsgilata, a biztonsag harmadik
komponense. Ez abban segit, hogy jelzi, ammenyiben a feladast kovetéen az lizenet
tartalma moédosult. Komoly problémékat okozna, ha egy tdmaddé modositand vagy

lecserélné az iizenet eredeti szovegét egy altala kredlt tizenetre.
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A beéagyazott rendszerek egy jelentds részénél, a fejleszték nem foglalkoztak a harom
tényezd kozil egyikkel sem. Természetesen mindhdrom komponens fontos, de most
fokuszaljunk csak az tizenet titkositasara. A kérdés az, hogy sziikséges-e titkositani az
uzeneteket. A titkositas szoftveresen vagy hardveresen is megvalosithatok. Szoftveres
szempontbol az lizenet kodoldsa és dekodolds kénnyen megoldhato, viszont ez plusz
szamitasi terhet jelent a bedgyazott rendszerre és ezzel az energiafogyasztast is noveli. Ha
a vezérld eszkozben erre van hardveres gyorsitd, akkor ez mind idében, mind
energiafelhasznalasban hatékonyabb lesz, mint a szoftveres megvaloésitas, de ilyen dedikalt
hardver modul csak kevés vezérléeszkozben érhetd el (pl.: ESP32 mikrovezérlék). Tehat
mérlegelni kell ennek a létjogosultsagat, mert vannak olyan rendszerek, amelyek nem
feltétlentl igénylik a titkositast. Vegylink példaként egy meteorolégiai allomast. Ha a
tdmado képes ,elkapni” az allomas iizenetei és azt értelmezni, abbdl még olyan tul sok
haszna nem fog szarmazni. Osszességében azt kell mérlegelni, hogy a tamad6 mekkora

haszonra tehet szert, a tdmadasba fektetett munka fiiggvényében.
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7. Teljesitmény mérése

Ma mar kézenfekvd, hogy a szoftvereket magasszintli programozasi nyelveken fejlesztjiik,
az elvégzendd feladattdl fiiggetlenil, mivel ezek nagy mértékben novelik a programozdk
produktivitasat. A produktivitds novelése abbol fakad, hogy a magasszinti nyelvek elfedik
az apro részleteket és egy magasabb absztrakcios szintet biztositanak, egy alacsony szintl
nyelvhez képest (Assembly). Az absztrakcié egy nagyon fontos fogalom, ami segit
benniinket a komplexitas kezelésben, az altal, hogy elrejti azokat a részleteket, amik nem
fontosok a miikodési mechanizmus megértéséhez. Azonban, ha meg akarjuk érteni egy
processzor vagy a teljes szamitogépes rendszer teljesitményét, akkor le kell ereszkedniink
az elemi utasitasok szintjére.

A rendszer teljesitményének mérésére haszndlt egyik metrika a végrehajtasi idd. Ez egy
program végrehajtdsahoz sziikséges teljes id6, beleértve a lemezhozzaféréseket, a
memoria hozzaféréseket, az I/0 tevékenységeket, az operacios rendszer terhelését, a CPU
végrehajtasi idejét és igy tovabb. Egy masik gyakran hasznalt metrika az
ateresztoképesség, ami az egységnyi id6 alatt elvégzett feladatok szamat jelenti. A
gyakorlatban kiilonb6z6 teljesitménymutatokra vagy mas néven metrikdkra, valamint
kilonb6zé benchmarkokra lesz szikségink a szamitégépes rendszerek
osszehasonlitdsahoz. Ebben a jegyzetben mi a végrehajtasi id6ére fogunk tdmaszkodni egy
szamitogépes rendszer teljesitményének a mérésekor. A teljesitmény maximalizalasa
érdekében minimalizalni kell a végrehajtasi id6t egy adott feladatnal. Ebbél adodoan egy
szamitogép teljesitményét egy adott program végrehajtasi ideje alapjan is lehet mérni a
kovetkezd egyszerd Osszefliggésen keresztiil:

1
teljesitmény = © (1)

i
Erre tamaszkodva Ossze tudjuk hasonlitani a szamitogépek teljesitményét egy adott
programra nézve. Az (1) formula arra is ramutat, hogy annak a szamitogépnek lesz
nagyobb a teljesitménye, amelyiken az i. tesztprogram futdsi ideje kisebb volt! Nézziink

erre egy példat.
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1. Példa: Van két szamitogépiink (A és B). Ugyan annak a tesztprogramnak a futasi
ideje 10 masodperc volt az A gépen és 12 méasodperc a B gépen. Melyik volt a
hatékonyabb és mennyivel?

Megoldas: 12/10 = 1.2 = az A gép 1.2-szer gyorsabb volt, mint a B.

Ahogy korabban emlitettem, mi a végrehajtasi idére fékuszalunk a szdmitdégépes rendszere
teljesitményének mérésekor. Azonban a végrehajtasi id6t is lehet két kiilonbozé
megkozelités alapjan szamitani. Az egyik lehet6ség az, amikor mérjik a program futasa
soran eltelt id6t. Ez egyszerlien meg lehet hatarozni szoftveresen a program inditasakor
rogzitett id6 és a futtatast kovetd idépont kiilonbségébdl. Az eltelt id6 az adott program
elvégzéséhez sziikkséges teljes id6t jelenti, beleértve a lemezhozzaférés idejét, a memoria-
hozzaférés idejét, a bemeneti/kimeneti (I/0) adatcsere idejét és az operacios rendszer
késleltetését. Viszont, ha csak arra vagyunk kivancsiak, hogy a processzor mennyi ideig
dolgozik a tesztprogram végrehajtasan, akkor a CPU végrehajtasi id6t vagy egyszeriien
csak CPU idét kell meghatarozni. A CPU idé meghatarozasahoz is egy egyszeri formulat
kell kdvetniink, ami a szamitégép processzorat miikddtetd orajel ciklusok szamanak és az
orajel periédus idejének (T.x) szorzata:

CPU id6 = orejel ciklusok X Ty, (2)

A (2) formulédba szereplé orajel ciklusok szdma azt jel6li, hogy hany orajelre van sziikkség
0sszesen a tesztprogramban szereplé utasitdsok elvégzéséhez. Fontos kihangsulyozni,
hogy minden esetben, amikor utasitasokrél beszéliink, a tesztprogramot alkoté elemi
(Assembly) utasitasaira kell gondolnunk. Mivel az orajel frekvenciaja (f) forditottan aranyos
az oOrajel periodus idejével (fux = 1/Tw), igy a (2) képletet, at lehet ugy alakitani, hogy

abban az orajel frekvenciajat hasznaljuk a periédusidd helyett:

.., orejel ciklusok
CPU id6 = 3)
fclk

A (2) és (3) képletek rdmutatnak arra, hogy a mérnok javithatja a processzor teljesitményeét,

a programhoz sziikséges orajelciklusok szamanak vagy az drajelciklus periodus idejének

csokkentésével.

2. Példa: Van egy tesztprogramunk, ami 8 masodpercig fut egy szamitégépen,

amiben a processzor orajele 2GHz. Szeretnénk a gép processzorat kicserélni
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(jeloljuk a régi processzort A-val) egy masikra (B) ahhoz, hogy ennek a
tesztprogramnak a futdsi idejét 6 masodpercre csokkenjen. Tudjuk az uj
processzorrél, hogy 1.2-szer annyi Orajelre lesz sziikksége a tesztprogram
végrehajtasdhoz, mint a kordbbi processzornak. Hatdrozd meg, hogy mekkora

orajellel kell miikddtetni az Uj processzort a kitlizott futasi id6 eléréséhez.

Megoldas: el6szor meg kell hatdrozni az orajel ciklusok szadma az els6
processzorndl a CPU id6 képletének felhasznalasaval: cy, = 8 X 2 X 10° =

16 x 10°. Ezt kévetSen ismét a CPU id6 képletére tamaszkodva kell meghatéarozni

2x16x10% _ 1.2x16x10°

= = 3.2 x 10% = 3.2GHz
6 6

, e 1., 1
a B processzor orajelét:

Figyeld meg, hogy a CPU id6 formulajaban nem jelenik meg a tesztprogramot alkoto
utasitasok szama, de nyilvan ez egy fontos tényezd és valahol meg kell jelennie. Valéjaban
a CPU idé6 ugy is felfoghatd, mint a CPU altal végrehajtott utasitdsok szama szorozva az
utasitasok végrehajtasahoz sziikséges id6vel. Ebbdl fakadoan az orajel ciklusok szama
egyenl6 a program utasitasainak a szama szorozva az utasitdsok végrehajtasahoz
sziikséges atlagos orajel ciklus szdmmal (CPI). Itt fontos kihangsulyozni, hogy a CPI érték
tesztprogramonként valtozik, attél fliggéen, hogy milyen elemi utasitdsokbol all a program.
A CPI értékre tdmaszkodva a CPU idd korabbi formuldjat (3) at lehet irni a kovetkezé

alakba:

utasitasszam X CPI

fclk

CPU id6 = utasitasszam X CPI X Ty, =

(4)

Ha egy olyan processzornak a CPU idejét vizsgalnank, amely minden utasitast egyetlen
orajel alatt végez el, akkor a CPI id6é mindig 1 lenne a tesztprogramtol fiiggetlentil.
Azonban a modern processzoroknal, az eltéré tipusu utasitasok eltéré szamu orajel alatt
hajtodnak végre. Ha tudjuk, hogy az eltéré utasitas tipusok mennyi orajelet igényelnek és
azt is, hogy a tesztprogram kategoéridnkként hany utasitast foglal magaba (C;), akkor
koénnyen ki tudjuk szamolni a program végrehajtasdhoz sziikkséges 6ssze orajelciklusok

szamat (5). A lenti képletben az i valtozo6 az utasitas kategoéridkat jeloli.

n
orejel ciklusok = Z CPI; X C; (5)

=1
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A szemléltetés kedvéért nézziink egy példat a CPI érték kiszdmitasara.

