Algorithms
and basics of programming

Imre VARGA PhD

University of Debrecen, Faculty of Informatics

version 2.2.0
11 December 2024

Topics

How to describe and solve a problem?

What is algorithmic thinking?

What is an algorithm?

What kind of properties does it have?

How to represent an algorithm?

What does ‘program writing” mean?

Does programming require abstract thinking?
Examples, examples, examples...

And a lot of other things...

Poet vs Programmer

Good programmer:
language knowledge + algorithmic thinking
(appearance) (content)
To be, or not to be, that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep

William Shakespeare

same words
different meaning

Problem solving with computer

Closely related to software life cycle

Problem solving with computer

1: Problem definition

What is the task?
What is the unknown (required result)?

What is the relationship between the given/known
information and the unknown?

Is the given information enough to solve the problem?
The description of the problem must be precise
User and programmer must work together

It leads to complete specifications of the problem, the
input data and the desired output

2: Solution design

Definition of the outline of solution

Division of the original problem into a number of
subproblems

Subproblems are smaller and easier to solve
Their solution will be the components of our solution
,Divide and conquer”

Finally the problem will be converted to a plan of
well-known steps

3: Solution refinement

Previous step is in very high-level: no indication given
how subtasks are to be accomplished

Refinement is necessary by adding more details
Avoid any misunderstandings

A precise method consists of a sequence of
well-defined steps called an algorithm

Representation: pseudocode, flowchart, etc.

4: Testing strategy development

It is necessary to try the algorithm with several
different combinations of input data to make sure
that it will give correct results in all cases

These different combinations of input data are called
test case

It covers not only normal input values, but also
extreme input values to test the limits

Complete test cases can be used to check the
algorithm

5: Program coding and testing

Description of an algorithm in previous level cannot
be executed directly by computer

Translation needed to a programming language

After coding, the program must be tested using our
testing strategy

If an error has been discovered, appropriate revision
must be made, and then the test rerun until the
program gives the correct solution under all
circumstances

Process of coding and testing called implementation

6: Documentation completion

e Documentation begins with the first step of
development and continues throughout the whole
lifetime of the program

* [t contains:
— Explanations of all steps
— Design decisions that were made
— Occurred problems
— Program list
— User instructions
— etc.

/7: Program maintenance

The program can’t wear out
Sometimes the program may fail

The reason of a program fail is that it was never
tested for this circumstance

Elimination of newly detected error is necessary

Sometimes the users need new features to the
program

Update of documentations is needed

Solution refinement

The algorithm

Algorithm

Plan for performing a sequence of well-understood
actions to achieve the result in finite time.

The precise definition of the actions to be performed
to accomplish each task of solution design.

Some features:

* precise, unambiguous

» specified for all possible cases

e finite sequence of actions

* achieves the result

» efficiency, elegance, easy to use, ...

Representation of algorithms

Natural (spoken) human language
Flowchart

Pseudocode

Structogram (flowblock)

Graphs or plots

Algebraic

Data-flow diagram

Hierarchical

Tabular

Program language

Example

Function y=sign(x)

* Whatis it?

* What does it mean?
* What is the result?

e How is it work?

e How can we determine its value?
* If xis -4, what is the value of y?

y=sign(Xx)

Verbal (natural language) representation:

1. Ifinput value x is O, set the result to y=0.
2. Otherwise, if x>0, let the value of this function +1.
3. Elseif xisless than O, give the function -1.

y=sign(x)

Graph representation:

18

y=sign(Xx)

‘Algebraic-like’ representation:

xeR

ve{-1, 0, +1}

VX, x>0 = y=+1

VX, x<0 = y=-1
x=0 =y=0

y=sign(Xx)

Structogram representation:

x=0
yes no
x>0
y=0 YES no
y:+1 :-1

y=sign(Xx)

Flowchart representation:

y=sign(Xx)

Pseudocode representation:

1f x==0 then
v=0
else
1f x>0 then
v=+1
else
y=-1
endilf
endif

y = sign(x)

Representation by real programming language
(for example, in Python):

1f x ==
y = 0
else:
1f x>0:
y = +1
else:
y = -1

Components of flowcharts

Starting/finish point

Atomic instruction x=1

Input/output / my /[ouy /

Condition %@%

Inserting another algorithm | fx)=x»

We can go along arrows.

Base structures of algorithms

by flowcharts

Sequence Selection Iteration

CstartD CstartD

Task 2

v

false

condition

Task A Task|B

Modifying algorithms

Algorithms often go through many changes to be better.

