

Beágyazott Rendszerek

Egyetemi Jegyzet

1. Kiadás

Dr. Sütő József

2025

Tartalomjegyzék

1. Bevezetés .. 1

2. CPU karakterisztika ... 6

3. Beágyazott rendszerek vezérlőegységei .. 8

4. Integrált áramköri technológia .. 10

6. Beágyazott rendszerek jellemzői... 13

6.1 Beágyazott rendszerek korlátjai .. 13

6.2 Megbízhatóság ... 14

6.3 Valós idejű működés ... 15

6.4 Biztonság .. 15

7. Teljesítmény mérése ... 18

8. Energiafal .. 23

9. Többmagos processzorok .. 25

10. ARMv7 programozási modell .. 27

10.1 Függvényhívás ... 43

11. ARMv7 utasítás kódolás ... 49

Irodalomjegyzék .. 51

1

1. Bevezetés

A számítógépes rendszerek használata a mechanikus műveletek és az emberi munka

kiváltására már a kezdetektől fogva nyilvánvaló volt. Az integrációs technológia

exponenciális növekedése az 1970-es évek óta lehetővé teszi számunkra, hogy egy

számítógép központi feldolgozó egységét egyetlen integrált áramkörbe (chipbe)

helyezzünk, de ezek a feldolgozó egységek még nagyon egyszerűek voltak. Az első

mikroprocesszort, az Intel 4004-et, egy számológéphez tervezték, ami nevezetesen egy

beágyazott rendszernek tekinthető. Mivel az integrált áramkörök tervezése akkor is és ma

is drága és időigényes folyamat, a hardver sokoldalú újra felhasználásának lehetősége a

szoftver módosításával kulcsfontosságú áttörést jelentett.

Az integrációs technológia ma már lehetővé teszi, hogy egy teljes számítógépet alakítsanak

ki egy chipen belül. Ez volt az egyik fő hajtóereje a beágyazott rendszerek

megjelenésének, amik hamar elterjedtek az ipar minden területén. Ami hatalmas lökést

adott a beágyazott rendszerek fejlődésének az az autóipar volt. A mai autókban több, mint

100 beágyazott rendszer tálálható, amik a szórakoztató elektronikát, a motort, az

üzemanyag levegő keverését, a fékrendszert és még számos egyéb alkatrészt vezérelnek.

A járműiparban jól megfigyelhető az egyre kifinomultban működtetés, amit beágyazott

rendszerekkel lehetett megoldani.

Napjainkban, a mindennapi életünkben is már mindenhol találkozhatunk beágyazott

rendszerekkel. De pontosan mit is jelent a beágyazott rendszer kifejezés? Ha definiálni

szeretnénk a beágyazott rendszereket vagy más néven beágyazott számítógépeket,

akkor azt mondhatjuk, hogy egy beágyazott számítógép egy eszköz belsejében lévő

számítógép, amelyet egy előre meghatározott feladat végrehajtására

használnak. Bizonyos esetekben a beágyazott rendszereket kiberfizikai

rendszereknek nevezik, ahol a fizikai rendszer, szorosan kölcsönhatásba lép egy

számítógépes rendszerrel. A cél, hogy a mechanikus működést egy kifinomultabb

vezérlőrendszerrel helyettesítsék. A járműiparnál maradva, erre egy jó példa az

üzemanyag befecskendezés. A mechanikus elven működő karburátort ma már felváltott a

beágyazott rendszeren alapú motorvezérlő, ami a motorba helyezett szenzorok mért

értékeire támaszkodva számolja ki a megfelelő üzemanyag-levegő keverési arányt.

2

Az is érdemes megemlíteni, hogy minden eszköz, ami a manapság népszerű dolgok

Internete (IoT) témakörbe tartozik, szintén beágyazott rendszerek. Ahogy a név is utal

rá, ezek az eszközök többnyire vezeték nélkül, közvetlen vagy közvetett módon

kommunikálnak az Interneten keresztül.

Ha számítógépről beszélünk, akkor a legtöbb embernek a laptopja vagy az asztali

számítógépje jut az eszébe. Viszont a teljes kép ettől összetettebb, mivel a számítógépes

rendszereket négy nagy csoportra tudjuk bontani. Ezek közül az egyik a személyi

számítógépek (PC) csoportja, amibe a hordozható és az asztali számítógépek is

tartoznak. Ezeknek az eszközöknek a közös jellemzője, hogy általános felhasználási célra

lettek tervezve, így számos dolgot tudunk velük végezni a filmnézéstől a

szoftverfejlesztésig.

A következő kategória a szerver számítógépek kategóriája. A szerverek hasonló

technológiával készülnek, mint az asztali számítógépek, de nagyobb számítási, tárhely- és

ki-bemeneti kapacitást biztosítanak. Ezen túl, két további fontos jellegzetességet kell

kiemelni a szerverek kapcsán. Az egyik az, hogy a felhasználók tipikusan a számítógépes

hálózatokon keresztül érik el a szervereket. A másik, a megbízhatóság, amit sok esetben

a redundancia biztosít. Mivel a fizikai eszközök meghibásodnak („…ha valami egyáltalán

elromolhat, az el is romlik”), ezért előre fel kell készülni a meghibásodásra. Ez a

gyakorlatban azt jelenti, hogy a szervereken tárolt adatok több merevlemezen is

tárolódnak (redundánsan), illetve több tápegységgel vannak felszerelve így, ha az egyik

meghibásodik, akkor a másik tápegység át tudja venni a helyét. A szerverek esetében nagy

figyelmet kap a megbízhatóság, mert a szerver összeomlása tipikusan sokkal költségesebb,

mint egyetlen felhasználó PC-jének a meghibásodása.

A harmadik kategória a szuperszámítógépeké. Ez a legmisztikusabb kategória, mivel a

legtöbb ember nem gyakran lát szuperszámítógépet. A szuperszámítógépek több tízezer

processzort foglalnak magukba és hatalmas tárolási kapacitással rendelkeznek. A

gyakorlatban nagy számítási teljesítményt igénylő tudományos és mérnöki számítások

elvégzésére használják, mint például időjárás előrejelzésre, olajlelőhelyek felkutatására,

genetikai projektek.

A legutolsó és egyben legtágabb számítógépes kategória a beágyazott rendszereké. A

beágyazott rendszerek mindenhol körül vesznek bennünket. Megtalálhatók a háztartási

eszközökben, a szórakoztató elektronikai eszközökben, a személy és teherautókban,

3

repülőkben, gyermekjátékokban és még hosszasan lehetne sorolni az alkalmazási

területeket.

Tehát egy PC-t nem tekintünk beágyazott rendszernek, mivel az általános felhasználási

célra lett létrehozva. Viszont egy fali termosztát már beágyazott rendszer, hiszen csak a

fűtési rendszer szabályozására tudjuk használni. Fontos kihangsúlyozni, hogy a

beágyazott rendszereket egyetlen alkalmazás megvalósítására tervezték! Itt is

fontos a megbízhatóság, amit a beágyazott rendszerek egy részénél az egyszerű működési

elvre alapoznak, de a szervereknél megszokott redundancia is előfordul.

Most már tudjuk, hogy minden számítógépes rendszert, a négy nagy csoport

valamelyikébe sorolható. Azonban a csoporttól függetlenül, minden számítógépes

rendszernél megtalálható az 1. ábrán is látható három fő rendszerelem és az azokat

összekötő buszrendszer: központi feldolgozó egység vagy más néven processzor

(CPU), a memória (felejtő és nem felejtő), valamint a ki-bemeneti (IO)

interfészek.

Az 1. ábrán is látható fő komponensek, minden számítógépes rendszerben ugyanazokat

az alapvető funkciókat látják el: adatok bevitele, adatok kivitele, adatok feldolgozása és

adatok tárolása. Logikailag a processzor további két fő alkotóelemre bontható fel. Az egyik

az adatút, amely a processzor és a memória közötti adatcseréért és ennek feldolgozásáért

felelős. A másik a vezérlőegység, ami vezérlő jeleket generál az adatút, a memória és az

IO komponensek működésének szabályozásához a processzor által aktuálisan végrehajtott

utasítás alapján.

1. ábra. A számítógépes rendszerek fő komponensei.

4

Ahogy láttuk, a be és kimeneti interfészek minden egyes számítógépes rendszernél fontos

szerepet töltenek be. Viszont, a számítógépes rendszer típusától függően az interfészek

típusai és a hozzá kapcsolt perifériás eszközök (perifériák) teljesen eltérőek lehetnek.

Ha veszünk egy személyi számítógépet, akkor ott a jól ismert perifériák a monitor,

billentyűzet, nyomtató stb. Ezzel szemben, a beágyazott rendszereknél a perifériák

különböző szenzorok (hőmérő, gyorsulás, mágneses tér stb.) és beavatkozók (motorok,

kapcsolók).

A fő komponensek közül, elsőként fókuszáljunk a CPU-ra, ami számos belső regiszterrel

rendelkezik. A regiszterek többsége egy program utasításainak végrehajtásához szükséges

információt tárolják. A belső regiszterek között vannak speciális feladatokat ellátók is. Az

egyik ilyen regiszter a programszámláló (PC), amely a soron következő utasítás

memóriacímét tárolja. A PC tartalma alapján, a CPU kiolvassa az utasítást a memóriából,

dekódolja és végrehajtja.

A memória adatokat és utasításokat is tárol, és a sorai (más szóval rekeszei vagy szavai)

a memóriacím megadásával olvasható vagy írható. Az 1. ábrán a memória szemléltetése le

van egyszerűsítve, mert a legtöbb rendszernél a memória több rétegből áll és

hierarchikusan épül fel. Sőt, a végrehajtandó program utasításai és a program által

felhasznált adatok akár eltérő memóriákban lehetnek letárolva. Az olyan számítógépet,

amelynek memóriája adatokat és utasításokat is tárol, Neumann architektúrájú

számítógépnek nevezzük (2. ábra). Ebben az esetben, a processzor az adatokat és az

utasításokat is ugyan abból a fizikai memóriából olvassa ki.

2. ábra. Neumann architektúra.

A Neumann memóriaszervezés alternatívája a Harvard architektúra, amely majdnem

olyan régi, mint a Neumann. Itt két különálló fizikai memória van fenntartva a program

5

utasításainak és az adatok tárolására (3. ábra). Mivel dedikált memória van az

utasításoknak, így programszámláló a programmemóriára mutat, nem pedig az

adatmemóriára. A program és az adatmemória szétválasztása nagyobb teljesítményt

biztosít az által, hogy a memória kiolvasás párhuzamosítható. Ebből fakadóan, a Harvard

architektúrát ma is széles körben alkalmazzák a digitális jelfeldolgozó

processzoroknál (DSP).

3. ábra. Harvard architektúra.

6

2. CPU karakterisztika

A számítógépes rendszer típusától függetlenül, mindegyikben megtalálható legalább egy

processzormag (1. ábra). Viszont attól függően, hogy milyen számítógépes rendszerről van

szó, a processzormagok karakterisztikája nagyon eltérő lehet. Az egyik fontos jellemzője a

processzormagnak, a belső regisztereinek a mérete. Ennek alapján megkülönböztetünk 8,

16, 32, és 64-bites processzormagokat. Ezek a méretek a 8 többszörösei és nem véletlenül.

Korábbi tantárgyaknál már mindenki találkozott a bájt fogalmával, ami 8-bit. Ezt vették

alapul a regiszter méretek meghatározásánál, aminek eredményeként egy 32 vagy 64 bites

regiszterbe 4 és 8 bájtnyi információt tudunk tárolni. Napjainkban, a személyi

számítógépek szinte mindegyike 64-bites processzormagokat használ. Ezzel szemben a

beágyazott rendszerek vezérlőegységeinél a 8-bites processzorok sem ritkák. Erre egy jó

példa az Arduino Uno mikrovezérlő kártyán is használt 8-bites ATmega328P mikrovezérlő,

amit sok esetben használnak beágyazott rendszerek vezérlésére. A 8 bites

processzormaggal ellátott vezérlőegységeket alacsony költségű alkalmazásokhoz

tervezték. A 16 bites maggal rendelkezőket, a már kifinomultabb alkalmazásokhoz, míg a

32 vagy 64 biteseket a számításigényes alkalmazásokhoz.

A processzormagnak egy másik fontos jellemzőre, a működést ütemező órajel

frekvenciája. Ez néhány megahertz (MHz) és több, mint 3 gigahertz (GHz) között mozog.

A személyi számítógépeknél ez többnyire 3 GHz felett van. Ezzel szemben, ha ismét az

ATmega328P mikrovezérlőt hozzuk fel példaként, akkor ennek az órajel 16 MHz.

Egy további fontos jellemző, a processzor utasításkészletének komplexitása. Egy

processzor utasításkészlete alatt azokat az elemi utasításokat értjük, amelyeket a

processzor képes dekódolni és elvégezni. Azt is szokták mondani, hogy az utasítás készlet

interfészként működik a programozó és a processzor között. Habár ma már szinte

mindenki valamilyen magas szintű programozási nyelvet használ szoftverfejlesztésre, de

ahhoz, hogy megértsük a programok hatékonyságát tisztában kell lennünk azzal, hogy a

programot futtató processzor milyen elemi utasításokat képes végrehajtani. Számos

processzor létezik, amelyek eltérő utasításkészlettel rendelkeznek. Ha a beágyazott

rendszerek világára gondolunk, ott is rengeteg, eltérő célra létrehozott processzor típust

tudunk megnevezni, mint például a ARM, a RISC-V, PICx vagy a C55x és C64x

7

processzorok. Ha a processzorokat az utasítás készletük komplexitása alapján akarjuk

kategorizálni, akkor két kategóriába lehet őket bontani. Léteznek komplex utasításkészletű

processzorok (CISC) és csökkentett utasításkészletű processzorok (RISC). A CISC

processzorok nagy mennyiségű (tipikusan több száz), különféle utasítást biztosítanak,

amelyek összetett feladatokat hajthatnak végre, mint például a karakterlánc-keresést.