3. Példa: Tegyiik fel, hogy van két kiilénb6z6 fordité programunk, amivel ugyan azt
a C-ben megirt programot forditjuk le egy adott processzor tipusra. Tudjuk, hogy
ennek a processzornak az elemi utasitasait harom kategoériaba lehet sorolni (A, B,
C) annak alapjan, hogy hany oérajel alatt hajtédnak végre. A lenti tablazat mutatja
be, hogy a két fordité hany elemi utasitéssal valositand meg a programot és azok
milyen kategoéridba tartoznak. Ennek ismeretében hatdrozd meg a CPI értéket

mindkét valtozatra. Melyik véltozat a gyorsabb?

Utasitas csoportok
A B C
CPI 1 2 3
1. program 3 1 5
kod
2. program
5 1 1
kod

Megoldas: Az 1. programkod 6 utasitast hajt végre, mig a 2. kéd 7 utasitast. A
tablazat adataira tdmaszkodva ki tudjuk szamolni, hogy az 1. kodhoz 6sszesen 11
orajel ciklusra van sziikség, mig a 2. koddhoz 10-re. Ebbél latszik, hogy a 2.
programkod gyorsabb az elsénél. Az (5) képletet felhasznalva, azt kapjuk, hogy az
elsé kod CPI értéke 11/6 = 1.8333, mig a 2. kod CPI értéke 10/7 = 1.4285.

A fenti képletek ismeretében az, hogy egy program mennyi ideig hasznéalja a processzort,
szamos dologtdl fiigg. Az egyik maga az az algoritmus, amit futtatni kell, mivel ez hatdssal
van az utasitas szamra és a CPI értékre. Egy méasik a processzor utasitas készlete, ami
a CPU id6 kiszamitasdhoz hasznalt mindharom tényezdére (4) hatassal van. Ezen felil a
program megirasdhoz hasznalt programozasi nyelv és a fordit6 is fontos tényezoék,
mivel ezek is befolyasoljak az utasitas szamot és a CPI értéket.

Azt is érdemes megjegyezni, hogy a (4) képletben megjelené Oorajelciklus idé

hagyomanyosan rogzitett volt. Viszont az energiatakarékossdg vagy a teljesitmény
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ideiglenes novelése  érdekében a mai  processzorok  vdltoztathatjdk az
orajelfrekvenciajukat, ezért a program atlagos orajelfrekvencigjat kell hasznalnunk.
Egy masik metrika a processzorok teljesitményének mérésére (6) a MIPS (milli6 utasitas

per masodperc):

MIPS — utasitasszam (6)
~ CPU id6 x 106

A MIPS egy elég intuitiv metrika, mivel minél tobb utasitast végez el a processzor
idéaranyosan, annél nagyobb lesz a MIPS értéke. Viszont ez nem egy idedlis metrika, mivel
nem teszi lehet6vé az eltér6 utasitds készlettel rendelkezd processzorok objektiv
0sszehasonlitasat. Gondoljunk bele abba, hogy ha ugyan azt a magas szintem megirt
tesztprogramot leforditanam egy RISC és egy CISC mikroprocesszorra, akkor is eltéré
lenne a MIPS értékeik, ha ugyan annyi id6t venne igénybe a program végrehajtasa mindkét

esetben.

4. Példa: Két mikroprocesszort (A és B) szeretnénk Osszehasonlitani egy
tesztprogrammal és a lenti tdblazatban megadott adatok allnak a rendelkezéstinkre.
Ennek alapjan dontsd el, hogy melyiknek van a nagyobb MIPS értéke.

A B

Utasitas szam 80 milli6 | 60 milli6

Orajel frekvencia | 4 GHz | 4 GHz

CPI 1.0 1.1

Megoldas: A MIPS érték kiszamitdsdhoz a (6) képletet kell haszndlni. Viszont
ehhez meg kell hatarozni a CPU idé6t (4). A tablazatban megadott informaciok
alapjan a CPU id6 20 ms az A esetben és 16.5 ms B-nél. Ezt felhasznalva az MIPS
értékek kerekitve: 4000 és 3636.

22



8.Energiafal

Az el6z6 fejezetben lattuk, hogy hogyan lehet kiszamitani a CPU id6t, aminek az egyik
tényezdje az orajel frekvencigja. Ismét a (4) formulat felhasznalva azt mondhatjuk, hogy
minél nagyobb az ¢drajel frekvencidja, annal kisebb lesz a CPU id6, vagyis annél
gyorsabban tudja a processzor végrehajtani a program utasitdsait. Ebbél kiindulva, ha a
processzor tervezé mérnokok képesek a processzor orajelét novelni, azzal a processzor
teljesitményét is javitjak. A multban, ez a megkdzelités elég jol mikodott, ahogy azt a lenti
grafikon is szemlélteti. A grafikonon az Intel cég népszerli processzorainak az orajel
frekvencidjat és az energia fogyasztasat latjuk. Figyeld meg, hogy egy jol lathato

korrelacios kapcsolat volt az érajel frekvencidja és a processzor energia felhasznalasa

kozott (mindketté novekedett) a korai processzoroknal egészen az Pentium 4 Prescott-ig.
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6. abra. Az Intel cég processzorainak orajel frekvencidja és energia fogyasztasa.

Felmeriilhet a kérdés, hogy a Pentium 4 Prescott utdn miért nem novelték tovabb az érajel
frekvencigjat, hogy ezzel biztositsak az ujabb processzorok teljesitmény novekedését? Két
ok is van ra. Az egyik, hogy az energiafelhasznalas csokkentése egyre nagyobb hangsulyt
kapott. A nagy szerverparkokndl az energiafelhaszndlas teszi ki az egyik legnagyobb

koltség hanyadot. Ezen felil, a beagyazott rendszereknél is kritikus fontossagu az
energiafelhasznalas, mivel a legtobb rendszer akkumulatorrél tizemel és természetesen a
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cél, hogy egy feltoltott akkumulatorral a rendszer a leheté legtobb ideig képes legyen
uzemelni.

A processzor energiafelhaszndldsa az orajel novelésével linedrisan novekedik, ami a
processzort alkotd tranzisztorok kapcsolasi energiajanak becslésére haszndlt formulara

vezethetd vissza (7), ahol P a tranzisztor teljesitményét jeloli, mig a kapcsolasi frekvencia

s re s

kapacitiv terhelés X fesziiltség? X kapcsolasi frekvencia
o

> (7)

A masik fontos gatja a processzor orajel tovabbi novelésének a héelvezetés. A
processzorban 1évé tranzisztorok minél gyakrabban kapcsolnak, annal tobb energiat
hasznalnak és annal tobb hét termelnek, amit el kell vezetni, kiilonben a processzor
tonkremegy. Erre statikus és dinamikus hiitési médszereket alkalmaznak. A statikus hiités
a processzora felhelyezett hiitébordat foglalja magaba, mig a dinamikus hiités a
hitébordakra helyezett ventilatort jelenti.

Még egy tovabbi érdekesség figyelhetd meg a 6. dbran. A 80286-0os processzorhoz
viszonyitottan, a Pentium Prescott-ig, az 6rajel frekvencia kozel 300 szorosara nétt, de az
energia felszanalas ,,csak” megkozelitéleg 30 szorosara. Az eltéré 1éptékl novekedésre a
tranzisztorok fesziiltség értékének csokkenés ad magyarazatot. A tranzisztorok korai 5V-
os mukodési fesziltsége fokozatosan csokkent egészen 1V-ig. A (7) formula alapjan a
fesziiltség értéke négyzetesen befolyasolja az energiafelhasznalast. Ez a f§ oka annak, hogy
az energiafelhasznalds nem kovette azt a novekedési palyat, amit az orajel frekvencia.
Sajnos jelenleg az 1V-os fesziiltség érték egy fizikai gat, amit nem tudnak tovabb

csokkenteni, mivel ekkor a tranzisztor mikodése instabilla valna.

24



9.Tobbmagos processzorok

A kozelmult tendenciai alapjan a felhasznalok hozzaszoktak ahhoz, hogy az ujabb
szamitogépes eszkodzok teljesitménye novekszik és a rajtuk futtatott programok valaszideje
csokken. Ezt kordbban, részben az orajel novelésével érték el. Azonban, az energiafal
ennek a tendencidnak gatat szabott, igy a mérndkoknek mas irdnyba kellett elindulni a
processzorok hatékonysaganak tovabbi novelése érdekében. Ennek eredményeként 2006
koril jelentek meg a tobbmagos processzorok. Ez egyszerlien annyit jelent, hogy a
processzorban (maga az integralt d&ramkor) tobb processzor magot helyeztek el. Ahogy
korabban mar szé esett rola, ez azért valt lehet6vé, mert az integralt aramkorékben
kialakitott tranzisztorok mérete fokozatosan csokkent, igy egyre tébb tranzisztort lehetett
egy adott méreti IC-ben kialakitani (Moore térvény).