* Generalizing:
making them applicable to more cases

* Extending:
to include new kind of situations

* Foolproofing:
making an algorithm more reliable, failsafe or robust

* Embedding:
re-using that algorithm within another algorithm

Generalizing algorithms

Original: Generalized:
/ Input: net / / Input: net, VAT /

gross=net*(100%+25%) gross=net*(100%+VAT)

/ Output: gross / / Output: gross /

Extending algorithms

Original: Extended:
/ In: hours, rate / true Boss? false
I !
salary=hours*rate / In: profit / / In: hours, rate /
| |
/ Out: salary / salary=profit/2 salary=hours*rate

e

Foolproofing algorithms

Original: Foolproofed:
CStart>
/ In: age / / In:iage /

true false
true ~7 .1g > false |

no

Y
/\lgut: child /Out: adullt/ /OUt: error /yes

age<18
A 2 \/ ¥
CEnd > / out: child / / Out: adult /

Embedding algorithms

Original:

y=abs(x) @

truefalse

y=-X y=+X

T

Embedded:

y=sign(x) @

n: X
true false

y=abs(x)
2 4

/ Out: x/y / / Out: 0 /
v v

T

Alternative algorithms

There are often many ways to achieve the same thing.

Algorithms can be different in structure, but they can be
equivalent in behavior.

It means for identical input data, they will produce
identical results.

Sometimes there is serious reason to prefer one
algorithm over the other, while sometimes there isn’t.

In some cases, one algorithm may be considerably
smaller, faster, simpler, or more reliable than another.

Alternative algorithms

y=sign(x)

Properties of algorithms

Complete:
all of actions must be exactly defined

Unambiguous:
there is only one possible way of interpreting actions

Deterministic:
if the instructions are followed, it is certain that the
desired result will always be achieved

Finite:
the instructions must terminate after a limited
number of steps

Wrong algorithms

How to get to the 5th floor from 2nd by elevator?
1. Call the 1lift.

2. Get 1in.

3. Push ‘5’ button.

4. Walit.

oO. If the door opens, get out.

Problems (not complete):
e If the lift goes downward...
* If the lift stops on 3rd floor for somebodly...

Wrong algorithms

How to make fried chicken?
1. Put the chicken into the oven.

2. Set the temperature.
3. Wait until 1t 1s done.
4 .

Serve 1t.

Problems (ambiguity):

 What is the optimal temperature (50°C or 200°C)?
* Is the chicken frozen or alive?

* Whenisit done?

Wrong algorithms

How to be a millionaire?
1. Buy a lottery.
2. Choose numbers.

3. Wait for prize or be sad.

Problems (stochastic, not deterministic):
 |n most of the cases we won’t be a millionaire.

* Not always works.

Wrong algorithms

How to use a bus?

1. Wait for the bus.

. Get on the bus.

. Buy a ticket.

. S1t down.

. Get out of the bus.

o s w N

Problems (infinite):
* |If we are not in a bus stop, bus won’t stop.

* |f we arein a building, bus will never arrive.

Crossing straight road on foot

Problems:
* Not complete

 Ambiguous

Modification:
* Generalizing

* Extending

* Foolproofing
* Completing

Create a more detailed algorithm.

Crossing straight road on foot

true Highway,

tunnel or
bridge?

Is near
,2ebra”?

Look for
other place

Look around

Is coming
vehicle?

true

Zebra-
crossing?

Go there!

Y
Wait it Go through
has gone Ed straightly!

false Is traffic

,Siren”
vehicle?

Y

Wait it
has gone

Is it blinking

Wait a bit

L

Logical operations and expressions

* Logical operations * Logical opposite
AND | false true If this is true, then it is false
false | false false = == =
true | false true < < >

> > <
OR false true

¢ = =
false | false true
true | true true = =7 >

> >= <
XOR | false true true = NOT false
false | false true oee _ NOT true
true true false X - NOT NOT X

Defined operations

+ Addition, pozitive sign == | Equality
- Subtraction, negative sign |= | Not equality
* Multiplication < | Less than
/ | Division > | Greater than
% Modulo operation (remainder) <= | Less than or equal to
(int) | Truncation to integer >= | Greater than or equal to
[...] |Arrayindexing AND | Logical ,and" operation
{...} |Array initialization OR | Logical ,or" operation
() Precedence, parameter list NOT | Negation (logical ,,not" operation)

Assignment

U

Separator of values in lists

The numbers and operations are interpreted in the decimal number system.
The Length can mean the value of a quantity, while "Length" is just a text.

41

Order of operations

|. Parenthesis

1. ()
lI. Unary operations
1. sign (+ -)

2. NOT
3. (1nt)
Ill. Arithmetic operations
1. * / %
2. + -

IV.Relational operations
1. < <= > >=

2. == I|=
V. Logic operations
1. AND

2. OR

Order of operations

Frequent issues:

* What is the double of the sum of 3 and 4?
2%3+4 2*(3+4)

* |s the value of variable x between 5 and 10?
5 <x<10 (5 <x) AND (x < 10)

* |s the value of variable x equal to 5 or 10?
==L 0l (x ==5) OR (x == 10)

e Write the size word!

e output "size"

43

Exercise: order of operations

What is the value of the following expressions,
if initially a=10 and b=207

a-1/2

2+b / a+l
(int)a/b
-a-b/-2

NOT (a <= b)

a == 10 OR b > a AND a * b !=

bt-a*2!=1/2 OR

(int) (a/4)==2.5

200

Exercise: flowchart

Link to the solution

.
(i)

How do the values of x, y and s change

during the process, if x=5 and y=47?