Általában több, különböző hosszúságú utasításformátumot használnak. Ezzel szemben a

RISC processzorok kevesebb (kevesebb, mint 100) és egyszerűbb utasításokat képesek

végrehajtani. Ezek a processzorok, általában a betöltés/visszaírás alapú

utasításvégrehajtást követik- Ez annyit takar, hogy a műveletek nem hajthatók végre

közvetlenül a memóriában, csak a regisztereken, ezért az operandusokat be kell tölteni a

regiszterekbe, majd a művelet elvégzését követően, az eredményt vissza kell írni a

memóriába.

Az alapvető RISC/CISC jellemzésen túl, a processzorokat annak alapján is jellemezhetjük,

hogy milyen címzési módokat támogat az operandusok elérésére, az adatfeldolgozó

utasítások hány operandussal képesek dolgozni, illetve, hogy rendelkeznek e hardveres

gyorsítóval bizonyos műveletekhez.

8

3. Beágyazott rendszerek vezérlőegységei

A beágyazott rendszerek vezérlésére több, eltérő képeséggel bíró számítógépes egység is

használható a rendszer feladatától függően. Ezek közül a legnépszerűbb a mikrovezérlő.

A mikrovezérlő egy egychipes számítógép, amely processzort, memóriát és ki-bemeneti

interfészeket tartalmaz. A mikrovezérlő kifejezés általában egy viszonylag szerény

számítási kapacitású CPU-val rendelkező számítógépre utal, ami egyetlen integrált

áramkörben (IC) van kialakítva. A mikrovezérlőknek létezik egy speciális változata, amit

dedikáltan digitális jelfeldolgozási célokra hoztak létre. Ezzel, majd egy későbbi fejezetben

fogunk foglalkozni. Ha már mikrovezérlőről van szó, akkor szeretném felhívni a figyelmet

arra, hogy a mikrovezérlő és a mikroprocesszor két teljesen eltérő fogalom, amit a

hallgatók sokszor összekevernek. A mikrovezérlő egy teljes számítógépes rendszer

processzorral, memóriával és ki-bemeneti interfészekkel. Ezzel szemben, a

mikroprocesszor kifejezéssel tipikusan a személyi számítógépek processzorára szoktak

hivatkozni.

A beágyazott rendszereknek egy másik gyakori vezérlőegysége, az egykártyás

számítógép. A név onnan ered, hogy egyetlen nyomatott áramköri lapból áll, amelynek

a legfontosabb eleme a System on Chip (SoC). Az SoC is egy teljes értékű számítógépes

rendszer egyetlen IC-be integrálva, hasonlóan a mikrovezérlőkhöz. Viszont számos

lényeges eltérés van a mikrovezérlők és az SoC-k között, ami kiterjed a számítógépes

rendszerek mindhárom fő komponensére. Ezek az eltérések arra is visszavezethetők, hogy

az SoC-k integráltsági foka magasabb a mikrovezérlőkhöz képest. Az integráltsági fok

alatt az IC-ben található tranzisztorok számát értjük (később ezzel részletesebben is

foglalkozunk). Az SoC-ben általában több processzor mag található, amelyek számítási

teljesítményben felülmúlják a mikrovezérlők processzorait. Az SoC-k

memóriakapacitásban is felülmúlják a mikrovezérlőket és a ki-bemeneti interfészeik típusa

is részben eltérő. Habár a ki-bemeneti interfészek között vanna olyanok, amelyek mindkét

eszközben megtalálhatóak, mint például a soros kommunikációt támogatók, de az SoC-

knál olyan speciális interfészek is fellelhetők, amik a mikrovezérlőkben nem. Erre egy jó

példa a kijelző vezérlő, amely azért fontos az SoC-kban, mert a mobil eszközeinkben

(PMD) is SoC-k töltik be a vezérlőegység szerepét. De, mielőtt teljesen leírnánk a

9

mikrovezérlőt az SoC-vel szemben, ki kell emelni, hogy ma már a legtöbb mikrovezérlő

beépítetten tartalmaz analóg-digitális átalakítót, ami az SoC-kből hiányzik. Ezen felül, az

energiafogyasztás is a mikrovezérlők mellett szól. Egyrészt, a mikrovezérlők kevesebb

energiát használnak fel az SoC-khez képest. Másrészt, az időzített alvó állapot sem oldható

meg olyan egyszerűen az SoC-val ellátott egykártyás számítógépeknél, mint a

mikrovezérlőknél, holott ennek nagyon fontos szerepe van az energiamegtakarításban.

Végül, az FPGA (Field Programmable Gate Array) is használható beágyazott

rendszerek vezérlőegységeként. Ez egy kicsit kilóg a sorból, mivel az FPGA-kat áramkörök

tervezésére készítették és nem egy szoftver utasításainak végrehajtásra. Az utasítások

végrehajtásához processzorra van szükség. Az újabb FPGA-k közül már több is tartalmaz

fizikai processzor magot, így az utasítás végrehajtás is megoldható. De, ha fizikailag nem

is érhető el processzor mag, akkor is ki lehet alakítani úgynevezett lágy processzor

magokat az FPGA „szövetében”. Sajátot is lehet tervezni, de a gyártók is biztosítanak lágy

processzor magokat a fejlesztők számára, ami jócskán megkönnyíti a fejlesztők életét.

10

4. Integrált áramköri technológia

Napjainkban az okos eszközök korszakát éljük. Ahogy már korábban említettem, az okos

eszközökben, valamint az egykártyás számítógépeknél valamilyen SoC tölti be a központi

vezérlőegység szerepét. Az SoC egy teljes számítógépes rendszert takar, ami egy

megközelítőleg 2x2 cm méretű IC-be van integrálva. Azokban, akiknek van vagy volt

asztali számítógépe, felmerülhet a kérdés, hogy hogyan tudnak egy teljes számítógépes

rendszert, tipikusan több processzor maggal (erről később) kialakítani egy ilyen kicsi IC-

ben? Erre az integrált áramköri technológia fejlődése válaszol.

Gordon Moore, az Intel egyik alapítója, 1965-ben azt a figyelemre méltó jóslatot tette, hogy

az integrált áramkörökben lévő tranzisztorok száma évente meg fog duplázódni. Ezt a

jóslatot Moore törvénynek nevezték el (nem túl megfontoltan). Egy évtizeddel később,

a jóslata annyival módosult, hogy a tranzisztorszám kétévente duplázódott. Ez a jóslata

hosszú ideig pontosnak bizonyult, és a Moore törvénye 50 évig érvényes volt, ahogy azt a

4. ábra is szemlélteti. Az ábrán az Intel cég processzorait látjuk, a megjelenési évük és a

bennük található tranzisztorok száma függvényében. A grafikon egy exponenciálisan

növekvő tendenciát mutat a tranzisztorszám növekedésben.

4. ábra. Tranzisztorszám növekedés az Intel processzorokban.

A Moore törvény exponenciális tendenciáját követve, az évek során, a tranzisztorok száma

több százról több száz millióra növekedett az integrált áramkörökben. Sajnos, a 2010-es

éveket követően a Moore jóslat már nem állta meg a helyét! Ennek szemléltetésére

vegyünk egy 2010-ben megjelent Intel mikroprocesszort, ami 1 170 000000 tranzisztorral

11

rendelkezett. A Moore törvény szerint a várható tranzisztorszám 2016-ban 18 720 000000

kellett volna lennie. Ehelyett, az adott évben megjelent Intel mikroprocesszor „mindössze”

1 750 000000 tranzisztorral rendelkezett (közel tízszeres eltérés). Habár a félvezető

technológia még most is fejlődik, de lassabban és nem olyan előre megjósolható módon,

mint a múltban.

Eddig tranzisztorokról beszéltünk, de miért olyan fontos a tranzisztorszám? Egyszerűen

azért, mert a tranzisztor a digitális áramkörök elemi „építőkövének” tekinthető. Ebben a

jegyzetben, egy tranzisztort, elektromos árammal vezérelt, kétállásos kapcsolónak fogunk

tekinteni, ami nyitott és zárt állapotban lehet. Ha vannak tranzisztoraink, akkor azokból

bármelyik elemi logikai kaput fel tudjuk építeni. Ennek szemléltetésére vegyük a

legegyszerűbbet, az inverz kaput, aminek a szimbóluma, felépítése és igazság táblája az 5.

ábrán látható. A kapuk megvalósításához MOSFET (Metal-Oxid-Semiconductor Field-

Effect-Transistor) térvezérlésű tranzisztorokat szoktak használni, abból is mind a P, mind

az N típusút. A P és N típusú tranzisztorokat vegyesen alkalmazzák a kapu létrehozásához,

ahol a P típusú tranzisztor fogja a kapu kimenetét a tápfeszültségre (VDD) felhúzni, míg az

N típusú húzza le a kimenetet a földre (GND). Az 5. ábrán jól látható, hogy a bemeneti

érték (A) vezérli a tranzisztorok kapuit. Ha A = 0, akkor a P1-el jelölt tranzisztor zár és a

kimenet Y = 1. Ha A = 1, akkor az N1-el jelölt tranzisztor kerül zárt állapotba és így Y =

0. Ha ezt a működési elvet összevetjük a tranzisztor igazságtáblázatával (5. ábra), akkor azt

a konklúziót vonhatjuk le, hogy ha egy P és egy N csatornás MOSFET tranzisztort az 5.

ábrán látható módon kötünk össze, azzal egy inverz kaput hozunk létre. Ez a kapu

igazságtáblájával igazolható, hiszen az összes bemeneti kombinációra a megfelelő kimeneti

értéket adja.

5. ábra. Az inverz kapu szimbóluma (baloldalt), felépítése (középen) és igazságtáblája (jobboldalt).

12

Ahogy digitális technikán tanultál róla, ha vannak logikai kapuink, akkor azokból

tetszőleges kombinációs logikai áramköröket lehet kialakítani. Például komparátor,

összeadó, szorzó, osztó, vagy dekódoló áramkört. Sőt, logikai kapukból tárolókat is meg

tudunk valósítani, gondolj csak a latch-ekre. Ha elérhetők a szükséges kombinációs

áramköri komponensek és vannak tárolóink is, akkor ezek felhasználásával létre tudunk

hozni egy processzort. Azt kell látni, hogy a digitális áramkörök hierarchikusan épülnek

fel, ahol a tranzisztorok töltik be az elemi építőkövek szerepét. Ha van elegendő tranzisztor,

akkor ez lehetővé teszi a teljes számítógépes rendszer kialakítását egyetlen IC-ben.

Mivel a tranzisztorszám (integráltsági fok) egy nagyon fontos jellemzője az integrált

áramköröknek, így nem meglepő módon az integrált áramkörök osztályozására különböző

kategóriákat vezettek be (SSI, MSI stb.), a tranzisztorszám alapján. Ennek egy

összefoglalása található az 1. táblázatban. Annak ellenére, hogy létezik ULSI (ultra nagy

léptékű) kategória a több tízmillió tranzisztort magába foglaló IC-kre, de ennek ellenére, a

gyakorlatban sokszor ezekre is VLSI IC-ként szoktak hivatkozni.

Kategória

Tranzisztorszám Megjegyzés

SSI (Small-Scale

Integration)

10 – 100 Egyszerű logikai kapuk, flip-flopok, pl.

7400 sorozat NAND kapu

MSI (Medium-

Scale Integration)

100 – 1000 Multiplexerek, számlálók, dekódolók

LSI (Large-Scale

Integration)

1000 – 100000 Egyszerű mikroprocesszorok,

memóriák (pl. 1 Kbit RAM)

VLSI (Very Large-

Scale Integration)

100000 – 10 000000 Mikroprocesszorok, mikrokontrollerek

(pl. Intel 80486)

ULSI (Ultra Large-

Scale Integration)

10 000000 – 100 000000+ Modern CPU-k, GPU-k, SoC-k

1. táblázat. Integrált áramköri kategóriák.

13

6. Beágyazott rendszerek jellemzői

6.1 Beágyazott rendszerek korlátjai

A beágyazott rendszerek számos korlátozás néznek szembe az általános célú

számítógépekkel szemben. Ezek közül az egyik a méretbeli megkötés, ami

nagymértékben függ a felhasználás jellegétől. Vegyünk például egy orvosdiagnosztikai

eszközt, mondjuk egy vércukorszintmérőt, amit a megfigyelt személynek egész nap magán

kell viselni. Ahhoz, hogy az eszköz ne zavarja a viselőjét, az eszköznek kis méretűnek és

könnyűnek kell lenni. Ebből adódóan ez egy fontos tervezési szempont a gyártók számára.

Egy másik fontos megkötés a beágyazott rendszerekkel szemben az

energiafelhasználás. A rendszerek többsége akkumulátorról üzemel, ahol a cél az, hogy

egy teljesen feltöltött akkumulátorral a lehető leghosszabb ideig működjenek. Ehhez

szükség van az energia felhasználását minimalizáljuk. Szemléltetésként, a személyi

számítógépek átlagos energiafelhasználása néhány száz watt, ezzel szemben a beágyazott

rendszerek többsége csak néhány wattot (vagy mikrowattot) fogyasztanak. Az

energiafogyasztáshoz kapcsolódóan azt gondolhatnánk, hogy a beágyazott rendszerben a

legtöbb energiát a vezérlőegység használja fel. De ez sok esetben nem igaz, mert

amennyiben a rendszer tartalmaz kijelzőt, akkor ennek az energiafogyasztása

meghaladhatja a vezérlőegységét. A kijelző a felhasználási felületet biztosítja. Ez egy

fontos része számos beágyazott rendszernek, így akár annak alapján is lehet csoportosítani

a rendszereket, hogy rendelkeznek kijelzővel (headed) vagy sem (headless).