A tobbmagos processzorok megjelenését kdvetéen a processzor szo tulterhelté valt, mert
ez jelentheti magat az IC-t is és a benne 1évé magokat is. Ebben a jegyzetben én az IC-re
mikroprocesszorként, vagy csak processzorként hivatkozok.

A tobbmagos mikroprocesszorok megjelenése nagy valtozdst hozott nem csak a
tervez6mérnokok, de a szoftverfejleszték életében is. Ugyanis a tobb processzor mag
megjelenésével a processzor parhuzamosan tobb feladaton is tudott dolgozni, igy az
ateresztoképessége drasztikusan novekedett. Viszont egy adott tesztprogram
végrehajtasi ideje (valaszidd) nem feltétlenil javult egy egymagos processzorhoz
képest. Annak érdekében, hogy a programok ki tudjdk hasznalni a rendelkezésre allo
processzor magokat, a programot parhuzamositani kell. Ahhoz, hogy ezt megtegyik
tisztaban kell lenni a parhuzamos programozasi technikdkkal. Ezen feliil, ideélis esetben,
egységesen kellene megosztani a feladatokat a processzor magok kozott ahhoz, hogy a
parhuzamositds szamottevéen csokkentse a program végrehajtasi idejét. Erre egy jo
analogia, Patterson és Hennessy konyvébdél [1] a 8 riporter példdja, akik egy kozos cikken
dolgoznak. Azt gondolnank, hogy mivel nyolcan irjak a cikket, ezért nyolcszor gyorsabban
fog elkésziil, mintha csak az egyikiikk dolgozna rajta. Ehhez arra van sziikség, hogy a
feladatot nyolc egységes részre osszak szét ahhoz, hogy mindenki parhuzamosan tudjon
haladni a sajat feladataval. De mi van, ha az egyik lassabb, mint a tébbiek? Ha csak egy is

nem készil el id6ében, akkor a cikk megjelenése késni fog. Egy masik lehetséges probléma,
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ha a riporterek tul sokat kommunikdlnak egymassal, mivel ez is lassitja a feladat
befejezését.

Tegyiik fel, hogy a parhuzamos programozas specialistdja vagy. Sajnos még ebben az
esetben sem biztos, hogy elényddre tudod forditani a mikroprocesszorban helyet foglalo
tobb processzor magot, mivel lehet, hogy a programkédod tulnyomé tobbsége nem
parhuzamosithaté. Ha szamszerlsitve szeretnénk vizsgalni azt, hogy egy adott
tesztszoftver esetében a processzor magok szamdanak névelése milyen sebességjavulast
eredményez, akkor az Amdahl torvényt kell alapul venni. Viszont ebben a jegyzetben,

ezzel nem fogunk foglalkozni.
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10. ARMv7 programozasi modell

Programozéként azt reméljik, hogy a szoftverfejlesztést valamilyen magas szint
programozasi nyelvvel végezhetjiik. De, ha a szoftver futdsdnak a sebessége is fontos
tényez6, akkor ismerniink kell a szoftvert futtaté architekturat is. Az architektara a
processzor utasitaskészletét és az operandusok elhelyezkedését (konstans, regiszter,
memoria) hatadrozza meg. Sokféle architektura létezik, példaul: ARM, x86, MIPS, RISC-V.
Egy ide kapcsoloddé masik fontos fogalom a mikroarchitektura, ami a hardveres
megvaldsitasat jelenti egy adott architekturanak. Vegytik példaul az x86 architekturat, amit
két nagy cég is gyart, az Intel és az AMD. Habar a két cég processzorainak architekturgja
megegyezik, de a mikroarchitektura eltéré.

Ebben a fejezetben az ARMv7 architekturat fogom hasznalni annak szemléltetésére, hogy
a C-ben megirt programok hogyan lesznek leforditva Assembly utasitasokra. Az Assembly
utasitasok felfoghatéak ugy, mint az architektura utasitaskészletének programozoébarat
leirdsa, ahol révid, koénnyen megjegyezhetd kulcsszavakkal hivatkoznak az elemi
utasitasokra. Habar ez alacsony szintl programozast tesz lehetévé, de még igy is egy
magasabb szintd absztrakciot biztosit, mint a gépi kodokkal torténé programozas. Az
architekturatol fiiggetleniil, az assembly nyelvek altalaban soronként egy utasitast
tartalmaznak. Ezen felil, a memoriahelyekre hivatkozod cimkék az els6 oszlopban
kezd6dnek, mig az utasitasok a masodik oszlopban vagy azt kovetéen kell kezd6édnitiik. A
megjegyzések egy kijelolt megjegyzéskaraktertdl (ARM esetén ;) a sor végéig tartanak.
Az ARM architekturat az 1980-as években fejlesztette ki az Advanced RISC Machines cég,
amit ma ARM Holdings néven ismeriink. Az elmult években ARM processzorokbol adtak
el a legtobbet. Példaul 2023-ban tébb, mint 28 milliard ARM processzorral ellatott chipet
értékesitettek. Szinte minden mobiltelefonban és tablagépben ARM processzormagok
talalhatoak. Egy durva becslés szerint az emberek tobb mint 75%-a hasznadl ARM
processzorral rendelkez6 termékeket a mindennapokban. De természetesen nem csak az
okos eszkozokben vannak ARM processzorok, hanem a bedgyazott rendszerek
vezérl6egységeiben is és igy megtaldlhatok a kamerdkban, robotokban, autdkban,

jatékgépekben stb.
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Fuggetlentl attél, hogy milyen architekturarél van szo, a tervezéknek kozos céljuk van:
olyan architekturat talalni, amely megkonnyiti a hardver és a forditéprogram felépitését,
mikozben maximalizdlja a teljesitményt és minimalizalja a koltségeket, valamint az
energiafogyasztést. A vilaghird John L. Hennessy és David A. Patterson a [1] kdnyviikben
négy processzor tervezési alapelvet vezetett be:

1. A szabalyszerliség egyszerusiti a tervezést

2. A gyakori feladatok legyenek gyorsak

3. A kisebb gyorsabb

4. A jo6 terv kompromisszumokat igényel

Most nézziikk meg, hogy ezek a tervezési alapelvek mit jelentenek a gyakorlatban. Az elsé
megértéséhez kezdjiik a lenti egyszert mintakoddal. A jegyzetben a mintak6dok minden
esetben ugy lesznek megadva, hogy a bal oldalon lesz egy C-ben megirt kodrészlet, mig a
jobb oldalon, ennek a kodrészletnek az Assembly szintd megvaldsitasa az ARMv7

architekturan.
a=>b+ c; ADD a, b, c

A fenti C kédban csak két operandusunk van (b, c), ezért ezt egyetlen ADD utasitassal meg
tudjuk valositani Assembly utasitdsok szintjén. Az ADD utasitasban az elsé paraméter a

célvaltozo, mig a tovabbi kett6é a két operandus. Nézziink egy masik példat:
a=b-c; SUBa,b,C

[tt ismét két operandusunk van, amelyek kozott kivonast végziink. Ezt a miveletet is
egyetlen elemi utasitdssal el tudjuk végezni. Kérdezhetnénk, hogy hogyan jelenik meg
ezekben a példakban a szabalyszertség? Hat ugy, hogy minden egyes aritmetikai utasitas
csak egyetlen miiveletet végez el és az utasitds formatuma konzisztens. Az utasitas
skulcsszoval” kezdédik, majd ezt kdveti a cél regiszter (ahova az eredményt taroljuk) és
végll az operandusok kovetkeznek. Ez a kotott formatum megkodnnyiti az utasités
kédolasat és a hardveres megvalositast. Az egyszertség kedvéért most az Assembly
utasitasokban is ugyan azok a valtozénevek szerepelnek, mint a C kédban. A késébbi
mintakodokban ezek helyét regiszterek veszik at.

Ha tobb operandusunk is van, akkor azt tobb elemi utasitas felhasznalasaval lehet alacsony

szinten megvalositani hasonléan, mint azt a lenti példakéd is mutatja.
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a=>b+c+ d; ADD t, b, c
ADD a, t, d

Ebben a példaban harom operandussal végziink ¢sszeadéast, amit két elemi utasitassal
lehet megvalositani. Ez az egyszerd mintakod jo szemléltetés a 2. processzortervezési
alapelvre, ami azt mondja, hogy a gyakori feladatok legyenek gyorsak. A RISC
architekturgju processzorok (beleértve az ARM-ot) utasitaskészlete csak egyszerd,
gyakran haszndlt utasitasokat tartalmaz. Ennek kdszonhetden az utasitasok dekodolaséara
és végrehajtasara szolgalo hardver egyszert és gyors. Ez egyben azt is eredményezi, hogy
az Osszetettebb utasitasok (amelyek ritkdbban fordulnak el6) tobb egyszer( utasitassal
valosithatéak meg.

Az architekturaval kapcsolatban egy fontos kérdés, hogy hol tarolédnak az operandusok?
Erre harom lehetdség van: a memoridban, regiszterben vagy ha konstansrol van sz6, akkor
az utasitas gépi kédjaban. Az ARMv7 kevés belsé regiszterrel rendelkezik, minddssze 16-
tal. Mivel egy 32-bites architekturardl van szo, igy a regiszterek mérete 32-bit. Tehat a
processzor és a fizikai memoria 32-bites blokkokban (szavakban) tud kommunikalni
egymassal.

Egy processzor a belsé regisztereit éri el a leggyorsabban, sokkal kevesebb id6 alatt, mint
a fizikai memoriat. De akkor felvet6dhet a kérdés, hogy miért csak 16 van beléle. Erre a 3.
processzor tervezési alapelv szolgadl magyarazatul, ami azt mondja, hogy a kisebb
gyorsabb. Mivel kevés regiszter van, ezért a cimdekddold aramkor egyszerd és igy a
regiszterek cimzése ideje révid. Ezen felil, azzal is szamolni kell, hogy ha tébb regiszter
van, akkor tobb bitre van sziikség a regiszterek beazonositdsdhoz az utasitasok gépi
kédjaban. Errél kés6ébb lesz sz6 részletesebben. A 2. tablazat egy osszefoglalast ad a
regiszterek felhaszndlasi lehetéségeirdl. A regiszterekre az R karakterrel és az azt kovetd
index-el hivatkozunk. Az indexelés 0-t6] kezdédik.

A programozasi modell megszabja, hogy mely regiszterekben lehet atadni paramétert
fuggvényhivaskor (R0-R3) és melyik regiszterben kell lenni a visszatérési értéknek (R0). Az
is szabélyozva van, hogy mely regiszterek tartalmat kell elmenteni (R4-R11), ha azt egy
figgvényben is hasznalni akarjuk adattaroldsra. Végiil az utols6 harom regiszter specidlis

célu és nem hasznaljuk &ket valtozok tarolasara. Ezek koziil az utols6 (R15) a jol ismert
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programszadmlalé (PC), ami a kovetkez8, végrehajtand6d utasitdas memoriacimét
tartalmazza.

Miutdan megismertilk a regisztereket, célszerii pontositani a kordbban hasznalt
mintakodokat, ahol az elemi utasitdsokban is valtozoneveket hasznaltunk. A valtozok
regiszterekben lesznek tarolva, igy az egyik korabbi mintakédunk helyes alakja lent,
lathato, ahol a valtozékat tarolo regiszterek jelentek meg az utasitasban. A regiszterekben

tarolt értékekrol, a pontosvesszével kezd6dé komment sor ad informéciét.
a=>b+c; s;R1=a, RO=b, R2=c

ADD R1, RO, R2

Regiszter Felhasznalas

RO Argumentum, ideiglenes

valtozo, visszatérési érték

R1-R3 Argumentumok,

ideiglenes valtozék

R4-R11 Tarolt valtozék

R12 Ideiglenes valtozé

R13 Verem mutato

R14 Link regiszter

R15 Program szamlalo (PC)

2. tablazat. Regiszterek és azok funkcidja.

Az utasitdsok masodik operandusa azonban nem csak regiszter lehet, hanem egy konstans
érték is. Az elemi utasitasokban a konstansokat # jeldli és ezt koveti a konstans értéke,
amit tobb szamrendszerben is megadhatunk. Példaként vegyiik a lenti kodrészletet, ahol
a masodik operandus konstans és az értéke 16-os szamrendszerben van megadva. A
konstansnak az a sajatossaga, hogy magaban a gépi kddban van elhelyezve, ezért nem kell

a memoriabol attolteni valamelyik regiszterbe, hanem azonnal elérheté.

a=>b+ 8 ADD RO, R1, #0x10

30



Egy programokban rendszerint sokkal tobb valtozé van, mint a rendelkezésre allo
regiszterek szdma. Az ARM egy betolt-visszatolt alapu architektira, ami annyit jelent,
hogy az operandusokat el6szor be kell tolteni a processzor regisztereibe, majd az
eredményt vissza kell tolteni a memoridba. Tehat a valtozdkat (operandusokat) a fizikai
memoridban (az egyszerlség kedvéért csak memoriaként hivatkozok ra a késébbiekben)
kell tarolni és miel6tt a processzor valamilyen miiveletet hajtana végre vele, el6szor azt be
kell olvasni valamelyik regiszterbe. A memoria nagy kapacitasy, de lassu. Konnyt
elképzelni, hogy ha sokszor kell a memoridbdl adatot olvasni vagy visszairni, az
szamottevéen lassitja a program futdsat. Az optimalis az lenne, ha a gyakran hasznalt
valtozok tovabb maradndnak a regiszterben ezzel csokkentve a memoriaolvaso
utasitasokat. Ennek a feladatnak a megoldasat tipikusan a forditdprogramra bizzuk.

Az ARM béjtonként cimezhet§ memoriat hasznat (7. abra). Mivel egy 32-bites

architekturarél van szo, igy itt az adatszohossz is 32-bit, azaz 4 bajt.

Bdjtcim Sz6cim Adat Sorszam

i i i i

1 1 1 1

s, e, s, s, s - s e, s s s, s, s —~

l “ew l e l “es I
13112111110 00000010 cd|19]a6|Sb 4, 520
f ¢ d 0000000c 401310788 3. 520
b a 9 8 00000008 01)ece 28142 2. 820
7 6 5 4 00000004 f21f1]ac |07 1. sz0
3121110 00000000 ablcd|ef |78 0. szé

MSB LSB

7. &bra. A fizikai memoria felépitésének szemléltetése.

Mivel a memoria bajtonként cimezhetd, ezért arra is van lehetéségiink, hogy csak egy
adott bajtjat olvassuk vagy irjuk felil egy adatszonak. Az architektura ehhez dedikalt
utasitasokat is biztosit. Mivel minden bajtnak sajat memoriacime van és az adatszavak 4
bajt szélesek, ebbdl az is kovetkezik, hogy a szomszédos adatszavak kozotti memoria
cimtéavolsag is 4. Vegyiik példaként a 2. adatszoét (az indexelés 0-t6l kezd6dik), aminek a
cime 0x08 vagy a 8. adatszoért, aminek a cime 0x20.

Az altalunk vizsgalt architekturaban, a memoria adatszavainak olvasdsara az LDR (load
register) utasitas all a rendelkezésiinkre. Ennek szemléltetésére vegytik a lenti példat, ahol

a memoria 0x08-as cimérdl olvasunk be egy adatszét az R3-as regiszterbe:
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MOV R2, #90
LDR R3, [R2, #0x08]

Az elsé utasitas egy MOV, ami adatot mozgat egy regiszterbe. Jelen példdban a konstans
0-at irjuk bele az R2-es regiszterbe. Ezt koveti az LDR utasitds, aminek harom
argumentuma van. Az elsé az a regiszter, amibe a memoria adatszavat fogjuk letarolni. Az
azt kovetd tovabbi két argumentum a memoria cimének meghatarozdsara szolgél. Ezek
kozil az elsé (R2) egy ugynevezett bazis regiszter, a masodik (0x08) pedig egy eltolas
érték. Ezek alapjan a tényleges memoriacimet az 6sszegiik adja (R2 + 0x08). Barmelyik
regiszter hasznalhato bazisregiszterként, mig az eltolas értéke lehet konstans vagy egy
masik regiszter tartalma. A fenti példaban egy ,alacsony” memoriacimrél olvastunk be
informaciét az R3-as regiszterbe, amit egy konstans értékkel is meg lehetett adni. Ezért
nem volt sziikség a bazisregiszter tartalménak felhasznaldsara és ez az oka, hogy nullaztuk
a bazisregisztert. Itt is igaz, hogy a konstans érték az LDR utasitas gépi kddjaban tarolodik,
de ez limitet is szab a konstans nagysagara. Ha egy nagy értékd memoriacimrél akarunk
informacioét beolvasni, akkor az a cim mar nem fér bele egy konstansba és ekkor mar a
bazis regiszter tartalmara is tdmaszkodni kell.

Az LDR-hez hasonléan mikodik az STR (store register) utasitas is, ami egy regiszter

tartalmat tolti be az utasitasban megadott memoriacimre. Nézziink erre is egy példat:

MOV R2, #0
STR R1, [R2, #0x34]

A példaban az STR utasités az R1-es regiszter tartalmat tolti be a memoria 12. adatszavéaba,
aminek a memoriacime 52 (0x34). Figyeld meg, hogy a cimszadmitas mechanizmusa itt is
ugyan ugy mikédik, mint az imént latott LDR utasitasnal. Az ARM memoria ir6 és olvaso
utasitasai nem hivatkoznak kozvetlenil a fSmemodria cimeire, mivel egy 32 bites cim nem
fér bele az utasitds 32-bites gépi kodjaba. Ehelyett indirekt cimzést hasznalnak, amely
soran egy regiszterben tarolt értéket (esetleges eltolassal) hasznalnak memoriacimként.

Az imeént lattuk a két legfontosabb adatmozgat6 utasitast. Ezeken kiviil szamos egyéb
utasitast all a programozo6 rendelkezésére. Az utasitas funkcionalitisa alapjan harom

kategoridba lehet sorolni 6ket:

1. Adatfeldolgozo

2. Adatmozgato6 (vagy memoria)
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3. Elagaztato

Ezek koziil az adatfeldolgozo utasitasok csoportjdba tartozik a legtébb utasitas beleértve
az aritmetikai utasitdsokat, a logikai utasitasokat és a shift utasitasokat (ami magaba
foglalja a forgatast is). A 3. tdblazatba Osszegyijtdttem a fontosabb adatfeldolgozo
utasitasokat, amiket érdemes megjegyezni, mert késébb sziikség lesz rgjuk. Ezeknek az
utasitasoknak az els6 argumentuma kotelezéen regiszter, mig a masodik (ha van) lehet
regiszter és konstans is.