Tegyük fel, hogy a te feladatot a rendszer megtervezése és úgy döntesz, hogy az

energiafelhasználás csökkentése érdekében nem használsz kijelzőt. Viszont ebben az

esetben is meg kell oldani a felhasználó és a rendszer közötti kommunikációt. Erre több

lehetőség is van. Az egyik, hogy egy parancssoros felületet és egy parancsértelmezőt

implementálsz a rendszert vezérlő szoftverbe. Tipikusan, a felhasználó valamilyen soros

kommunikációs protokollon (ezek később kerülnek bemutatásra) keresztül tudja elérni ezt

a felületet. Egy másik megoldás, amivel a routereknél találkozhattál, az a webes

felhasználói felület, ami szintén a rendszert vezérlő szoftverbe van implementálva.

A rendszer komponenseinek megfontolt kiválasztásán túl, egy másik nagyon fontos

lehetőség az energiafelhasználás csökkentésére a vezérlőegység alvó állapotának

14

kihasználása. Számos beágyazott rendszernél nincs szükség arra, hogy egész nap

folyamatosan üzemeljen. Sőt vannak olyan rendszerek, amelyek naponta csak néhány

percet üzemelnek és a nap hátralévő részében üzemen kívül vannak. Erre egy automatizált

rovarcsapdát említenék meg példaként, aminek én voltam a fejlesztője. A csapda váza

polikarbonát lapokból lett létrehozva, amiben egy kamerát tartalmazó beágyazott

rendszer és a feromonkapszulával ellátott ragacsos lap kapott helye. A csapda működési

elve az volt, hogy minden nap reggel kapcsoljon be, készítsen egy képet és egy tanuló

modellre támaszkodva számolja meg az elfogott rovarokat, majd az eredmény vezeték

nélküli kapcsolaton keresztül küldje el egy távoli szervernek. Ennek a rendszernek

naponta csak néhány percre kellett aktív állapotba kerülni, majd ezt követően alvó

állapotba kellett átmennie.

Szoftveres szempontból, a vezérlőegységnek alvó állapotba küldése egyszerű. A

vezérlőegység felébresztése viszont már más kérdés. Erre két lehetőség közül szoktak

választani. Az egyik a külső lábon keresztül érkező ébresztő esemény. Amit egyszerűen

úgy lehet elképzelni, hogy ha egy adott lábán a vezérlő egységnek megváltozik a

feszültség érték, akkor ez felébreszti a vezérlőegységet alvó állapotból. A másik, talán az

előzőnél is praktikusabb ébresztő esemény, a belső számlálók által generált ébresztés.

Ekkor előre, programozott módon meg tudjuk adni, hogy az alvó állapotba küldéstől

számítottan mennyi idő múlva kell a vezérlőegységet felébreszteni.

6.2 Megbízhatóság

A megbízhatóság minden szoftvernél és rendszernél fontos, de ez még nagyobb

hangsúlyt kap a beágyazott rendszereknél. Gondoljunk csak abba, hogy egy olyan

rendszert tervezünk, amit majd országszerte szétszórva kell telepíteni, mint például egy

meteorológiai állomást. Ha ezek meghibásodnak valamilyen hardveres vagy szoftveres

hiba miatt, akkor a javításuk sokkal több időbe és sokkan nagyobb költségbe fog kerülni,

mint a hibák javítása például a webes alkalmazásoknál. Sok beágyazott rendszernek akár

évekig kell működnie bármilyen emberi beavatkozás nélkül. Ilyen hosszú távon a kisebb

hibák is, mint például a memória szivárgás idővel komoly problémává válhatnak. Ebből

adódóan fontos a rendszer alapos, sokszor heteken keresztül történő tesztelése és a

rendszer erőforrásainak monitorozása.

15

6.3 Valós idejű működés

Sok beágyazott rendszernél a feladatok elvégzése határidőhöz kötött. A határidő az az

időpont, ameddig a feladat elvégzéséhez szükséges számításokat be kell fejezni. Miután a

rendszert vezérlő szoftver megkapja a bemeneti adatokat, a kívánt kimenetet elő kell

állítani a határidőig, különben a program nem működik megfelelően, még akkor sem, ha

végül az előállított kimenet funkcionálisan helyes.

A valós idejű működés alapján, a beágyazott rendszereket két kategóriába sorolhatjuk:

kemény (hard) és lágy (soft). Mindkét esetben a rendszernek egy előre megszabott

határidőn belül kell elvégezni a feladatát. A fő különbség abból fakad, hogy milyen

következményekkel jár ennek a követelménynek a megsértése. A kemény valós idejű

rendszereknél, ha a kimenet nem áll elő a megszabott határidőig, az meghibásodást vagy

akár a rendszer összeomlását eredményezi. Itt a határidő túllépése életeket is

veszélyeztethet. Gondoljuk csak a járművek ABS (Anti-lock Braking System) rendszerére.

A lágy rendszereknél a határidő elmulasztása nem okoz biztonsági problémákat, de romló

teljesítményt és elégedetlen ügyfeleket eredményez. Itt példaként gondolhatunk egy

nyomtatóra, ahol a határidők elmulasztása kevert oldalakhoz vezet.

6.4 Biztonság

Sok beágyazott rendszerben nem fordítanak figyelmet a biztonsági szempontokra, ami

sebezhetővé teszi a rendszereket a támadásokkal és az adatlopással szemben. Ez egyre

kritikusabb kérdés, mivel egyre több beágyazott rendszert használnak biztonságkritikus

eszközökben, amelyeket az emberek naponta használnak. Például gondoljunk a

járművekre vagy az orvosi berendezésekben. Ráadásul ezen rendszerek közül sok

közvetlenül vagy közvetett módon csatlakozik az Internethez (IoT).

A biztonság a rendszer azon képességére vonatkozik, hogy megakadályozza a

rosszindulatú támadásokat. A biztonság három tényezőtől függ. Az egyik a titkosítás,

amely biztosítja, hogy csak a feladó és a címzett legyen képes értelmezni az üzenet

tartalmát (az eszköz által generált vagy a hozzá érkező adatokat üzenetekbe csomagoljuk).

Ez úgy érhető el, hogy a feladó titkosítja (kódolja) az üzenetet kiküldés előtt, míg a fogadó

visszafejti (dekódolja) azt a beérkezést követően. Az üzenet kódolásának a célja az, hogy

azt az üzenetet elfogó támadó ne tudja közvetlenül elolvasni. Egy fontos kritérium a

16

kódolással szemben, hogy a kódolt üzenetnek nehezen feltörhetőnek kell lennie. Erre a

feladatra kétféle titkosítási módszert is alkalmazhatunk. Az egyik a szimmetrikus kulcsú

titkosítás, a másik az aszimmetrikus kulcsú titkosítás. A szimmetrikus kulcsú

titkosításnál az AES-t (Advanced Encryption Standard) használják standard titkosítási

algoritmusként. Az AES 128 bites blokkokban kódolja az adatokat, és három különböző

méretű kulcsot tud használni: 128, 192 vagy 256 bit.

Az aszimmetrikus kulcsú titkosítás két részre osztja a kulcsot: egy privát kulcsra és egy

publikus kulcsra. A kettő úgy kapcsolódik össze, hogy a privát kulccsal titkosított üzenet

visszafejthető a publikus kulcs segítségével, de a privát kulcs nem következtethető ki a

publikus kulcsból. Mivel a publikus kulcs nem árul el információt az üzenet kódolásáról,

nyilvános helyen tárolható, hogy bárki felhasználhassa. Ezt az elvet használja az RSA

(Rivest, Shamir, Adleman) is, amely talán a legismertebb kétkulcsos algoritmus.

A biztonság második tényezője az azonosítás. Ez abban segít, hogy egyértelműen be

lehessen azonosítani az üzenet küldőjét, ezzel elkerülve a harmadik féltől származó

„megtévesztő” üzenetek feldolgozását. Az üzenet küldőjének azonosítására használt

technika, a digitális aláírás, ami szintén az RSA algoritmusra támaszkodik. A digitális

aláírás elképzelése az, hogy az üzenetről egy lenyomatot készít, amit bekódol és az

üzenettel együtt továbbítja.

Az üzenet lenyomatának (vagy kivonat) elkészítéséhez hash függvényeket használnak.

A lenyomat generálás célja az aláírás méretének csökkentése (ne a teljes üzenetet kelljen

használni), így a lenyomat általában rövidebb, mint maga az üzenet, és nem fedi fel

közvetlenül az üzenet tartalmát. Mivel a hash függvény tetszőlege hosszúságú üzenethez

egy n-bit hosszúságú lenyomatot készít, így előfordulhat, hogy eltérő üzenetekhez ugyan

az a lenyomat generálódik, de ennek a valószínűsége nagyon kicsi. Tehát, a digitális aláírás

generálás az aszimmetrikus titkosításra és a hash függvényekre támaszkodik, annak

érdekében, hogy az üzenet fogadója egyértelműen be tudja azonosítani a feladót.

A digitális aláírás nem csak a feladó beazonosításában, hanem az üzenet integritásának

ellenőrzésében is segít. Az üzenet integritásának vizsgálata, a biztonság harmadik

komponense. Ez abban segít, hogy jelzi, ammenyiben a feladást követően az üzenet

tartalma módosult. Komoly problémákat okozna, ha egy támadó módosítaná vagy

lecserélné az üzenet eredeti szövegét egy általa kreált üzenetre.

17

A beágyazott rendszerek egy jelentős részénél, a fejlesztők nem foglalkoztak a három

tényező közül egyikkel sem. Természetesen mindhárom komponens fontos, de most

fókuszáljunk csak az üzenet titkosítására. A kérdés az, hogy szükséges-e titkosítani az

üzeneteket. A titkosítás szoftveresen vagy hardveresen is megvalósíthatók. Szoftveres

szempontból az üzenet kódolása és dekódolás könnyen megoldható, viszont ez plusz

számítási terhet jelent a beágyazott rendszerre és ezzel az energiafogyasztást is növeli. Ha

a vezérlő eszközben erre van hardveres gyorsító, akkor ez mind időben, mind

energiafelhasználásban hatékonyabb lesz, mint a szoftveres megvalósítás, de ilyen dedikált

hardver modul csak kevés vezérlőeszközben érhető el (pl.: ESP32 mikrovezérlők). Tehát

mérlegelni kell ennek a létjogosultságát, mert vannak olyan rendszerek, amelyek nem

feltétlenül igénylik a titkosítást. Vegyünk példaként egy meteorológiai állomást. Ha a

támadó képes „elkapni” az állomás üzenetei és azt értelmezni, abból még olyan túl sok

haszna nem fog származni. Összességében azt kell mérlegelni, hogy a támadó mekkora

haszonra tehet szert, a támadásba fektetett munka függvényében.

18

7. Teljesítmény mérése

Ma már kézenfekvő, hogy a szoftvereket magasszintű programozási nyelveken fejlesztjük,

az elvégzendő feladattól függetlenül, mivel ezek nagy mértékben növelik a programozók

produktivitását. A produktivitás növelése abból fakad, hogy a magasszintű nyelvek elfedik

az apró részleteket és egy magasabb absztrakciós szintet biztosítanak, egy alacsony szintű

nyelvhez képest (Assembly). Az absztrakció egy nagyon fontos fogalom, ami segít

bennünket a komplexitás kezelésben, az által, hogy elrejti azokat a részleteket, amik nem

fontosok a működési mechanizmus megértéséhez. Azonban, ha meg akarjuk érteni egy

processzor vagy a teljes számítógépes rendszer teljesítményét, akkor le kell ereszkednünk

az elemi utasítások szintjére.

A rendszer teljesítményének mérésére használt egyik metrika a végrehajtási idő. Ez egy

program végrehajtásához szükséges teljes idő, beleértve a lemezhozzáféréseket, a

memória hozzáféréseket, az I/O tevékenységeket, az operációs rendszer terhelését, a CPU

végrehajtási idejét és így tovább. Egy másik gyakran használt metrika az

áteresztőképesség, ami az egységnyi idő alatt elvégzett feladatok számát jelenti. A

gyakorlatban különböző teljesítménymutatókra vagy más néven metrikákra, valamint

különböző benchmarkokra lesz szükségünk a számítógépes rendszerek

összehasonlításához. Ebben a jegyzetben mi a végrehajtási időre fogunk támaszkodni egy

számítógépes rendszer teljesítményének a mérésekor. A teljesítmény maximalizálása

érdekében minimalizálni kell a végrehajtási időt egy adott feladatnál. Ebből adódóan egy

számítógép teljesítményét egy adott program végrehajtási ideje alapján is lehet mérni a

következő egyszerű összefüggésen keresztül:

𝑡𝑒𝑙𝑗𝑒𝑠í𝑡𝑚é𝑛𝑦 =
1

𝑡𝑖
 (1)

Erre támaszkodva össze tudjuk hasonlítani a számítógépek teljesítményét egy adott

programra nézve. Az (1) formula arra is rámutat, hogy annak a számítógépnek lesz

nagyobb a teljesítménye, amelyiken az i. tesztprogram futási ideje kisebb volt! Nézzünk

erre egy példát.

19

1. Példa: Van két számítógépünk (A és B). Ugyan annak a tesztprogramnak a futási

ideje 10 másodperc volt az A gépen és 12 másodperc a B gépen. Melyik volt a

hatékonyabb és mennyivel?