A logikai utasitasok koziil az AND és ORR a jol ismert logikai ES illetve VAGY miiveleteket
végzi el az operandusok bitjei kozott és ez keriil a célregiszterbe (elsé argumentum). Az
EOR utasitas XOR miiveletet hajt végre, amit mar szintén tanultal digitalis technikan. Az
MVN (move and not) is egy jol ismert muveletet fog végrehajtani és ez az invertalas. Végiil
miveletet hajt végre, annyi eltéréssel az AND utasitdshoz képest, hogy a masodik

operandust invertalja, miel6tt végrehaijtja a logikai ES miiveletet az operandusok kozott.

Kategoéria Utasitas

AND Ra, Rb, c
ORR Ra, Rb, c

Logikai utasitdsok | EOR Ra, Rb, c

BIC Ra, Rb, c
MVN Ra, Rb

LSL Ra, Rb, c

LSR Ra, Rb, c
Shift utasitasok

ASR Ra, Rb, c

ROR Ra, Rb, c

ADD Ra, Rb, c
Aritmetikai

SUB Ra, Rb, c
utasitasok

MUL Ra, Rb, c

3. tablazat. Adatfeldolgozo utasitasok fiktiv argumentumokkal.

A shift utasitaskategoridba 4 utasitds tartozik. Ezek koziil az elsé kettd a logikai balra
shiftelés (LSR) és a logikai jobbra shiftelés (LSR). A jobbra shiftelésnek elérhet6 az

aritmetikai parja is, amit az osztas miivelet helyettesitésére is hasznalhatunk, amennyiben
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az oszto ketté hatvanya. Végil egy forgatds mivelet is elérhetd (ROR), ami egy regiszter
bindris tartalmat jobbra forgatja az utasitdsban megadott bitmennyiséggel. Amennyiben a
shift mennyisége konstanssal van megadva az utasitasban, az legfeljebb 5-bites lehet. De
ha belegondolunk, akkor nincs is sziikség 5-biten tulnyul6 értékre. Ha egy regisztert 32
bittel forgatsz el jobbra, akkor visszakapod az eredeti értéket, ha 33-mal forgatod jobbra,
akkor az ekvivalens azzal, mintha csak 1-bittel forgattad volna balra. Mivel 5-biten a
legnagyobb tarolhatd érték 31, igy ezzel az Osszes lehetséges forgatasi lehetéséget el
lehet allitani.

Az aritmetikai utasitasok koziil csak harmat emlitettem meg a 3. tadblazatban. Az ADD és
SUB utasitasokrol mar kordbban volt szé, igy most csak a MUL utasitéssal foglalkozunk. A
MUL szorzast végez két 32 bites operandussal és az eredményt 32-biten tarolja. Ennek csak
az a szépséghibgja, hogy két 32-bite szam szorzata akar 64-bites is lehet. Ennek alapjan,
64 bitre van sziikség az eredmény veszteség mentes (megbizhato) letaroldsahoz. Mivel a
MUL utasitds csak 32 biten tarolja az eredményt, igy csak azokban az esetekben lehet
hasznalni, amikor biztosak vagyunk abban, hogy a szorzas eredménye 32-bitbe belefér. Ha
a szorzas eredménye nem fér bele 32 bitbe, akkor az UMUL (unsigned) vagy az SMUL
(signed) utasitasokat lehet hasznalni. Mindkét utasitas 64 biten tarolja az eredményt, ami
azzal is jar, hogy nem harom, hanem négy argumentuma lesz az utasitasnak (UMULL R1,
R2, R3, R4). Ezek koziil az els6 két regiszterbe fog az eredmény tarolodni, mig az utolso
kettd lesz a két operandus.

A programkédok nem mindig akarjuk szekvencidlisan (egymast kovetéen sorrél sorra)
végrehajtani. Példaul a jél ismert programozasi sémaknal, mint az eldgaztatasok vagy a
ciklusok csak akkor fogunk végrehajtani egy adott kédblokkot, ha egy feltétel igaz. Az
altalunk vizsgalt ARM architektura feltételes kapcsolokat haszndl annak eldéntésére, hogy
egy utasitast végre kell hajtani vagy sem. A feltételes kapcsolok Osszefoglalasa a 4.
tablazatban tekinthet6 meg.

Ezek a feltételes kapcsolok a processzor aritmetikai-logikai egysége (ALU) altal
generalt jelzébitek (N, Z C, V) alapjan értékelédnek ki. A negativ (N) bit akkor vesz fel
1-es értéket, ha az eredmény negativ, kettes komplemens abrazolast hasznélva. A nulla (Z)
bit akkor lesz 1-es, ha az eredmény minden bitje nulla. Az atvitel (C) bit akkor lesz beéllitva
(1), ha a mivelet soran carry érték generalodik. Végiil, a tulcsorduléds (V) bit akkor lesz

beédllitva, ha egy aritmetikai miivelet tulcsordulast eredményez. Ez tipikusan akkor fordul
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el6, ha azonos el@jelli operandusokkal végzett miiveletet kvetéen az eredmény elGjele az

operandusokétol eltéré.

Koéd | Kapcsolo Megnevezés Feltétel
0000 | EQ Egyenld Z
0001 | NE Nem egyenld Z
0010 | CS / HS | Carry 1 / Elgjel nélkili nagyobb C
0011 | CC / LO | Carry 0 / Elgjel nélkiili kisebb c
0100 | MI Negativ N
0101 | PL Pozitiv N
0110 | VS Tulcsordulas %4
0111 | VvC Nincs tulcsordulas 1%
1000 | HI El6jel nélkiili nagyobb mint ZC
1001 | LS El6jel nélkiili kisebb egyenl6 ZORC
1010 | GE Elgjeles nagyobb egyenld NV
1011 LT Elgjeles kissebb mint NGV
1100 | GT El6jeles nagyobb mint Z(N®V)
1101 LE Elgjeles kisebb egyenlé ZOR(N@YV)
1110 | AL Nincs feltétel -

4. tablazat. Feltételes kapcsolok.

A kordbban bemutatott 16 regiszteren tul, a programozasi modell masik fontos
alapregisztere az aktualis programallapot-regiszter (CPSR). A CPSR legfels6 négy
bitjében van letarolva az imént emlitett ALU jelzébitek aktualis allapota. Ezeket a biteket
kétféleképpen lehet frissiteni. Az egyik lehet6ség, hogy az adatfeldolgozo utasitasokat
kibévitjikk az S kapcsoloval, ami ,kényszeriti” az ALU-t a jelz6bitek frissitésére. Példaul az
ADD R1, R2, R3 utasitads elvégzi az 6sszeadast (R1 = R2 + R3), de a jelzébiteket nem

frissiti az Osszeadas eredménye alapjan. Viszont, ha az ADD utasitast kibdvitjik az S
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kapcsoloval (ADDS R1, R2, R3), akkor ez az utasitds mar a jelzébiteket is frissiti azon
feliil, hogy ugyan ugy elvégzi az 6sszeadast. Minden adatfeldolgozé utasités frissiti az N
és Z jelz6biteket az eredménytél fliggéen. A shift miiveletek az N és Z mellett a C jelzébitet
is, mig az aritmetika utasitasok a V bitet is frissitik.

Az ALU jelzébitjeinek frissitésére egy masik lehetéség a CMP (compare) utasitas
haszndlata, aminek két operandusa van és nincs célregisztere. Ahogy a neve is jelzi, az
utasitas két értéket hasonlit Ossze, ami gyakorlatilag egy kivonast jelent és ennek
eredménye alapjan allitodnak be a jelzébitek. Hogy teljes legyen a kép a feltételes
kapcsolok muikodésérdl, vegyiink egy példat, ahol tudjuk, hogy az R3-ban tarolt érték 18,
mig az R4-ben tarolt érték 20:

CMP  R3, R4
SUBEQ R1, R2, RO
ORRMI R2, R5, R6

A fenti példaban, mivel tudjuk R3 és R4 tartalmat, igy meg tudjuk hatarozni, hogy mi lesz
a CMP utasitasnal kapott eredmény (18 — 20 = -2) és ennek alapjan a jelzébitek értéke (N=1,
Z=0, C=0, O=0). Ha tudjuk a jelzébitek értékeit, azt is el tudjuk donteni, hogy a két
feltételes utasitas végrehajtdédig vagy sem. A SUBEQ utasitas kapcsoldja az EQ, ami akkor
teljesiil, ha Z = 1. Ebben a példaban ez nem teljesiil, ezért ez az utasitds nem lesz
végrehajtva. A kovetkez6 utasitasndl a feltételes kapcsolé az MI, ami N = 1 esetén teljesiil,
ezért a példaban szereplé ORRMI végre lesz hajtva.

Most mar ismered az alapveté adatmozgato6 és adatfeldolgozé utasitasokat. Az utasitdsok
harmadik csoportja az elagaztaté utasitasoké, ahol minddsszesen csak két utasitast kell
megismerned. Ahogy a csoport elnevezése is jelzi, ezek az utasitdsok lehetévé teszik a
sorrenden kiviili utasitdsvégrehajtést. Ez egyszerten azt jelenti, hogy a programkod adott
pontjarol, a vezérlés &t tud ugrani egy masik pontra és onnan folytatédik az
utasitasvégrehajtas. A két utasitas, amivel foglalkozni fogunk az a B és a BL. A B egy
elagaztatd vagy mas szoval ugré utasitds, ami lehet feltételes, amennyiben feltételes
kapcsolot tarsitunk hozza. A BL is egy eldgaztatod utasitds, amit majd fliggvényhivasra
fogunk hasznalni. El6szor a B utasitéssal foglalkozunk, ami miikodési elvben megegyezik

a goto utasitaséval a C programozasi nyelvbél. Nézziink egy ide vago példat:

MOV Ro, #12
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B TARGET
AND R1, R2, #3

TARGET
SUB R1, R2, R3

A fenti példdban a B utasitds argumentuma egy cimke, ami val6jaban egy memoriacimet
jelent. Azt a memoériacimet, ahova at kell helyezni az utasitas végrehajtast. A példaban egy
feltétel nélkili ugrés torténik a B TARGET utasitas végrehajtdsa utén és ezt kovetben a
kovetkezd utasitds, a SUB R1, R2, R3 lesz. Tehat az ugro utasitast koveté AND utasitas

soha nem lesz végrehajtva. Nézziik egy masik példat is, ahol az ugras feltételhez kotott:

MOV Re, #4
ADD R1, RO, RO
CMP RO, R1
BEQ TARGET
ORR R1, R1, #1

TARGET
ADD R1, R1, 78

Ebben a példéban az EQ kapcsold miatt, az ugras akkor fog végrehajtédni, ha az RO és az
R1-es regiszterekben ugyan az az érték van. Ekkor ugyanis a CMD &ltal végzett kivonas
eredménye 0, igy Z=1.

Felmertilhet a kérdés, hogy mire lehet a gyakorlatban hasznalni a feltételes ugrasokat?
Valojaban ezek szolgaltatjdk az alapjat, a magas szintd programozasi nyelvek
elagaztatdsainak, ahol el kell donteni, hogy végrehajtodik egy adott kédblokk vagy sem. A
most kovetkezd példak szemléltetni fogjak, hogy hogyan lehet Assembly utasitdsok
szintjén megvalositani a magasszinti programozasi nyelvekben megszokott programozasi

szerkezeteket. Kezdjiik egy egyszert if feltétellel, ahol nincs else ag:

if (i == j) ;RO=f, R1=g, R2=h, R3=1, R4=j
f =g+ h; CMP R3, R4
f=F-1; BNE L1
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ADD RO, R1, R2
L1

SUB RO, RO, R2

A C kodban, a feltétel azt vizsgalja, hogy az i véltozd értéke megegyezik-e a j valtozo
értékével. Ha megegyezik, akkor a feltétel igaz és az if blokkhoz tartozé programkod lefut.
Ezzel szemben az Assembly utasitasokndl azt vizsgaljuk, hogy az i értéke eltér-e a j
értékétol! Figyeld meg, hogy a jobb oldali kédnal el6szor a CMP utasitas kivonja j értékét i-
bél (R3 és R4 regiszterek), majd ezt koveti egy ugrd utasitas, amelynél az NE feltételes
kapcsolot hasznaljuk. Ez a feltétel akkor teljesiil, ha az el6zé kivonasnal a két operandus
nem egyenld, mert igy az eredmény nem nulla, tehat a Z=0. Osszegezve azt mondhatjuk,
hogy a C kodndl azt vizsgaljuk, hogy mikor kell végrehajtani a kodblokkot, mig az
Assembly programkaédban, ennek a forditottjat. Azt, hogy a kodblokkot mikor kell atugrani.
Az el6z6 C programkodot méasként is at lehet forditani elemi utasitdsokra. Erre mutat

példat a kovetkezd koddrészlet:

if (1 == j) ;RO0=f, R1=g, R2=h, R3=1, R4=j
f =g+ h; CMP  R3, R4
f=f-i; ADDEQ RO, R1, R2

SUB RO, RO, R2

A fenti példaban kevesebb utasitasra volt sziikség, mint az el6z6 esetben, ezen feliil, nincs
benne ugro utasitas, ami tipikusan tobb oérajelciklust igényel a végrehajtashoz, mint mas
adatmozgato utasitasok. Itt azt hasznaltuk ki, hogy az if blokkja csak egyetlen utasitast
foglal magaba, igy elég csak ennek az egy utasitasnak a végrehajtasat feltételhez kotni,
amit kénnyen meg tudunk tenni a megfeleld feltételes kapcsol6é hasznalataval. Ez a két
példakdd arra is ravilagit, hogy ugyan azt a magas szintem megirt programkodok tobb
alternativ. modon is meg lehet valositani elemi utasitdsokkal. Ezt alapul véve, a
forditoprogramokat is lehet konfiguralni, hogy végrehajtdsi sebességre legyen

optimalizélva a leforditott program. Most bévitsiik ki az el6zé C programkddot egy else

aggal:
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if (1 == j) CMP R3, R4

f =g + h; BNE L1
else ADD RO, R1, R2
f=f-1; B L2
L1

SUB RO, RO, R2

L2

Az atforditott alakban a feltétel vizsgalata ugyan ugy torténik, mint a kordbbi példakédnal.
Viszont, most egy feltétel nélkili ugras zarja az if blokkot (B L2), ami arra kell, hogy
amennyiben az if feltétele teljesiil, akkor az else &g kodblokkja mar ne legyen
végrehajtva és azt ugorjuk at. Ha viszont a feltétel nem teljesiil, akkor a feltételes ugrasnak
az else blokk elejére kell ugrani és azt kell végrehajtani.

Most mar lattal példékat arra vonatkozdan, hogy hogyan lehet az eldgaztatadsokat elemi

utasitasokkal megvaldsitani. Ez utan jojjenek a ciklusok. El&szor kezdjik egy while

ciklussal:
int pow = 1; MoV Reo, #1
int x = 0; MOV R1, #0
while (pow != 128){ WHILE
pow = pow * 2; CMP RO, #128
X =X+ 1; BEQ DONE
} LSL Re, Re, #1

ADD R1, R1, #1
B WHILE

DONE

A fenti példakdédban két valtozénk van, amit az RO és R1 regiszterekben tarolunk. Figyeld

meg itt is, hogy mig a C kdédban a while ciklus addig fog lefutni, amig a pow valtozé nem
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lesz egyenld 128-cal, addig az elemi utasitasok szintjén azt vizsgaljunk, hogy ez mikor lesz
egyenl6 128-cal (ismét az EQ kapcsolot hasznaljuk), mert ekkor kell befejezni a ciklust a
feltételes ugrassal. Kiiléonben maradunk a ciklusban és lefut a ciklus magja. Figyeld meg,
hogy a kettével vald szorzast egy logikai balra shifteléssel valtottunk ki, majd noveltiik x
értékét eggyel. Végiil a feltétel nélkiili ugrés zarja a while blokkot, ami visszaugrik a
feltételvizsgalathoz és az egész folyamat kezdédik az elejétél.

A masik ciklusszervezési lehetéség a for ciklus hasznalata. Ez szintakszisban eltér a
while ciklushoz képest, mivel itt a for fejrészében nem csak egy feltételt adunk meg,
hanem bevezetink egy ciklusvaltozot is és azt is megadhatjuk, hogy a ciklusvaltozé
hogyan legyen modositva ciklusonként. Ennek ellenére az elemi szintli megvalodsitasa a

for ciklusnak logikailag meg fog egyezni a while ciklusnal latottal. Vizsgaljuk meg ezt is

egy példan keresztiil:
int 1i; ;RO = 1, R1 = sum
int sum = 6; MOV RO, #1
MOV R1, #0
for (i=1; il=10; i=1+1) FOR
sum = sum + 1i; CMP Re, #10
BEQ DONE

ADD R1, R1, RO
ADD RO, RO, #1
B FOR

DONE

[tt ismét két valtozonk van, amit mindkét kdédrészletben az elején inicializdlunk. A C
kédban a ciklusvaltozonk az i, amit ciklusonként eggyel noveliink. A ciklus addig teljesiil,
amig az i nem egyenld 10-zel. Hasonloan, mint azt mar kordbban is lattad, ismét ennek a
forditottjat vizsgaljuk az elemi utasitdsok szintjén, azaz, ha az i értéke (R0) egyenlé 10-zel,

akkor lesz a ciklus megtorve a BEQ utasitdsnak kdszonhet6éen. A ciklus blokkjat itt is egy
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feltétel nélkili ugras zarja, hasonloan, mint az el6z6 példakdédndl, ami visszaviszi a
vezérlést a for kezdetére.