Megoldás: 12/10 = 1.2 → az A gép 1.2-szer gyorsabb volt, mint a B.

Ahogy korábban említettem, mi a végrehajtási időre fókuszálunk a számítógépes rendszere

teljesítményének mérésekor. Azonban a végrehajtási időt is lehet két különböző

megközelítés alapján számítani. Az egyik lehetőség az, amikor mérjük a program futása

során eltelt időt. Ez egyszerűen meg lehet határozni szoftveresen a program indításakor

rögzített idő és a futtatást követő időpont különbségéből. Az eltelt idő az adott program

elvégzéséhez szükséges teljes időt jelenti, beleértve a lemezhozzáférés idejét, a memória-

hozzáférés idejét, a bemeneti/kimeneti (I/O) adatcsere idejét és az operációs rendszer

késleltetését. Viszont, ha csak arra vagyunk kíváncsiak, hogy a processzor mennyi ideig

dolgozik a tesztprogram végrehajtásán, akkor a CPU végrehajtási időt vagy egyszerűen

csak CPU időt kell meghatározni. A CPU idő meghatározásához is egy egyszerű formulát

kell követnünk, ami a számítógép processzorát működtető órajel ciklusok számának és az

órajel periódus idejének (Tclk) szorzata:

𝐶𝑃𝑈 𝑖𝑑ő = ó𝑟𝑒𝑗𝑒𝑙 𝑐𝑖𝑘𝑙𝑢𝑠𝑜𝑘 × 𝑇𝑐𝑙𝑘 (2)

A (2) formulába szereplő órajel ciklusok száma azt jelöli, hogy hány órajelre van szükség

összesen a tesztprogramban szereplő utasítások elvégzéséhez. Fontos kihangsúlyozni,

hogy minden esetben, amikor utasításokról beszélünk, a tesztprogramot alkotó elemi

(Assembly) utasításaira kell gondolnunk. Mivel az órajel frekvenciája (f) fordítottan arányos

az órajel periódus idejével (fclk = 1/Tclk), így a (2) képletet, át lehet úgy alakítani, hogy

abban az órajel frekvenciáját használjuk a periódusidő helyett:

𝐶𝑃𝑈 𝑖𝑑ő =
ó𝑟𝑒𝑗𝑒𝑙 𝑐𝑖𝑘𝑙𝑢𝑠𝑜𝑘

𝑓𝑐𝑙𝑘
 (3)

A (2) és (3) képletek rámutatnak arra, hogy a mérnök javíthatja a processzor teljesítményét,

a programhoz szükséges órajelciklusok számának vagy az órajelciklus periódus idejének

csökkentésével.

2. Példa: Van egy tesztprogramunk, ami 8 másodpercig fut egy számítógépen,

amiben a processzor órajele 2GHz. Szeretnénk a gép processzorát kicserélni

20

(jelöljük a régi processzort A-val) egy másikra (B) ahhoz, hogy ennek a

tesztprogramnak a futási idejét 6 másodpercre csökkenjen. Tudjuk az új

processzorról, hogy 1.2-szer annyi órajelre lesz szüksége a tesztprogram

végrehajtásához, mint a korábbi processzornak. Határozd meg, hogy mekkora

órajellel kell működtetni az új processzort a kitűzött futási idő eléréséhez.

Megoldás: először meg kell határozni az órajel ciklusok száma az első

processzornál a CPU idő képletének felhasználásával: 𝑐𝑦𝐴 = 8 × 2 × 109 =

16 × 109. Ezt követően ismét a CPU idő képletére támaszkodva kell meghatározni

a B processzor órajelét:
1.2×16×109

6
=

1.2×16×109

6
= 3.2 × 109 = 3.2GHz

Figyeld meg, hogy a CPU idő formulájában nem jelenik meg a tesztprogramot alkotó

utasítások száma, de nyilván ez egy fontos tényező és valahol meg kell jelennie. Valójában

a CPU idő úgy is felfogható, mint a CPU által végrehajtott utasítások száma szorozva az

utasítások végrehajtásához szükséges idővel. Ebből fakadóan az órajel ciklusok száma

egyenlő a program utasításainak a száma szorozva az utasítások végrehajtásához

szükséges átlagos órajel ciklus számmal (CPI). Itt fontos kihangsúlyozni, hogy a CPI érték

tesztprogramonként változik, attól függően, hogy milyen elemi utasításokból áll a program.

A CPI értékre támaszkodva a CPU idő korábbi formuláját (3) át lehet írni a következő

alakba:

𝐶𝑃𝑈 𝑖𝑑ő = 𝑢𝑡𝑎𝑠í𝑡á𝑠𝑠𝑧á𝑚 × 𝐶𝑃𝐼 × 𝑇𝑐𝑙𝑘 =
𝑢𝑡𝑎𝑠í𝑡á𝑠𝑠𝑧á𝑚 × 𝐶𝑃𝐼

𝑓𝑐𝑙𝑘
 (4)

Ha egy olyan processzornak a CPU idejét vizsgálnánk, amely minden utasítást egyetlen

órajel alatt végez el, akkor a CPI idő mindig 1 lenne a tesztprogramtól függetlenül.

Azonban a modern processzoroknál, az eltérő típusú utasítások eltérő számú órajel alatt

hajtódnak végre. Ha tudjuk, hogy az eltérő utasítás típusok mennyi órajelet igényelnek és

azt is, hogy a tesztprogram kategóriánkként hány utasítást foglal magába (Ci), akkor

könnyen ki tudjuk számolni a program végrehajtásához szükséges össze órajelciklusok

számát (5). A lenti képletben az i változó az utasítás kategóriákat jelöli.

ó𝑟𝑒𝑗𝑒𝑙 𝑐𝑖𝑘𝑙𝑢𝑠𝑜𝑘 = ∑ 𝐶𝑃𝐼𝑖 × 𝐶𝑖

𝑛

𝑖=1

 (5)

21

 A szemléltetés kedvéért nézzünk egy példát a CPI érték kiszámítására.

3. Példa: Tegyük fel, hogy van két különböző fordító programunk, amivel ugyan azt

a C-ben megírt programot fordítjuk le egy adott processzor típusra. Tudjuk, hogy

ennek a processzornak az elemi utasításait három kategóriába lehet sorolni (A, B,

C) annak alapján, hogy hány órajel alatt hajtódnak végre. A lenti táblázat mutatja

be, hogy a két fordító hány elemi utasítással valósítaná meg a programot és azok

milyen kategóriába tartoznak. Ennek ismeretében határozd meg a CPI értéket

mindkét változatra. Melyik változat a gyorsabb?

Utasítás csoportok

A B C

CPI 1 2 3

1. program

kód
3 1 2

2. program

kód
5 1 1

Megoldás: Az 1. programkód 6 utasítást hajt végre, míg a 2. kód 7 utasítást. A

táblázat adataira támaszkodva ki tudjuk számolni, hogy az 1. kódhoz összesen 11

órajel ciklusra van szükség, míg a 2. kódhoz 10-re. Ebből látszik, hogy a 2.

programkód gyorsabb az elsőnél. Az (5) képletet felhasználva, azt kapjuk, hogy az

első kód CPI értéke 11/6 = 1.8333, míg a 2. kód CPI értéke 10/7 = 1.4285.

A fenti képletek ismeretében az, hogy egy program mennyi ideig használja a processzort,

számos dologtól függ. Az egyik maga az az algoritmus, amit futtatni kell, mivel ez hatással

van az utasítás számra és a CPI értékre. Egy másik a processzor utasítás készlete, ami

a CPU idő kiszámításához használt mindhárom tényezőre (4) hatással van. Ezen felül a

program megírásához használt programozási nyelv és a fordító is fontos tényezők,

mivel ezek is befolyásolják az utasítás számot és a CPI értéket.

Azt is érdemes megjegyezni, hogy a (4) képletben megjelenő órajelciklus idő

hagyományosan rögzített volt. Viszont az energiatakarékosság vagy a teljesítmény

22

ideiglenes növelése érdekében a mai processzorok változtathatják az

órajelfrekvenciájukat, ezért a program átlagos órajelfrekvenciáját kell használnunk.

Egy másik metrika a processzorok teljesítményének mérésére (6) a MIPS (millió utasítás

per másodperc):

𝑀𝐼𝑃𝑆 =
𝑢𝑡𝑎𝑠í𝑡á𝑠𝑠𝑧á𝑚

𝐶𝑃𝑈 𝑖𝑑ő × 106
 (6)

A MIPS egy elég intuitív metrika, mivel minél több utasítást végez el a processzor

időarányosan, annál nagyobb lesz a MIPS értéke. Viszont ez nem egy ideális metrika, mivel

nem teszi lehetővé az eltérő utasítás készlettel rendelkező processzorok objektív

összehasonlítását. Gondoljunk bele abba, hogy ha ugyan azt a magas szintem megírt

tesztprogramot lefordítanám egy RISC és egy CISC mikroprocesszorra, akkor is eltérő

lenne a MIPS értékeik, ha ugyan annyi időt venne igénybe a program végrehajtása mindkét

esetben.

4. Példa: Két mikroprocesszort (A és B) szeretnénk összehasonlítani egy

tesztprogrammal és a lenti táblázatban megadott adatok állnak a rendelkezésünkre.

Ennek alapján döntsd el, hogy melyiknek van a nagyobb MIPS értéke.

 A B

Utasítás szám 80 millió 60 millió

Órajel frekvencia 4 GHz 4 GHz

CPI 1.0 1.1

Megoldás: A MIPS érték kiszámításához a (6) képletet kell használni. Viszont

ehhez meg kell határozni a CPU időt (4). A táblázatban megadott információk

alapján a CPU idő 20 ms az A esetben és 16.5 ms B-nél. Ezt felhasználva az MIPS

értékek kerekítve: 4000 és 3636.

23

8. Energiafal

Az előző fejezetben láttuk, hogy hogyan lehet kiszámítani a CPU időt, aminek az egyik

tényezője az órajel frekvenciája. Ismét a (4) formulát felhasználva azt mondhatjuk, hogy

minél nagyobb az órajel frekvenciája, annál kisebb lesz a CPU idő, vagyis annál

gyorsabban tudja a processzor végrehajtani a program utasításait. Ebből kiindulva, ha a

processzor tervező mérnökök képesek a processzor órajelét növelni, azzal a processzor

teljesítményét is javítják. A múltban, ez a megközelítés elég jól működött, ahogy azt a lenti

grafikon is szemlélteti. A grafikonon az Intel cég népszerű processzorainak az órajel

frekvenciáját és az energia fogyasztását látjuk. Figyeld meg, hogy egy jól látható

korrelációs kapcsolat volt az órajel frekvenciája és a processzor energia felhasználása

között (mindkettő növekedett) a korai processzoroknál egészen az Pentium 4 Prescott-ig.

Ezt követően az órajel frekvenciája nem lépte át a 3.6GHz-t és az energiafelhasználás is

90W körül mozgott.

6. ábra. Az Intel cég processzorainak órajel frekvenciája és energia fogyasztása.

Felmerülhet a kérdés, hogy a Pentium 4 Prescott után miért nem növelték tovább az órajel

frekvenciáját, hogy ezzel biztosítsák az újabb processzorok teljesítmény növekedését? Két

ok is van rá. Az egyik, hogy az energiafelhasználás csökkentése egyre nagyobb hangsúlyt

kapott. A nagy szerverparkoknál az energiafelhasználás teszi ki az egyik legnagyobb

költség hányadot. Ezen felül, a beágyazott rendszereknél is kritikus fontosságú az

energiafelhasználás, mivel a legtöbb rendszer akkumulátorról üzemel és természetesen a

24

cél, hogy egy feltöltött akkumulátorral a rendszer a lehető legtöbb ideig képes legyen

üzemelni.

A processzor energiafelhasználása az órajel növelésével lineárisan növekedik, ami a

processzort alkotó tranzisztorok kapcsolási energiájának becslésére használt formulára

vezethető vissza (7), ahol P a tranzisztor teljesítményét jelöli, míg a kapcsolási frekvencia

a tranzisztor állapot váltásának gyakorisága, ami függ az órajel frekvenciájától.

𝑃 ∝
𝑘𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣 𝑡𝑒𝑟ℎ𝑒𝑙é𝑠 × 𝑓𝑒𝑠𝑧ü𝑙𝑡𝑠é𝑔2 × 𝑘𝑎𝑝𝑐𝑠𝑜𝑙á𝑠𝑖 𝑓𝑟𝑒𝑘𝑣𝑒𝑛𝑐𝑖𝑎

2
 (7)

A másik fontos gátja a processzor órajel további növelésének a hőelvezetés. A

processzorban lévő tranzisztorok minél gyakrabban kapcsolnak, annál több energiát

használnak és annál több hőt termelnek, amit el kell vezetni, különben a processzor

tönkremegy. Erre statikus és dinamikus hűtési módszereket alkalmaznak. A statikus hűtés

a processzora felhelyezett hűtőbordát foglalja magába, míg a dinamikus hűtés a

hűtőbordákra helyezett ventilátort jelenti.

Még egy további érdekesség figyelhető meg a 6. ábrán. A 80286-os processzorhoz

viszonyítottan, a Pentium Prescott-ig, az órajel frekvencia közel 300 szorosára nőtt, de az

energia felszanálás „csak” megközelítőleg 30 szorosára. Az eltérő léptékű növekedésre a

tranzisztorok feszültség értékének csökkenés ad magyarázatot. A tranzisztorok korai 5V-

os működési feszültsége fokozatosan csökkent egészen 1V-ig. A (7) formula alapján a

feszültség értéke négyzetesen befolyásolja az energiafelhasználást. Ez a fő oka annak, hogy

az energiafelhasználás nem követte azt a növekedési pályát, amit az órajel frekvencia.