Az elagazast és a ciklusokat kovetéen most nézziikk meg, hogy a tombok kezelése hogyan
oldhaté meg elemi utasitdsok felhasznaldsaval. A témbokrél tudjuk, hogy a C
programozasi nyelvben nagy mennyiségli, azonos tipusu adatok tarolasara szolgalnak. Az
itt tarolt elemek az indexeik alapjan érheték el. Ahhoz, hogy az indexek alapjan
egyértelmiien meg lehessen hatarozni egy témbelem memoriacimét, tudnunk kell a témb
kezd6cimét is. A tdmb cime megegyezik a 0. elemének a cimével. Mivel az elemek
adattipusa kotott, igy a tomb cimétdl kezdédden ki tudjuk szamolni minden egyes
elemének a memoriacimét. Ennek szemléltetéséhez ismét nézziink egy példat, ahol van

egy Ot elemd int tombiink és valahol a programkédban a tomb 0. és 1. elemét

megvaltoztatjuk:
int array[5]; ;RO = array base address
MOV RO, #0x60000000
array[0] = array[6] * 8; LDR R1, [RO]
array[1] = array[1] * 8; LSL R1, R1, 3

STR R1, [RO]
LDR R1, [RO, #4]
LSL R1, R1, 3

STR R1, [RO, #4]

A jobboldali programkod elején definidlni kell, hogy hol lesz a tomb kezdécime a
memoriaban (R0). Ahhoz, hogy a témb 0. elemét feliilirjuk a kordbbi érték nyolcszorosaval,
el6szor be kell tolteni a korabbi értéket egy regiszterbe. Ne felejtsd el, hogy a 0. elem cime
megegyezik a tomb cimével, ezért az elsé LDR utasitdsban nincs sziikség eltolasra. A 8-cal
(2%) val6 szorzast itt is logikai balra shifteléssel oldottuk meg. Az Uj érték az R1 regiszterben
van, szoval ennek a tartalmat kell visszatolteni a tomb 0. elemének memoériacimére az STR
utasitdssal. Nem meglepd, hogy ugyan azt a cimet hasznaltuk az LDR és az STR
utasitasoknal is, mivel ugyan oda kell visszairni az Uj értéket, ahonnan a korabbit

kiolvastuk. Ugyan ezt a folyamatot kell elvégezni az 1. tombelem modositdsa soran is,
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annyi eltéréssel, hogy most a memoériacim meghatdrozdsandl eltolds értéket is
alkalmazunk, ami 4. Ez az eltoldsérték onnan ered, hogy az int tipus 4 bajton tarolodik,
tehat az egymast kovet6 tombelemek kozotti cimtavolsag is 4 lesz.

Most nézziink egy kicsit Osszetettebb mintakodot, ahol egy tomb elemeit egy for
ciklusban frissitjiik. A lenti kod egy 200 elem tomb minden elemén végigmegy és 10-zel
noveli. Az elemi utasitdsok szintjén, a programkod elején ismét meghatarozasra keril a
tomb cime és a for ciklus felépitése is logikailag teljesen megegyezik azzal, amit kordbban
lattunk. A ciklus elejét egy cimke jelzi, azt koveti a feltétel vizsgalat és a ciklus végén egy
feltétel nélkili ugras visz vissza a ciklus kezdetéhez. A ciklus térzsében ismét ki kell olvasni
a tomb elemeit egyesével, majd a 10-zel megnovelt értéket vissza kell tolteni. Ebben a
mintakédban a legérdekesebb az, hogy hogyan szamoljuk ki a tombelemek cimét. Ehhez
az R2-es regisztert fogjuk felhasznalni és ebben taroljuk le a cimszdmitashoz sziikséges
eltolas értéket. Az aktudlis eltolas értéket az i * 4 szorzat adja, amit ismét logika shifteléssel

valositottunk meg.

int scores[200]; ;RO = array base address, R1 = 1
int 1i; MOV RO, #0x14000000
MOV R1, #@

for (i=6; 1 < 200; 1 =1 + 1) Loop

scores[i] = scores[i] + 16; CMP R1, #2600
BGE L3
LSL R2, R1, #2
LDR R3, [RO, R2]

ADD R3, R3, #10
STR R3, [RO, R2]
ADD R1, R1, #1

B LOOP

L3

42



10.1 Fiiggvényhivas

Korabban emlitettem, hogy két ugré utasitast foguk hasznalni ebben a jegyzetben. Ezek
koziil az egyik a B utasitas, amivel mar foglalkoztunk, mig a masik a BL, ami fliggvényhivast
tesz lehetévé. A BL utasitdsnak is egy argumentuma van, egy cimke, ami a fliggvény
kezdetét jeloli. Azonban fiiggvényhivaskor egy egyszerl eldgazas nem elegendd, mert nem
tudnank, hova térjiink vissza. A megfelel6 visszatéréshez menteniink kell a fliggvényhivast
kovetd utasitas cimét (PC+4) a fiiggvény meghivasakor, és amikor az befejez6dott, a
mentett memoriacimet kell betdlteni a PC-be. A mentés helye a Link (LR) regiszter, ami
az egyik specidlis célu regiszter a 16 kozil. A mentett memoriacim PC-be toltése a MOV
PC, LR utasitassal konnyen megoldhaté. Ezért ezt az utasitast arra fogjuk hasznalni, hogy
visszatérjiink a fiiggvénybdl a hivéhoz.

Fuggvényhivaskor van néhany tovabbi szabdly, amit be kell tartani. Az egyik, a fliggvény
lehetséges paramétereinek az elhelyezését koti meg. A paramétereknek az RO-R3
regiszterekben kell lenni. Tovabb4a, ha van visszatérési érték, akkor azt az RO regiszterbe
kell tarolni. Ha a fiiggvényen belil felhaszndljuk az R4-R11 regisztereket, akkor azok
korabbi tartalmat meg kell 6rizni és miel6tt a fliggvény visszatérne a hivohoz, az eredeti
értékeiket vissza kell tolteni. Ez igaz lesz az LR regiszterre is. Most nézziink egy példat arra

vonatkozoéan, amikor a fenti megkotések nem teljestilnek:

int main() { ;R4 =y
int y; MAIN
y = diffofsums(2, 3, 4, 5); MOV Ro, #2
MOV R1, #3
} MOV R2, #4
int func(int f, int g, int h, int 1){ MOV R3, #5
int result; BL FUNC
result = (f + g) - (h + 1); MOV R4, RO

return result;
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} FUNC
ADD R8, RO, R1
ADD R9, R2, R3
SUB R4, R8, R9
MOV RO, R4
MOV PC, LR

A fenti C programkédban van egy main fliggvényiink, amibél egy func nevi fliggvényt
hivunk meg. A hivott fliggvény négy paramétert kap, amelyekkel egyszerl aritmetikai
miveleteket végez. Az elemi utasitdsok szintjén, a fiiggvényhivas el6tt inicializaljuk a
paramétereket. A paraméterek az RO, R1, R2, és R3 regiszterekbe keriiltek bele. Ezzel a
résszel nincs probléma, mert ezek a regiszterek dedikdltan hasznalhatéak paraméter
atadasra. A BL FUNC utasitas utdn a végrehajtds a FUNC cimkét kovetd utasitassal
folytatédik. A fliggvényen belil (a FUNC cimkét koveté kodsorok) az R8, és R9
regisztereket haszndltuk fel az f+g és a h+i 0sszegek ideiglenes taroldsara. Majd ezt
kovetben, az R4-be taroltuk le a végeredményt. Mivel van egy olyan megkétés, ami azt
mondja, hogy a visszatérési értéknek az R0O-ban kell lenni, ezért a MOV utasitassal a
végeredményt R4-bdl athelyeztiik az R0O-ban.

A fenti mintaprogrammal tobb probléma is van. Az egyik kézenfekvd az, hogy a SUB R4,
R8, R9 utasitasban az eredményt mar azonnal lehetett volna az RO regiszterbe is tarolni az
R4 helyett. Ezzel megsporolunk egy felesleges utasitast és az R4-es regisztert sem kell
hasznalni. A masik probléma, hogy az R8 és R9 regisztereket felhasznaltuk a fliggvényben,
de nem 6riztik meg a tartalmukat. A kérdés az, hogy hol lehet ezeknek a regisztereknek
eltérolni az értékét? Ebben lesz segitségiinkre a verem. A verem, a fizikai memoridban
helyezkedi el, annak egy dedikélt része. A verem egy LIFO (last in first out)
adatszerkezet, ami annyit jelent, hogy a verembe utoljara letarolt adatszot tudjuk elészor
kivenni. A verem legfelsé elemének a memoriacimét az SP (stack pointer) regiszter
tarolja. Az SP a 3. specidlis célu regiszter a bels6 16 regiszterbél. Ha egy 1j adatszot
akarunk tarolni a veremben, annak el6szor helyet kell csindlni. Mivel az ARM
architekturanal a verem mérete lefelé névekszik a fizikai memoridban, igy a ,,helycsinalas”
a gyakorlatban az jelenti, hogy az SP értékét csokkentjilk. Ha méar nincs tovabb sziikkség

egy veremben tarolt értékre, akkor annak a helyét fel kell szabaditani, nehogy kifussunk a
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rendelkezésre all6 memoriabol. Most nézzilk meg, hogy hogyan kellett vonal az el6z6

mintakdédban az R8 és R9-es regiszterek értékét tarolni:

FUNC
SUB
STR
STR
ADD
ADD
SUB
LDR
LDR
ADD
Mov

sP,
R9,
RS,
RS,
R9,
RO,
RS,
R9,
sP,
PC,

SP, #8
[SP, #4]
[SP]

RO, R1
R2, R3
R8, R9
[SP]
[SP, #4]
SP, #8
LR

Figyeld meg, hogy a fenti példaban az elsé utasitas az SP értékét 8-cal csokkenti. Ezzel azt

értiikk el, hogy az SP egy 8 bajttal lejjebb 1év6é cimre mutat (8. abra). Ez a 8 bajt két

adatszoméretet ad ki, ahova az R8 és R9 regisztereket taroljuk el. A regiszterek tarolasat

az STR utasitassal oldottuk meg. Ezt koveti a visszatérési érték kiszamitasa, amit most mar

azonnal az RO regiszterbe tarolunk. Miel6tt visszatérnénk a hivéhoz a MOV PC, LR

utasitassal, vissza kell helyezni a verembd6l R8 és R9 korabbi értékeit. Ezt az LDR utasitassal

tettiik meg, ahol a cimbeadllitas az SP tartalmahoz viszonyitva tortént.

bef0f0fc
bef0f0f8
bef0f0f4
bef0f0£0

? -« SP befOf0fc
befOf0Of8
bef0Of0Of4

Hivisi verem

bet0f0Of0

Hivis el&tt

Hivis alatt

- SP

bef0f0fc
befOf0f8
befOt0f4
bef0f0t0

Hivis utdn

8. dbra. A verem tartalma a fenti mintakdd futtatasa el6tt, kozben és utan.