Sajnos jelenleg az 1V-os feszültség érték egy fizikai gát, amit nem tudnak tovább

csökkenteni, mivel ekkor a tranzisztor működése instabillá válna.

25

9. Többmagos processzorok

A közelmúlt tendenciái alapján a felhasználók hozzászoktak ahhoz, hogy az újabb

számítógépes eszközök teljesítménye növekszik és a rajtuk futtatott programok válaszideje

csökken. Ezt korábban, részben az órajel növelésével érték el. Azonban, az energiafal

ennek a tendenciának gátat szabott, így a mérnököknek más irányba kellett elindulni a

processzorok hatékonyságának további növelése érdekében. Ennek eredményeként 2006

körül jelentek meg a többmagos processzorok. Ez egyszerűen annyit jelent, hogy a

processzorban (maga az integrált áramkör) több processzor magot helyeztek el. Ahogy

korábban már szó esett róla, ez azért vált lehetővé, mert az integrált áramkörökben

kialakított tranzisztorok mérete fokozatosan csökkent, így egyre több tranzisztort lehetett

egy adott méretű IC-ben kialakítani (Moore törvény).

A többmagos processzorok megjelenését követően a processzor szó túlterhelté vált, mert

ez jelentheti magát az IC-t is és a benne lévő magokat is. Ebben a jegyzetben én az IC-re

mikroprocesszorként, vagy csak processzorként hivatkozok.

A többmagos mikroprocesszorok megjelenése nagy változást hozott nem csak a

tervezőmérnökök, de a szoftverfejlesztők életében is. Ugyanis a több processzor mag

megjelenésével a processzor párhuzamosan több feladaton is tudott dolgozni, így az

áteresztőképessége drasztikusan növekedett. Viszont egy adott tesztprogram

végrehajtási ideje (válaszidő) nem feltétlenül javult egy egymagos processzorhoz

képest. Annak érdekében, hogy a programok ki tudják használni a rendelkezésre álló

processzor magokat, a programot párhuzamosítani kell. Ahhoz, hogy ezt megtegyük

tisztában kell lenni a párhuzamos programozási technikákkal. Ezen felül, ideális esetben,

egységesen kellene megosztani a feladatokat a processzor magok között ahhoz, hogy a

párhuzamosítás számottevően csökkentse a program végrehajtási idejét. Erre egy jó

analógia, Patterson és Hennessy könyvéből [1] a 8 riporter példája, akik egy közös cikken

dolgoznak. Azt gondolnánk, hogy mivel nyolcan írják a cikket, ezért nyolcszor gyorsabban

fog elkészül, mintha csak az egyikük dolgozna rajta. Ehhez arra van szükség, hogy a

feladatot nyolc egységes részre osszák szét ahhoz, hogy mindenki párhuzamosan tudjon

haladni a saját feladatával. De mi van, ha az egyik lassabb, mint a többiek? Ha csak egy is

nem készül el időben, akkor a cikk megjelenése késni fog. Egy másik lehetséges probléma,

26

ha a riporterek túl sokat kommunikálnak egymással, mivel ez is lassítja a feladat

befejezését.

Tegyük fel, hogy a párhuzamos programozás specialistája vagy. Sajnos még ebben az

esetben sem biztos, hogy előnyödre tudod fordítani a mikroprocesszorban helyet foglaló

több processzor magot, mivel lehet, hogy a programkódod túlnyomó többsége nem

párhuzamosítható. Ha számszerűsítve szeretnénk vizsgálni azt, hogy egy adott

tesztszoftver esetében a processzor magok számának növelése milyen sebességjavulást

eredményez, akkor az Amdahl törvényt kell alapul venni. Viszont ebben a jegyzetben,

ezzel nem fogunk foglalkozni.

27

10. ARMv7 programozási modell

Programozóként azt reméljük, hogy a szoftverfejlesztést valamilyen magas szintű

programozási nyelvvel végezhetjük. De, ha a szoftver futásának a sebessége is fontos

tényező, akkor ismernünk kell a szoftvert futtató architektúrát is. Az architektúra a

processzor utasításkészletét és az operandusok elhelyezkedését (konstans, regiszter,

memória) határozza meg. Sokféle architektúra létezik, például: ARM, x86, MIPS, RISC-V.

Egy ide kapcsolódó másik fontos fogalom a mikroarchitektúra, ami a hardveres

megvalósítását jelenti egy adott architektúrának. Vegyük például az x86 architektúrát, amit

két nagy cég is gyárt, az Intel és az AMD. Habár a két cég processzorainak architektúrája

megegyezik, de a mikroarchitektúra eltérő.

Ebben a fejezetben az ARMv7 architektúrát fogom használni annak szemléltetésére, hogy

a C-ben megírt programok hogyan lesznek lefordítva Assembly utasításokra. Az Assembly

utasítások felfoghatóak úgy, mint az architektúra utasításkészletének programozóbarát

leírása, ahol rövid, könnyen megjegyezhető kulcsszavakkal hivatkoznak az elemi

utasításokra. Habár ez alacsony szintű programozást tesz lehetővé, de még így is egy

magasabb szintű absztrakciót biztosít, mint a gépi kódokkal történő programozás. Az

architektúrától függetlenül, az assembly nyelvek általában soronként egy utasítást

tartalmaznak. Ezen felül, a memóriahelyekre hivatkozó címkék az első oszlopban

kezdődnek, míg az utasítások a második oszlopban vagy azt követően kell kezdődniük. A

megjegyzések egy kijelölt megjegyzéskaraktertől (ARM esetén ;) a sor végéig tartanak.

Az ARM architektúrát az 1980-as években fejlesztette ki az Advanced RISC Machines cég,

amit ma ARM Holdings néven ismerünk. Az elmúlt években ARM processzorokból adtak

el a legtöbbet. Például 2023-ban több, mint 28 milliárd ARM processzorral ellátott chipet

értékesítettek. Szinte minden mobiltelefonban és táblagépben ARM processzormagok

találhatóak. Egy durva becslés szerint az emberek több mint 75%-a használ ARM

processzorral rendelkező termékeket a mindennapokban. De természetesen nem csak az

okos eszközökben vannak ARM processzorok, hanem a beágyazott rendszerek

vezérlőegységeiben is és így megtalálhatók a kamerákban, robotokban, autókban,

játékgépekben stb.

28

Függetlenül attól, hogy milyen architektúráról van szó, a tervezőknek közös céljuk van:

olyan architektúrát találni, amely megkönnyíti a hardver és a fordítóprogram felépítését,

miközben maximalizálja a teljesítményt és minimalizálja a költségeket, valamint az

energiafogyasztást. A világhírű John L. Hennessy és David A. Patterson a [1] könyvükben

négy processzor tervezési alapelvet vezetett be:

1. A szabályszerűség egyszerűsíti a tervezést

2. A gyakori feladatok legyenek gyorsak

3. A kisebb gyorsabb

4. A jó terv kompromisszumokat igényel

Most nézzük meg, hogy ezek a tervezési alapelvek mit jelentenek a gyakorlatban. Az első

megértéséhez kezdjük a lenti egyszerű mintakóddal. A jegyzetben a mintakódok minden

esetben úgy lesznek megadva, hogy a bal oldalon lesz egy C-ben megírt kódrészlet, míg a

jobb oldalon, ennek a kódrészletnek az Assembly szintű megvalósítása az ARMv7

architektúrán.

a = b + c; ADD a, b, c

A fenti C kódban csak két operandusunk van (b, c), ezért ezt egyetlen ADD utasítással meg

tudjuk valósítani Assembly utasítások szintjén. Az ADD utasításban az első paraméter a

célváltozó, míg a további kettő a két operandus. Nézzünk egy másik példát:

a = b - c; SUB a, b, c

Itt ismét két operandusunk van, amelyek között kivonást végzünk. Ezt a műveletet is

egyetlen elemi utasítással el tudjuk végezni. Kérdezhetnénk, hogy hogyan jelenik meg

ezekben a példákban a szabályszerűség? Hát úgy, hogy minden egyes aritmetikai utasítás

csak egyetlen műveletet végez el és az utasítás formátuma konzisztens. Az utasítás

„kulcsszóval” kezdődik, majd ezt követi a cél regiszter (ahová az eredményt tároljuk) és

végül az operandusok következnek. Ez a kötött formátum megkönnyíti az utasítás

kódolását és a hardveres megvalósítást. Az egyszerűség kedvéért most az Assembly

utasításokban is ugyan azok a változónevek szerepelnek, mint a C kódban. A későbbi

mintakódokban ezek helyét regiszterek veszik át.

Ha több operandusunk is van, akkor azt több elemi utasítás felhasználásával lehet alacsony

szinten megvalósítani hasonlóan, mint azt a lenti példakód is mutatja.

29

a = b + c + d; ADD t, b, c

ADD a, t, d

Ebben a példában három operandussal végzünk összeadást, amit két elemi utasítással

lehet megvalósítani. Ez az egyszerű mintakód jó szemléltetés a 2. processzortervezési

alapelvre, ami azt mondja, hogy a gyakori feladatok legyenek gyorsak. A RISC

architektúrájú processzorok (beleértve az ARM-ot) utasításkészlete csak egyszerű,

gyakran használt utasításokat tartalmaz. Ennek köszönhetően az utasítások dekódolására

és végrehajtására szolgáló hardver egyszerű és gyors. Ez egyben azt is eredményezi, hogy

az összetettebb utasítások (amelyek ritkábban fordulnak elő) több egyszerű utasítással

valósíthatóak meg.

Az architektúrával kapcsolatban egy fontos kérdés, hogy hol tárolódnak az operandusok?

Erre három lehetőség van: a memóriában, regiszterben vagy ha konstansról van szó, akkor

az utasítás gépi kódjában. Az ARMv7 kevés belső regiszterrel rendelkezik, mindössze 16-

tal. Mivel egy 32-bites architektúráról van szó, így a regiszterek mérete 32-bit. Tehát a

processzor és a fizikai memória 32-bites blokkokban (szavakban) tud kommunikálni

egymással.

Egy processzor a belső regisztereit éri el a leggyorsabban, sokkal kevesebb idő alatt, mint

a fizikai memóriát. De akkor felvetődhet a kérdés, hogy miért csak 16 van belőle. Erre a 3.

processzor tervezési alapelv szolgál magyarázatul, ami azt mondja, hogy a kisebb

gyorsabb. Mivel kevés regiszter van, ezért a címdekódoló áramkör egyszerű és így a

regiszterek címzése ideje rövid. Ezen felül, azzal is számolni kell, hogy ha több regiszter

van, akkor több bitre van szükség a regiszterek beazonosításához az utasítások gépi

kódjában. Erről később lesz szó részletesebben. A 2. táblázat egy összefoglalást ad a

regiszterek felhasználási lehetőségeiről. A regiszterekre az R karakterrel és az azt követő

index-el hivatkozunk. Az indexelés 0-tól kezdődik.

A programozási modell megszabja, hogy mely regiszterekben lehet átadni paramétert

függvényhíváskor (R0-R3) és melyik regiszterben kell lenni a visszatérési értéknek (R0). Az

is szabályozva van, hogy mely regiszterek tartalmát kell elmenteni (R4-R11), ha azt egy

függvényben is használni akarjuk adattárolásra. Végül az utolsó három regiszter speciális

célú és nem használjuk őket változók tárolására. Ezek közül az utolsó (R15) a jól ismert

30

programszámláló (PC), ami a következő, végrehajtandó utasítás memóriacímét

tartalmazza.

Miután megismertük a regisztereket, célszerű pontosítani a korábban használt

mintakódokat, ahol az elemi utasításokban is változóneveket használtunk. A változók

regiszterekben lesznek tárolva, így az egyik korábbi mintakódunk helyes alakja lent,

látható, ahol a változókat tároló regiszterek jelentek meg az utasításban. A regiszterekben

tárolt értékekről, a pontosvesszővel kezdődő komment sor ad információt.

a = b + c; ;R1=a, R0=b, R2=c

ADD R1, R0, R2

Regiszter

Felhasználás

R0 Argumentum, ideiglenes

változó, visszatérési érték

R1-R3 Argumentumok,

ideiglenes változók

R4-R11 Tárolt változók

R12 Ideiglenes változó

R13 Verem mutató

R14 Link regiszter

R15 Program számláló (PC)

2. táblázat. Regiszterek és azok funkciója.

Az utasítások második operandusa azonban nem csak regiszter lehet, hanem egy konstans

érték is. Az elemi utasításokban a konstansokat # jelöli és ezt követi a konstans értéke,

amit több számrendszerben is megadhatunk. Példaként vegyük a lenti kódrészletet, ahol

a második operandus konstans és az értéke 16-os számrendszerben van megadva. A

konstansnak az a sajátossága, hogy magában a gépi kódban van elhelyezve, ezért nem kell

a memóriából áttölteni valamelyik regiszterbe, hanem azonnal elérhető.

a = b + 8; ADD R0, R1, #0x10

31

Egy programokban rendszerint sokkal több változó van, mint a rendelkezésre álló

regiszterek száma. Az ARM egy betölt-visszatölt alapú architektúra, ami annyit jelent,

hogy az operandusokat először be kell tölteni a processzor regisztereibe, majd az

eredményt vissza kell tölteni a memóriába. Tehát a változókat (operandusokat) a fizikai

memóriában (az egyszerűség kedvéért csak memóriaként hivatkozok rá a későbbiekben)

kell tárolni és mielőtt a processzor valamilyen műveletet hajtana végre vele, először azt be

kell olvasni valamelyik regiszterbe. A memória nagy kapacitású, de lassú. Könnyű

elképzelni, hogy ha sokszor kell a memóriából adatot olvasni vagy visszaírni, az

számottevően lassítja a program futását. Az optimális az lenne, ha a gyakran használt

változók tovább maradnának a regiszterben ezzel csökkentve a memóriaolvasó

utasításokat. Ennek a feladatnak a megoldását tipikusan a fordítóprogramra bízzuk.

Az ARM bájtonként címezhető memóriát hasznát (7. ábra). Mivel egy 32-bites

architektúráról van szó, így itt az adatszóhossz is 32-bit, azaz 4 bájt.

7. ábra. A fizikai memória felépítésének szemléltetése.

Mivel a memória bájtonként címezhető, ezért arra is van lehetőségünk, hogy csak egy

adott bájtját olvassuk vagy írjuk felül egy adatszónak. Az architektúra ehhez dedikált

utasításokat is biztosít. Mivel minden bájtnak saját memóriacíme van és az adatszavak 4

bájt szélesek, ebből az is következik, hogy a szomszédos adatszavak közötti memória

címtávolság is 4. Vegyük példaként a 2. adatszót (az indexelés 0-tól kezdődik), aminek a

címe 0x08 vagy a 8. adatszórt, aminek a címe 0x20.

Az általunk vizsgált architektúrában, a memória adatszavainak olvasására az LDR (load

register) utasítás áll a rendelkezésünkre. Ennek szemléltetésére vegyük a lenti példát, ahol

a memória 0x08-as címéről olvasunk be egy adatszót az R3-as regiszterbe:

32

MOV R2, #0

LDR R3, [R2, #0x08]

Az első utasítás egy MOV, ami adatot mozgat egy regiszterbe. Jelen példában a konstans

0-át írjuk bele az R2-es regiszterbe. Ezt követi az LDR utasítás, aminek három

argumentuma van. Az első az a regiszter, amibe a memória adatszavát fogjuk letárolni. Az

azt követő további két argumentum a memória címének meghatározására szolgál. Ezek

közül az első (R2) egy úgynevezett bázis regiszter, a második (0x08) pedig egy eltolás

érték. Ezek alapján a tényleges memóriacímet az összegük adja (R2 + 0x08). Bármelyik

regiszter használható bázisregiszterként, míg az eltolás értéke lehet konstans vagy egy

másik regiszter tartalma. A fenti példában egy „alacsony” memóriacímről olvastunk be

információt az R3-as regiszterbe, amit egy konstans értékkel is meg lehetett adni. Ezért

nem volt szükség a bázisregiszter tartalmának felhasználására és ez az oka, hogy nulláztuk

a bázisregisztert. Itt is igaz, hogy a konstans érték az LDR utasítás gépi kódjában tárolódik,

de ez limitet is szab a konstans nagyságára. Ha egy nagy értékű memóriacímről akarunk

információt beolvasni, akkor az a cím már nem fér bele egy konstansba és ekkor már a

bázis regiszter tartalmára is támaszkodni kell.

Az LDR-hez hasonlóan működik az STR (store register) utasítás is, ami egy regiszter

tartalmát tölti be az utasításban megadott memóriacímre. Nézzünk erre is egy példát:

MOV R2, #0

STR R1, [R2, #0x34]

A példában az STR utasítás az R1-es regiszter tartalmát tölti be a memória 12. adatszavába,

aminek a memóriacíme 52 (0x34). Figyeld meg, hogy a címszámítás mechanizmusa itt is

ugyan úgy működik, mint az imént látott LDR utasításnál. Az ARM memória író és olvasó

utasításai nem hivatkoznak közvetlenül a főmemória címeire, mivel egy 32 bites cím nem

fér bele az utasítás 32-bites gépi kódjába. Ehelyett indirekt címzést használnak, amely

során egy regiszterben tárolt értéket (esetleges eltolással) használnak memóriacímként.

Az imént láttuk a két legfontosabb adatmozgató utasítást. Ezeken kívül számos egyéb

utasítást áll a programozó rendelkezésére. Az utasítás funkcionalitása alapján három

kategóriába lehet sorolni őket:

1. Adatfeldolgozó

2. Adatmozgató (vagy memória)

33

3. Elágaztató

Ezek közül az adatfeldolgozó utasítások csoportjába tartozik a legtöbb utasítás beleértve

az aritmetikai utasításokat, a logikai utasításokat és a shift utasításokat (ami magába

foglalja a forgatást is). A 3. táblázatba összegyűjtöttem a fontosabb adatfeldolgozó

utasításokat, amiket érdemes megjegyezni, mert később szükség lesz rájuk. Ezeknek az

utasításoknak az első argumentuma kötelezően regiszter, míg a második (ha van) lehet

regiszter és konstans is.

A logikai utasítások közül az AND és ORR a jól ismert logikai ÉS illetve VAGY műveleteket

végzi el az operandusok bitjei között és ez kerül a célregiszterbe (első argumentum). Az

EOR utasítás XOR műveletet hajt végre, amit már szintén tanultál digitális technikán. Az

MVN (move and not) is egy jól ismert műveletet fog végrehajtani és ez az invertálás. Végül

a BIC utasítás maradt a logikai utasítások kategóriájából, ami a háttérben logikai és

műveletet hajt végre, annyi eltéréssel az AND utasításhoz képest, hogy a második

operandust invertálja, mielőtt végrehajtja a logikai ÉS műveletet az operandusok között.

Kategória

Utasítás

Logikai utasítások

AND Ra, Rb, c

ORR Ra, Rb, c

EOR Ra, Rb, c

BIC Ra, Rb, c

MVN Ra, Rb

Shift utasítások

LSL Ra, Rb, c

LSR Ra, Rb, c

ASR Ra, Rb, c

ROR Ra, Rb, c

Aritmetikai

utasítások

ADD Ra, Rb, c

SUB Ra, Rb, c

MUL Ra, Rb, c

3. táblázat. Adatfeldolgozó utasítások fiktív argumentumokkal.

A shift utasításkategóriába 4 utasítás tartozik. Ezek közül az első kettő a logikai balra

shiftelés (LSR) és a logikai jobbra shiftelés (LSR). A jobbra shiftelésnek elérhető az

aritmetikai párja is, amit az osztás művelet helyettesítésére is használhatunk, amennyiben

34

az osztó kettő hatványa. Végül egy forgatás művelet is elérhető (ROR), ami egy regiszter

bináris tartalmát jobbra forgatja az utasításban megadott bitmennyiséggel. Amennyiben a

shift mennyisége konstanssal van megadva az utasításban, az legfeljebb 5-bites lehet. De

ha belegondolunk, akkor nincs is szükség 5-biten túlnyúló értékre. Ha egy regisztert 32

bittel forgatsz el jobbra, akkor visszakapod az eredeti értéket, ha 33-mal forgatod jobbra,

akkor az ekvivalens azzal, mintha csak 1-bittel forgattad volna balra. Mivel 5-biten a

legnagyobb tárolható érték 31, így ezzel az összes lehetséges forgatási lehetőséget elő

lehet állítani.

Az aritmetikai utasítások közül csak hármat említettem meg a 3. táblázatban. Az ADD és

SUB utasításokról már korábban volt szó, így most csak a MUL utasítással foglalkozunk. A

MUL szorzást végez két 32 bites operandussal és az eredményt 32-biten tárolja. Ennek csak

az a szépséghibája, hogy két 32-bite szám szorzata akár 64-bites is lehet. Ennek alapján,

64 bitre van szükség az eredmény veszteség mentes (megbízható) letárolásához. Mivel a

MUL utasítás csak 32 biten tárolja az eredményt, így csak azokban az esetekben lehet

használni, amikor biztosak vagyunk abban, hogy a szorzás eredménye 32-bitbe belefér. Ha

a szorzás eredménye nem fér bele 32 bitbe, akkor az UMUL (unsigned) vagy az SMUL

(signed) utasításokat lehet használni. Mindkét utasítás 64 biten tárolja az eredményt, ami

azzal is jár, hogy nem három, hanem négy argumentuma lesz az utasításnak (UMULL R1,

R2, R3, R4). Ezek közül az első két regiszterbe fog az eredmény tárolódni, míg az utolsó

kettő lesz a két operandus.

A programkódok nem mindig akarjuk szekvenciálisan (egymást követően sorról sorra)

végrehajtani. Például a jól ismert programozási sémáknál, mint az elágaztatások vagy a

ciklusok csak akkor fogunk végrehajtani egy adott kódblokkot, ha egy feltétel igaz. Az

általunk vizsgált ARM architektúra feltételes kapcsolókat használ annak eldöntésére, hogy

egy utasítást végre kell hajtani vagy sem. A feltételes kapcsolók összefoglalása a 4.

táblázatban tekinthető meg.

Ezek a feltételes kapcsolók a processzor aritmetikai-logikai egysége (ALU) által

generált jelzőbitek (N, Z C, V) alapján értékelődnek ki. A negatív (N) bit akkor vesz fel

1-es értéket, ha az eredmény negatív, kettes komplemens ábrázolást használva. A nulla (Z)

bit akkor lesz 1-es, ha az eredmény minden bitje nulla. Az átvitel (C) bit akkor lesz beállítva

(1), ha a művelet során carry érték generálódik. Végül, a túlcsordulás (V) bit akkor lesz

beállítva, ha egy aritmetikai művelet túlcsordulást eredményez. Ez tipikusan akkor fordul

35

elő, ha azonos előjelű operandusokkal végzett műveletet követően az eredmény előjele az

operandusokétól eltérő.

Kód Kapcsoló Megnevezés Feltétel

0000 EQ Egyenlő 𝑍

0001 NE Nem egyenlő 𝑍̅

0010 CS / HS Carry 1 / Előjel nélküli nagyobb

egyenlő

𝐶

0011 CC / LO Carry 0 / Előjel nélküli kisebb 𝐶̅

0100 MI Negatív 𝑁

0101 PL Pozitív 𝑁̅

0110 VS Túlcsordulás 𝑉

0111 VC Nincs túlcsordulás 𝑉̅

1000 HI Előjel nélküli nagyobb mint 𝑍̅𝐶

1001 LS Előjel nélküli kisebb egyenlő 𝑍 𝑂𝑅 𝐶̅

1010 GE Előjeles nagyobb egyenlő 𝑁 ⊕ 𝑉

1011 LT Előjeles kissebb mint 𝑁 ⊕ 𝑉

1100 GT Előjeles nagyobb mint 𝑍̅(𝑁 ⊕ 𝑉)

1101 LE Előjeles kisebb egyenlő 𝑍 𝑂𝑅 (𝑁 ⊕ 𝑉)

1110 AL Nincs feltétel -

4. táblázat. Feltételes kapcsolók.

A korábban bemutatott 16 regiszteren túl, a programozási modell másik fontos

alapregisztere az aktuális programállapot-regiszter (CPSR). A CPSR legfelső négy

bitjében van letárolva az imént említett ALU jelzőbitek aktuális állapota. Ezeket a biteket

kétféleképpen lehet frissíteni. Az egyik lehetőség, hogy az adatfeldolgozó utasításokat

kibővítjük az S kapcsolóval, ami „kényszeríti” az ALU-t a jelzőbitek frissítésére. Például az

ADD R1, R2, R3 utasítás elvégzi az összeadást (R1 = R2 + R3), de a jelzőbiteket nem

frissíti az összeadás eredménye alapján. Viszont, ha az ADD utasítást kibővítjük az S

36

kapcsolóval (ADDS R1, R2, R3), akkor ez az utasítás már a jelzőbiteket is frissíti azon

felül, hogy ugyan úgy elvégzi az összeadást. Minden adatfeldolgozó utasítás frissíti az N

és Z jelzőbiteket az eredménytől függően. A shift műveletek az N és Z mellett a C jelzőbitet

is, míg az aritmetika utasítások a V bitet is frissítik.

Az ALU jelzőbitjeinek frissítésére egy másik lehetőség a CMP (compare) utasítás

használata, aminek két operandusa van és nincs célregisztere. Ahogy a neve is jelzi, az

utasítás két értéket hasonlít össze, ami gyakorlatilag egy kivonást jelent és ennek

eredménye alapján állítódnak be a jelzőbitek. Hogy teljes legyen a kép a feltételes

kapcsolók működéséről, vegyünk egy példát, ahol tudjuk, hogy az R3-ban tárolt érték 18,

míg az R4-ben tárolt érték 20:

CMP R3, R4

SUBEQ R1, R2, R0

ORRMI R2, R5, R6

A fenti példában, mivel tudjuk R3 és R4 tartalmát, így meg tudjuk határozni, hogy mi lesz

a CMP utasításnál kapott eredmény (18 – 20 = -2) és ennek alapján a jelzőbitek értéke (N=1,

Z=0, C=0, O=0). Ha tudjuk a jelzőbitek értékeit, azt is el tudjuk dönteni, hogy a két

feltételes utasítás végrehajtódig vagy sem. A SUBEQ utasítás kapcsolója az EQ, ami akkor

teljesül, ha Z = 1. Ebben a példában ez nem teljesül, ezért ez az utasítás nem lesz

végrehajtva. A következő utasításnál a feltételes kapcsoló az MI, ami N = 1 esetén teljesül,

ezért a példában szereplő ORRMI végre lesz hajtva.