A magasszintl programozasi nyelvekben arra is van lehetéségiink, hogy egy fliggvénybél

egy masik fiiggvényt hivjunk. Az el6z6 példaban egyetlen levélfiiggvényiink volt, ami
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egy olyan fliggvényt jelent, amely nem hiv meg tovabbi fliggvényt. Most nézziink egy olyan

példat, ahol két fiiggvényiink van és az egyik ciklikusan hivja a masikat:

int funcl(int a, int b) { ;5 R6=a, R1=b, R4=1, R5=x
int 1, x; FUNC1
X = (a + b)*(a - b); PUSH {R4, R5, LR}
for (1=6; 1i<a; 1i++) ADD R5, RO, R1

X = X + f2(b+1); SUB R12, Ro, R1

return x; MUL R5, R5, R12

} MOV R4, #0©

int func2(int p) { FOR
int r; CMP R4, Reo
r=p+5; BGE RETURN
return r + p; PUSH {Ro}

} ADD RO, R1, R4

BL FUNC2

ADD  R5, R5, RO
POP {RO}
ADD R4, R4, #1
B FOR
RETURN
MOV  R@, R5
POP {R4, R5, LR}

Mov  PC, LR

FUNC2

PUSH {R4}
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ADD R4, RO, 5
ADD RO, R4, RO
POP {R4}

MOV  PC, LR

El6szor vessiink egy pillantast a C kodra, ahol feltételezziik, hogy valahol van egy main
fuggvény és onnan hivjuk meg a funcl fiiggvényt. Ebben egy for cikluson beliil kertil
meghivasra a func2 fliggvény, aminek egy paramétere van. Ami igazan érdekes, az a jobb
oldali kodrészlet, ahol két eddig még nem hasznalt utasitas is megjelenik. Ezek a POP és a
PUSH, amik mds processzor architekturdkndl is gyakran elérhetéek. Segitségiikkel a
regisztereket kompakt modon, a regiszterszamuk sorrendjében lehet menteni és
visszaallitani. A func1 kodrészlet egy PUSH utasitassal eltarolja a verembe az R4, R5 és LR
regisztereket. Vedd észre, hogy most az LR regisztert azért kell tarolni, mert a func2
fuggvényhivas felilirja az LR tartalmat. Ha ezt nem mentjik el, akkor problémaéaban
lennénk, amikor a func1 fliggvénybdél kell visszatérni a féprogramba, mert nem ismernénk
a visszatérési cimet. A func2 meghivasa el6tt van még egy PUSH utasitas, ami az R0O-t tolti
a verembe. Erre azért van szikség, mert az RO-R3 regisztereket a fliggvényen beliil
szabadon lehet haszndlni anélkiil, hogy megtartanank a korabbi értékét. Ez azt jelenti,
hogy ha a hivo oldalon ezekben a regiszterekben hasznos informéci6 van, akkor a hivo
oldalon kell tarolni az értékiiket és miutan a fliggvény visszatért a hivohoz, vissza kell
tolteni a kordbban letarolt értéket. A fenti példakodban a func2 R0-ban tarolja a visszatérési
értéket, de RO hasznos informaciot tartalmaz a funcl szamara is, ezért mar itt menteni kell,
miel6tt a func2-t meghivodna. Miutan a func2 fliggvény visszatér, egy POP utasités irja
vissza RO korabbi értékét, ami a C kdédban az a valtozonak felel meg. A func2-ben is van
egy PUSH és egy POP utasitéas, amivel az R4 regiszter korabbi értékét Orizzikk meg, mivel
az R4-et a func2 fliggvény ideiglenes tarolasra hasznalta. Végil a funcl fiiggvényben, a
visszatéreés el6tt a POP utasitassal visszaallitjuk a kordbban tarolt R4, R5 és LR regisztereket
és ezzel azt is biztositjuk, hogy a megfelel¢ utasitashoz térjen vissza a funcl a
féprogramban.

A gyakorlatban még egy olyan probléma is felmeriilhet, hogy nem négy, hanem annél t6bb

argumentumot akarunk atadni egy fliggvénynek. Ez is megoldhato. Ilyenkor az els6é négy
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argumentumot, a mar korabban ismertetett szabdly alapjan, az R0-R3 regiszterekbe kell
helyezni. A tovabbi argumentumokat a verem tetejére. Ezt a fiiggvény is eléri és innen ki

tudja olvasni.
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11. ARMv7 utasitas kodolas

Mar tudod, hogy az Assembly utasitasokat, az Assembler leforditja gépi kodra, mivel a
processzor csak a binaris formaban 1évé gépi-kddokat képes megérteni. Az utasitasok
koédolasa azt jelenti, hogy a gépi-kodban hogyan irjuk le a processzor szamara, hogy
pontosan milyen muveletet kell elvégeznie. A korabban bemutatott processzortervezési
alapelvek kozil az els6 (a szabalyszerlség egyszerUsiti a tervezést), az utasitdsok
kédolasanal is megjeleni. Az ARMv7 egy 32-bites architektura, ahol minden utasitas 32-
biten van kodolva. Ez a 32 bit tobb részmezdre bomlik szét, ahol a mezdk a tobbitdl eltérd
informacio tartalommal rendelkeznek az elvégzendd utasitasrol. A 32-bites érték mezdkre
torténd felbontasat, hasonlé moédon kell elképzelni, mint ahogyan egy csomag felépitését
a szamitogépes hdalozatoknal. Természetesen, a legjobb itt is az lenne, ha minden
utasitasnal a 32-bit pontosan ugyan azokra a mezdkre bomlana szét, ugyan akkora
mérettel és elhelyezkedéssel. Sajnos ezt, az utasitdsok célja és eltéré igényei miatt nem
lehet megvalositani. Az utasitasok kodolasa tobbnyire utasitas tipusonként valtozik a RISC
processzorokndl, ami tervezéskor rugalmassagot biztosit. Itt jelenik meg az utolso
tervezési alapelv, ami szerint a jo tervezés kompromisszumokat igényel. Habar a
kiilénb6z6 utasitasformatumok bonyolitjdk a dekodolast, de lehetévé teszik az egységes
32 bites utasitdsméretet.

A jegyzetben tanult processzorarchitekturandl harom utasitascsoportrél volt szo:
adatfeldolgozo6 utasitdsok, memoria utasitasok és elagaztatd utasitasok. Elészor nézziik
meg a 9. dbran, hogy az adatfeldolgozé utasitdsokndl milyen almezdékre bomlik fel az

utasitas kodolasahoz hasznalt 32-bit.

31:28 27:26 25:20 19:16 15:12 11:0
cond | op funct Rn Rd Src2
4bits 2 bits 6 bits 4 bits 4 bits 12 bits

9. dbra. Az adatfeldolgoz6 utasitasok 32-bites gépi-kodjanak mezéi.

Balrol jobbra féle haladva, az els6 a feltétel mez6 (cond), amely az utasitashoz tarsitott
feltételes kapcsolo kodjat tartalmazza, amennyiben az utasitds végrehajtasa feltételhez

kotott. A kovetkez6 a miveleti kéd (op) mezd, aminek az értéke 00 lesz az adatfeldolgozo
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utasitasokban. A harmadik a funkcié mezé (func), ami tovabbi hdrom almezére bomlik

szét, ahogy az a 10. dbran is lathato.

31:28 27:26 25  24:21 20

cond Oogl cmd S

funct

10. dbra. A funkcié mezd részei.

Az els6 almez6 egy bites (I) és azt jelzi, hogy az utasitds masodik operandusa konstans (1)
vagy regiszter (0). A cmd mezd az utasitds azonositoja, ami az jeloli, hogy milyen
adatfeldolgozo6 utasitast kell elvégeznie a processzornak. Végiil az S almez6 az utasitdshoz
tarsithato S kapcsolonak a hasznalatat jeloli. Emlékezz vissza, hogy ezzel a kapcsoloval
jelezziik, ha az ALU-nak frissitenie kell a jelz6biteket az utasitas végrehajtasat kovetden.
Ha az utasitasban szerepel az S kapcsolo, akkor ennek az almezének az értéke 1, kiilonben
0.

A soron kovetkez6 mezd a 4-bites Rn, ami a célregiszter indexét tartalmazza. A mezé
meérete azért 4-bites, mivel dsszesen 16 regiszter van, igy ezek bindaris indexei 4-bitet
igényelnek. Az Rn mez6t az Rd koveti, ami az els6 operandus indexe. Az els6
operandusnak regiszternek kell lenni, igy hasonléan az Rd-hez ez a mezd is egy
regiszternek az indexét tartalmazza. Végiil az Src2 mezd zarja a sort. Az eddigi informaciok
alapjan konnyen ki lehet talalni azt, hogy ez a mez6 a masodik operandusrél hordoz
informacioét. Azon felil, hogy a méasodik operandus lehet konstans és regiszter, az ARM
még azt is megengedi, hogy a regiszter tartalmanak felhasznalasa el6tt, még valamilyen
logikai utasitast végezzink el rajta. Mivel tobb lehetéség is van a masodik operandus
megadasara, ezért az Src2 mezd tobb eltérd almezdre bomlik fel az operandus tipusatol

fuggben.
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