Most már ismered az alapvető adatmozgató és adatfeldolgozó utasításokat. Az utasítások

harmadik csoportja az elágaztató utasításoké, ahol mindösszesen csak két utasítást kell

megismerned. Ahogy a csoport elnevezése is jelzi, ezek az utasítások lehetővé teszik a

sorrenden kívüli utasításvégrehajtást. Ez egyszerűen azt jelenti, hogy a programkód adott

pontjáról, a vezérlés át tud ugrani egy másik pontra és onnan folytatódik az

utasításvégrehajtás. A két utasítás, amivel foglalkozni fogunk az a B és a BL. A B egy

elágaztató vagy más szóval ugró utasítás, ami lehet feltételes, amennyiben feltételes

kapcsolót társítunk hozzá. A BL is egy elágaztató utasítás, amit majd függvényhívásra

fogunk használni. Először a B utasítással foglalkozunk, ami működési elvben megegyezik

a goto utasításéval a C programozási nyelvből. Nézzünk egy ide vágó példát:

MOV R0, #12

37

B TARGET

AND R1, R2, #3

TARGET

SUB R1, R2, R3

A fenti példában a B utasítás argumentuma egy címke, ami valójában egy memóriacímet

jelent. Azt a memóriacímet, ahová át kell helyezni az utasítás végrehajtást. A példában egy

feltétel nélküli ugrás történik a B TARGET utasítás végrehajtása után és ezt követően a

következő utasítás, a SUB R1, R2, R3 lesz. Tehát az ugró utasítást követő AND utasítás

soha nem lesz végrehajtva. Nézzük egy másik példát is, ahol az ugrás feltételhez kötött:

MOV R0, #4

ADD R1, R0, R0

CMP R0, R1

BEQ TARGET

ORR R1, R1, #1

TARGET

ADD R1, R1, 78

Ebben a példában az EQ kapcsoló miatt, az ugrás akkor fog végrehajtódni, ha az R0 és az

R1-es regiszterekben ugyan az az érték van. Ekkor ugyanis a CMD által végzett kivonás

eredménye 0, így Z=1.

Felmerülhet a kérdés, hogy mire lehet a gyakorlatban használni a feltételes ugrásokat?

Valójában ezek szolgáltatják az alapját, a magas szintű programozási nyelvek

elágaztatásainak, ahol el kell dönteni, hogy végrehajtódik egy adott kódblokk vagy sem. A

most következő példák szemléltetni fogják, hogy hogyan lehet Assembly utasítások

szintjén megvalósítani a magasszintű programozási nyelvekben megszokott programozási

szerkezeteket. Kezdjük egy egyszerű if feltétellel, ahol nincs else ág:

if (i == j)

 f = g + h;

f = f – i;

;R0=f, R1=g, R2=h, R3=i, R4=j

 CMP R3, R4

 BNE L1

38

 ADD R0, R1, R2

 L1

 SUB R0, R0, R2

A C kódban, a feltétel azt vizsgálja, hogy az i változó értéke megegyezik-e a j változó

értékével. Ha megegyezik, akkor a feltétel igaz és az if blokkhoz tartozó programkód lefut.

Ezzel szemben az Assembly utasításoknál azt vizsgáljuk, hogy az i értéke eltér-e a j

értékétől! Figyeld meg, hogy a jobb oldali kódnál először a CMP utasítás kivonja j értékét i-

ből (R3 és R4 regiszterek), majd ezt követi egy ugró utasítás, amelynél az NE feltételes

kapcsolót használjuk. Ez a feltétel akkor teljesül, ha az előző kivonásnál a két operandus

nem egyenlő, mert így az eredmény nem nulla, tehát a Z=0. Összegezve azt mondhatjuk,

hogy a C kódnál azt vizsgáljuk, hogy mikor kell végrehajtani a kódblokkot, míg az

Assembly programkódban, ennek a fordítottját. Azt, hogy a kódblokkot mikor kell átugrani.

Az előző C programkódot másként is át lehet fordítani elemi utasításokra. Erre mutat

példát a következő kódrészlet:

if (i == j)

 f = g + h;

f = f – i;

;R0=f, R1=g, R2=h, R3=i, R4=j

 CMP R3, R4

 ADDEQ R0, R1, R2

SUB R0, R0, R2

A fenti példában kevesebb utasításra volt szükség, mint az előző esetben, ezen felül, nincs

benne ugró utasítás, ami tipikusan több órajelciklust igényel a végrehajtáshoz, mint más

adatmozgató utasítások. Itt azt használtuk ki, hogy az if blokkja csak egyetlen utasítást

foglal magába, így elég csak ennek az egy utasításnak a végrehajtását feltételhez kötni,

amit könnyen meg tudunk tenni a megfelelő feltételes kapcsoló használatával. Ez a két

példakód arra is rávilágít, hogy ugyan azt a magas szintem megírt programkódok több

alternatív módon is meg lehet valósítani elemi utasításokkal. Ezt alapul véve, a

fordítóprogramokat is lehet konfigurálni, hogy végrehajtási sebességre legyen

optimalizálva a lefordított program. Most bővítsük ki az előző C programkódot egy else

ággal:

39

if (i == j)

 f = g + h;

 else

 f = f – i;

 CMP R3, R4

 BNE L1

 ADD R0, R1, R2

 B L2

 L1

 SUB R0, R0, R2

 L2

Az átfordított alakban a feltétel vizsgálata ugyan úgy történik, mint a korábbi példakódnál.

Viszont, most egy feltétel nélküli ugrás zárja az if blokkot (B L2), ami arra kell, hogy

amennyiben az if feltétele teljesül, akkor az else ág kódblokkja már ne legyen

végrehajtva és azt ugorjuk át. Ha viszont a feltétel nem teljesül, akkor a feltételes ugrásnak

az else blokk elejére kell ugrani és azt kell végrehajtani.

Most már láttál példákat arra vonatkozóan, hogy hogyan lehet az elágaztatásokat elemi

utasításokkal megvalósítani. Ez után jöjjenek a ciklusok. Először kezdjük egy while

ciklussal:

 int pow = 1;

 int x = 0;

 while (pow != 128){

 pow = pow * 2;

 x = x + 1;

 }

 MOV R0, #1

 MOV R1, #0

 WHILE

 CMP R0, #128

 BEQ DONE

 LSL R0, R0, #1

 ADD R1, R1, #1

 B WHILE

 DONE

A fenti példakódban két változónk van, amit az R0 és R1 regiszterekben tárolunk. Figyeld

meg itt is, hogy míg a C kódban a while ciklus addig fog lefutni, amíg a pow változó nem

40

lesz egyenlő 128-cal, addig az elemi utasítások szintjén azt vizsgáljunk, hogy ez mikor lesz

egyenlő 128-cal (ismét az EQ kapcsolót használjuk), mert ekkor kell befejezni a ciklust a

feltételes ugrással. Különben maradunk a ciklusban és lefut a ciklus magja. Figyeld meg,

hogy a kettővel való szorzást egy logikai balra shifteléssel váltottunk ki, majd növeltük x

értékét eggyel. Végül a feltétel nélküli ugrás zárja a while blokkot, ami visszaugrik a

feltételvizsgálathoz és az egész folyamat kezdődik az elejétől.

A másik ciklusszervezési lehetőség a for ciklus használata. Ez szintakszisban eltér a

while ciklushoz képest, mivel itt a for fejrészében nem csak egy feltételt adunk meg,

hanem bevezetünk egy ciklusváltozót is és azt is megadhatjuk, hogy a ciklusváltozó

hogyan legyen módosítva ciklusonként. Ennek ellenére az elemi szintű megvalósítása a

for ciklusnak logikailag meg fog egyezni a while ciklusnál látottal. Vizsgáljuk meg ezt is

egy példán keresztül:

 int i;

 int sum = 0;

 for (i=1; i!=10; i=i+1)

 sum = sum + i;

 ;R0 = i, R1 = sum

 MOV R0, #1

 MOV R1, #0

 FOR

 CMP R0, #10

 BEQ DONE

 ADD R1, R1, R0

 ADD R0, R0, #1

 B FOR

 DONE

Itt ismét két változónk van, amit mindkét kódrészletben az elején inicializálunk. A C

kódban a ciklusváltozónk az i, amit ciklusonként eggyel növelünk. A ciklus addig teljesül,

amíg az i nem egyenlő 10-zel. Hasonlóan, mint azt már korábban is láttad, ismét ennek a

fordítottját vizsgáljuk az elemi utasítások szintjén, azaz, ha az i értéke (R0) egyenlő 10-zel,

akkor lesz a ciklus megtörve a BEQ utasításnak köszönhetően. A ciklus blokkját itt is egy

41

feltétel nélküli ugrás zárja, hasonlóan, mint az előző példakódnál, ami visszaviszi a

vezérlést a for kezdetére.

Az elágazást és a ciklusokat követően most nézzük meg, hogy a tömbök kezelése hogyan

oldható meg elemi utasítások felhasználásával. A tömbökről tudjuk, hogy a C

programozási nyelvben nagy mennyiségű, azonos típusú adatok tárolására szolgálnak. Az

itt tárolt elemek az indexeik alapján érhetők el. Ahhoz, hogy az indexek alapján

egyértelműen meg lehessen határozni egy tömbelem memóriacímét, tudnunk kell a tömb

kezdőcímét is. A tömb címe megegyezik a 0. elemének a címével. Mivel az elemek

adattípusa kötött, így a tömb címétől kezdődően ki tudjuk számolni minden egyes

elemének a memóriacímét. Ennek szemléltetéséhez ismét nézzünk egy példát, ahol van

egy öt elemű int tömbünk és valahol a programkódban a tömb 0. és 1. elemét

megváltoztatjuk:

 int array[5];

 …

 array[0] = array[0] * 8;

 array[1] = array[1] * 8;

 ;R0 = array base address

 MOV R0, #0x60000000

 LDR R1, [R0]

 LSL R1, R1, 3

 STR R1, [R0]

 LDR R1, [R0, #4]

 LSL R1, R1, 3

 STR R1, [R0, #4]

A jobboldali programkód elején definiálni kell, hogy hol lesz a tömb kezdőcíme a

memóriában (R0). Ahhoz, hogy a tömb 0. elemét felülírjuk a korábbi érték nyolcszorosával,

először be kell tölteni a korábbi értéket egy regiszterbe. Ne felejtsd el, hogy a 0. elem címe

megegyezik a tömb címével, ezért az első LDR utasításban nincs szükség eltolásra. A 8-cal

(23) való szorzást itt is logikai balra shifteléssel oldottuk meg. Az új érték az R1 regiszterben

van, szóval ennek a tartalmát kell visszatölteni a tömb 0. elemének memóriacímére az STR

utasítással. Nem meglepő, hogy ugyan azt a címet használtuk az LDR és az STR

utasításoknál is, mivel ugyan oda kell visszaírni az új értéket, ahonnan a korábbit

kiolvastuk. Ugyan ezt a folyamatot kell elvégezni az 1. tömbelem módosítása során is,

42

annyi eltéréssel, hogy most a memóriacím meghatározásánál eltolás értéket is

alkalmazunk, ami 4. Ez az eltolásérték onnan ered, hogy az int típus 4 bájton tárolódik,

tehát az egymást követő tömbelemek közötti címtávolság is 4 lesz.

Most nézzünk egy kicsit összetettebb mintakódot, ahol egy tömb elemeit egy for

ciklusban frissítjük. A lenti kód egy 200 elemű tömb minden elemén végigmegy és 10-zel

növeli. Az elemi utasítások szintjén, a programkód elején ismét meghatározásra kerül a

tömb címe és a for ciklus felépítése is logikailag teljesen megegyezik azzal, amit korábban

láttunk. A ciklus elejét egy címke jelzi, azt követi a feltétel vizsgálat és a ciklus végén egy

feltétel nélküli ugrás visz vissza a ciklus kezdetéhez. A ciklus törzsében ismét ki kell olvasni

a tömb elemeit egyesével, majd a 10-zel megnövelt értéket vissza kell tölteni. Ebben a

mintakódban a legérdekesebb az, hogy hogyan számoljuk ki a tömbelemek címét. Ehhez

az R2-es regisztert fogjuk felhasználni és ebben tároljuk le a címszámításhoz szükséges

eltolás értéket. Az aktuális eltolás értéket az i * 4 szorzat adja, amit ismét logika shifteléssel

valósítottunk meg.

 int scores[200];

 int i;

 for (i=0; i < 200; i = i + 1)

 scores[i] = scores[i] + 10;

;R0 = array base address, R1 = i

 MOV R0, #0x14000000

 MOV R1, #0

 LOOP

 CMP R1, #200

 BGE L3

 LSL R2, R1, #2

 LDR R3, [R0, R2]

 ADD R3, R3, #10

 STR R3, [R0, R2]

 ADD R1, R1, #1

 B LOOP

 L3

43

10.1 Függvényhívás

Korábban említettem, hogy két ugró utasítást foguk használni ebben a jegyzetben. Ezek

közül az egyik a B utasítás, amivel már foglalkoztunk, míg a másik a BL, ami függvényhívást

tesz lehetővé. A BL utasításnak is egy argumentuma van, egy címke, ami a függvény

kezdetét jelöli. Azonban függvényhíváskor egy egyszerű elágazás nem elegendő, mert nem

tudnánk, hová térjünk vissza. A megfelelő visszatéréshez mentenünk kell a függvényhívást

követő utasítás címét (PC+4) a függvény meghívásakor, és amikor az befejeződött, a

mentett memóriacímet kell betölteni a PC-be. A mentés helye a Link (LR) regiszter, ami

az egyik speciális célú regiszter a 16 közül. A mentett memóriacím PC-be töltése a MOV

PC, LR utasítással könnyen megoldható. Ezért ezt az utasítást arra fogjuk használni, hogy

visszatérjünk a függvényből a hívóhoz.

Függvényhíváskor van néhány további szabály, amit be kell tartani. Az egyik, a függvény

lehetséges paramétereinek az elhelyezését köti meg. A paramétereknek az R0-R3

regiszterekben kell lenni. Továbbá, ha van visszatérési érték, akkor azt az R0 regiszterbe

kell tárolni. Ha a függvényen belül felhasználjuk az R4-R11 regisztereket, akkor azok

korábbi tartalmát meg kell őrizni és mielőtt a függvény visszatérne a hívóhoz, az eredeti

értékeiket vissza kell tölteni. Ez igaz lesz az LR regiszterre is. Most nézzünk egy példát arra

vonatkozóan, amikor a fenti megkötések nem teljesülnek:

 int main() {

 int y;

 ...

 y = diffofsums(2, 3, 4, 5);

 ...

}

int func(int f, int g, int h, int i){

 int result;

 result = (f + g) - (h + i);

 return result;

;R4 = y

MAIN

 ...

 MOV R0, #2

 MOV R1, #3

 MOV R2, #4

 MOV R3, #5

 BL FUNC

 MOV R4, R0

 ...

44

}

FUNC

 ADD R8, R0, R1

 ADD R9, R2, R3

 SUB R4, R8, R9

 MOV R0, R4

 MOV PC, LR

A fenti C programkódban van egy main függvényünk, amiből egy func nevű függvényt

hívunk meg. A hívott függvény négy paramétert kap, amelyekkel egyszerű aritmetikai

műveleteket végez. Az elemi utasítások szintjén, a függvényhívás előtt inicializáljuk a

paramétereket. A paraméterek az R0, R1, R2, és R3 regiszterekbe kerültek bele. Ezzel a

résszel nincs probléma, mert ezek a regiszterek dedikáltan használhatóak paraméter

átadásra. A BL FUNC utasítás után a végrehajtás a FUNC címkét követő utasítással

folytatódik. A függvényen belül (a FUNC címkét követő kódsorok) az R8, és R9

regisztereket használtuk fel az f+g és a h+i összegek ideiglenes tárolására. Majd ezt

követően, az R4-be tároltuk le a végeredményt. Mivel van egy olyan megkötés, ami azt

mondja, hogy a visszatérési értéknek az R0-ban kell lenni, ezért a MOV utasítással a

végeredményt R4-ből áthelyeztük az R0-ban.

A fenti mintaprogrammal több probléma is van. Az egyik kézenfekvő az, hogy a SUB R4,

R8, R9 utasításban az eredményt már azonnal lehetett volna az R0 regiszterbe is tárolni az

R4 helyett. Ezzel megspórolunk egy felesleges utasítást és az R4-es regisztert sem kell

használni. A másik probléma, hogy az R8 és R9 regisztereket felhasználtuk a függvényben,

de nem őriztük meg a tartalmukat. A kérdés az, hogy hol lehet ezeknek a regisztereknek

eltárolni az értékét? Ebben lesz segítségünkre a verem. A verem, a fizikai memóriában

helyezkedi el, annak egy dedikált része. A verem egy LIFO (last in first out)

adatszerkezet, ami annyit jelent, hogy a verembe utoljára letárolt adatszót tudjuk először

kivenni. A verem legfelső elemének a memóriacímét az SP (stack pointer) regiszter

tárolja. Az SP a 3. speciális célú regiszter a belső 16 regiszterből. Ha egy új adatszót

akarunk tárolni a veremben, annak először helyet kell csinálni. Mivel az ARM

architektúránál a verem mérete lefelé növekszik a fizikai memóriában, így a „helycsinálás”

a gyakorlatban az jelenti, hogy az SP értékét csökkentjük. Ha már nincs tovább szükség

egy veremben tárolt értékre, akkor annak a helyét fel kell szabadítani, nehogy kifussunk a

45

rendelkezésre álló memóriából. Most nézzük meg, hogy hogyan kellett vonal az előző

mintakódban az R8 és R9-es regiszterek értékét tárolni:

 FUNC

 SUB SP, SP, #8

 STR R9, [SP, #4]

 STR R8, [SP]

 ADD R8, R0, R1

 ADD R9, R2, R3

 SUB R0, R8, R9

 LDR R8, [SP]

 LDR R9, [SP, #4]

 ADD SP, SP, #8

 MOV PC, LR

Figyeld meg, hogy a fenti példában az első utasítás az SP értékét 8-cal csökkenti. Ezzel azt

értük el, hogy az SP egy 8 bájttal lejjebb lévő címre mutat (8. ábra). Ez a 8 bájt két

adatszóméretet ad ki, ahová az R8 és R9 regisztereket tároljuk el. A regiszterek tárolását

az STR utasítással oldottuk meg. Ezt követi a visszatérési érték kiszámítása, amit most már

azonnal az R0 regiszterbe tárolunk. Mielőtt visszatérnénk a hívóhoz a MOV PC, LR

utasítással, vissza kell helyezni a veremből R8 és R9 korábbi értékeit. Ezt az LDR utasítással

tettük meg, ahol a címbeállítás az SP tartalmához viszonyítva történt.

8. ábra. A verem tartalma a fenti mintakód futtatása előtt, közben és után.

A magasszintű programozási nyelvekben arra is van lehetőségünk, hogy egy függvényből

egy másik függvényt hívjunk. Az előző példában egyetlen levélfüggvényünk volt, ami

46

egy olyan függvényt jelent, amely nem hív meg további függvényt. Most nézzünk egy olyan

példát, ahol két függvényünk van és az egyik ciklikusan hívja a másikat:

int func1(int a, int b) {

 int i, x;

 x = (a + b)*(a − b);

 for (i=0; i<a; i++)

 x = x + f2(b+i);

 return x;

}

int func2(int p) {

 int r;

 r = p + 5;

 return r + p;

}

; R0=a, R1=b, R4=i, R5=x

FUNC1

 PUSH {R4, R5, LR}

 ADD R5, R0, R1

 SUB R12, R0, R1

 MUL R5, R5, R12

 MOV R4, #0

FOR

 CMP R4, R0

 BGE RETURN

 PUSH {R0}

 ADD R0, R1, R4

 BL FUNC2

 ADD R5, R5, R0

 POP {R0}

 ADD R4, R4, #1

 B FOR

RETURN

 MOV R0, R5

 POP {R4, R5, LR}

 MOV PC, LR

FUNC2

 PUSH {R4}

47

 ADD R4, R0, 5

 ADD R0, R4, R0

 POP {R4}

 MOV PC, LR

Először vessünk egy pillantást a C kódra, ahol feltételezzük, hogy valahol van egy main

függvény és onnan hívjuk meg a func1 függvényt. Ebben egy for cikluson belül kerül

meghívásra a func2 függvény, aminek egy paramétere van. Ami igazán érdekes, az a jobb

oldali kódrészlet, ahol két eddig még nem használt utasítás is megjelenik. Ezek a POP és a

PUSH, amik más processzor architektúráknál is gyakran elérhetőek. Segítségükkel a

regisztereket kompakt módon, a regiszterszámuk sorrendjében lehet menteni és

visszaállítani. A func1 kódrészlet egy PUSH utasítással eltárolja a verembe az R4, R5 és LR

regisztereket. Vedd észre, hogy most az LR regisztert azért kell tárolni, mert a func2

függvényhívás felülírja az LR tartalmát. Ha ezt nem mentjük el, akkor problémában

lennénk, amikor a func1 függvényből kell visszatérni a főprogramba, mert nem ismernénk

a visszatérési címet. A func2 meghívása előtt van még egy PUSH utasítás, ami az R0-t tölti

a verembe. Erre azért van szükség, mert az R0-R3 regisztereket a függvényen belül

szabadon lehet használni anélkül, hogy megtartanánk a korábbi értékét. Ez azt jelenti,

hogy ha a hívó oldalon ezekben a regiszterekben hasznos információ van, akkor a hívó

oldalon kell tárolni az értéküket és miután a függvény visszatért a hívóhoz, vissza kell

tölteni a korábban letárolt értéket. A fenti példakódban a func2 R0-ban tárolja a visszatérési

értéket, de R0 hasznos információt tartalmaz a func1 számára is, ezért már itt menteni kell,

mielőtt a func2-t meghívódna. Miután a func2 függvény visszatér, egy POP utasítás írja

vissza R0 korábbi értékét, ami a C kódban az a változónak felel meg. A func2-ben is van

egy PUSH és egy POP utasítás, amivel az R4 regiszter korábbi értékét őrizzük meg, mivel

az R4-et a func2 függvény ideiglenes tárolásra használta. Végül a func1 függvényben, a

visszatérés előtt a POP utasítással visszaállítjuk a korábban tárolt R4, R5 és LR regisztereket

és ezzel azt is biztosítjuk, hogy a megfelelő utasításhoz térjen vissza a func1 a

főprogramban.

A gyakorlatban még egy olyan probléma is felmerülhet, hogy nem négy, hanem annál több

argumentumot akarunk átadni egy függvénynek. Ez is megoldható. Ilyenkor az első négy

48

argumentumot, a már korábban ismertetett szabály alapján, az R0-R3 regiszterekbe kell

helyezni. A további argumentumokat a verem tetejére. Ezt a függvény is eléri és innen ki

tudja olvasni.

49

11. ARMv7 utasítás kódolás

Már tudod, hogy az Assembly utasításokat, az Assembler lefordítja gépi kódra, mivel a

processzor csak a bináris formában lévő gépi-kódokat képes megérteni. Az utasítások

kódolása azt jelenti, hogy a gépi-kódban hogyan írjuk le a processzor számára, hogy

pontosan milyen műveletet kell elvégeznie. A korábban bemutatott processzortervezési

alapelvek közül az első (a szabályszerűség egyszerűsíti a tervezést), az utasítások

kódolásánál is megjeleni. Az ARMv7 egy 32-bites architektúra, ahol minden utasítás 32-

biten van kódolva. Ez a 32 bit több részmezőre bomlik szét, ahol a mezők a többitől eltérő

információ tartalommal rendelkeznek az elvégzendő utasításról. A 32-bites érték mezőkre

történő felbontását, hasonló módon kell elképzelni, mint ahogyan egy csomag felépítését

a számítógépes hálózatoknál. Természetesen, a legjobb itt is az lenne, ha minden

utasításnál a 32-bit pontosan ugyan azokra a mezőkre bomlana szét, ugyan akkora

mérettel és elhelyezkedéssel. Sajnos ezt, az utasítások célja és eltérő igényei miatt nem

lehet megvalósítani. Az utasítások kódolása többnyire utasítás típusonként változik a RISC

processzoroknál, ami tervezéskor rugalmasságot biztosít. Itt jelenik meg az utolsó

tervezési alapelv, ami szerint a jó tervezés kompromisszumokat igényel. Habár a

különböző utasításformátumok bonyolítják a dekódolást, de lehetővé teszik az egységes

32 bites utasításméretet.

A jegyzetben tanult processzorarchitektúránál három utasításcsoportról volt szó:

adatfeldolgozó utasítások, memória utasítások és elágaztató utasítások. Először nézzük

meg a 9. ábrán, hogy az adatfeldolgozó utasításoknál milyen almezőkre bomlik fel az

utasítás kódolásához használt 32-bit.

9. ábra. Az adatfeldolgozó utasítások 32-bites gépi-kódjának mezői.

Balról jobbra féle haladva, az első a feltétel mező (cond), amely az utasításhoz társított

feltételes kapcsoló kódját tartalmazza, amennyiben az utasítás végrehajtása feltételhez

kötött. A következő a műveleti kód (op) mező, aminek az értéke 00 lesz az adatfeldolgozó

50

utasításokban. A harmadik a funkció mező (func), ami további három almezőre bomlik

szét, ahogy az a 10. ábrán is látható.

10. ábra. A funkció mező részei.

Az első almező egy bites (I) és azt jelzi, hogy az utasítás második operandusa konstans (1)

vagy regiszter (0). A cmd mező az utasítás azonosítója, ami az jelöli, hogy milyen

adatfeldolgozó utasítást kell elvégeznie a processzornak. Végül az S almező az utasításhoz

társítható S kapcsolónak a használatát jelöli. Emlékezz vissza, hogy ezzel a kapcsolóval

jelezzük, ha az ALU-nak frissítenie kell a jelzőbiteket az utasítás végrehajtását követően.

Ha az utasításban szerepel az S kapcsoló, akkor ennek az almezőnek az értéke 1, különben

0.

A soron következő mező a 4-bites Rn, ami a célregiszter indexét tartalmazza. A mező

mérete azért 4-bites, mivel összesen 16 regiszter van, így ezek bináris indexei 4-bitet

igényelnek. Az Rn mezőt az Rd követi, ami az első operandus indexe. Az első

operandusnak regiszternek kell lenni, így hasonlóan az Rd-hez ez a mező is egy

regiszternek az indexét tartalmazza. Végül az Src2 mező zárja a sort. Az eddigi információk

alapján könnyen ki lehet találni azt, hogy ez a mező a második operandusról hordoz

információt. Azon felül, hogy a második operandus lehet konstans és regiszter, az ARM

még azt is megengedi, hogy a regiszter tartalmának felhasználása előtt, még valamilyen

logikai utasítást végezzünk el rajta. Mivel több lehetőség is van a második operandus

megadására, ezért az Src2 mező több eltérő almezőre bomlik fel az operandus típusától

függően.

…

51

Irodalomjegyzék

[1]. D. A. Patterson, J. L. Henessy, Computer Organization and Design. The

hardware/software interface, ARM Edition. Morgan Kaufmann, 2017.

[2]. S. L. Harris, D. M. Harris, Digital design and computer architecture, ARM edition.

Morgan Kaufmann, 2016.

[3]. M. Wolf Computers as components. Principles of embedded computing system

design, 4th ed., Morgan Kaufmann, 2017.