// In: X,y //

What is the output in this case?

How many times will the condition

S=X

evaluated?
. . false true
What does this algorithm do?

How can you modify it / outs /

to calculate the product of

x and y?

s=s+1

v

y=y-1

Exercise: flowchart

d

How do the values of x and y change ?
during the process, if the input is 10?

What is the output, if the input is 607? [mx_/

What does this algorithm do?

Is it work, if x=17

v
y=2
truefalse
If the input is 24, how

many iterations will t"UEfalse @

?
be executed: S ouy /

the input: a=3, b=9, c=57?

the input : a=5, b=2, c=7

 What does this
algorithm do?

Exercise: flowchart @
 What is the output, when @
* What is the output, when /'”:aib'c/
?
' true‘false
truefalse truefalse
R=a R=b R=c
) v)
]
/ Out: R /

Exercise: flowchart

Create a flowchart for the solution of a first-degree
equation given in ax+b=0 form.
For example, a=0.5; b=-6 2 x=12

Create a flowchart to tell whether a given year is a
leap year or not.

1

For example, 2023 = no; 2024 = yes 0O O
Create a flowchart to print 3 numbers (given by the
user) in decreasing order. 0 @°

(i
Create a flowchart to calculate the factorial of a
positive integer number given by the user. O

(i

Create a flowchart to convert a positive decimal
integer to binary notation.

Pseudocode

Sequence: Selection Iteration
(branching): (loops):
statementl if condition then while condition do
statement?2 statement ;) statement ;)
statement3 else enddo
statement ¢)
endif

Further keywords: input, output, stop, break, function,
endfunction, procedure, endprocedure, return, call

Conversion

flowchart< pseudocode
* A condition can belong to a selection or an iteration
— |teration: if arrow (enddo) goes backward

— Branching: if no way to go back to the condition,
and the branches join (endif)

* The false branch (else) of selection can be skipped
e Repetition happens in case of true condition only

* Branches of a selection can be swapped by the
negation of the condition

— |In case of some iteration and selection it can be
necessary

Conversion

input T
while T!=20 do
1f T>20 then
T=T-1
else
T=T+1
endif
enddo
output "Ready"

51

Indentation

The lines of a sequence are started in the same
position (same level of indentation)

The body of an iteration indented relative to while
— Between do and enddo
The branches of a selection indented relative to i f

— Between then and el se as well as between
elseand endif

— Between then and endif (if no else branch)

Multiple indentation for embedded structures

Pseudocode example

input R Approximation of the value of 7t

1=0
<=0 Greater R leads to

while x<=R do more precise value
y=0
while y<=R do
if x*x+y*y<=R*R then >
1=1+1
endif
y=y+1 y
enddo
x=x+1) e

enddo

output 4*i/ ((R+1)* (R+1)) ' X .

Exercise: Are they the same? [©

input a * Do the pseudocode and the flowchart

input b describe the same algorithm?

c=a

1f b>0 then
p=p-1 / Inia,b /
c=c-1 1

else c=a

output c
endif false true
/ Out: c / b=b-1

Exercise: conversion 1

* Represent this flowchart with pseudocode.

Exercise: conversion 2

* Represent this flowchart with

pseudocode.

Exercise: conversion 3

* Represent this flowchart with pseudocode.

trufalse

//In:x,/

/aDut:x//

<€

true

X=x-1

false

x=x+1

T

Exercise: pseudocode

input a What is the output if a=107?
if a<0 then What is the output if a=-47
b=-1*a What does the algorithm do?
else
b=a « What does this algorithm do?
endif |
output b input a
1f a<0 then
a=-1*a
endif

output a

Exercise: pseudocode (i)

input a

input b

c=a

while b>0 do
b=b-1
c=c-1

enddo

output c

How do the values of g, b and ¢
change during the process,
if a=7 and b=37

What is the output in this case?

How many times will the
condition evaluated?

What does this algorithm do?
Convert it to flowchart.

Exercise: pseudocode (i)

input N * How do the values of N and R
R=0 change during the process,
while N>0 do if N=73251 initially?

R=R*10+N%10 « Whatis the output in this case?

N=(int) (N/10) . \what does this algorithm do?
enddo

output R Legend:

%: modulo operation
(remainder after division)

(int): integer part
(ignore fractional part)

60

Exercise: pseudocode

input N

input B

R=0

P=1

while N!=0 do
R=R+ (N%B) *P
P=P*10

N=(int) (N/B)e

enddo
output R

nat is t
natis t
natis t
nat is t
nat is t
nat is t

S ===z =s <=

natist

ne output, if N=15, B=27?
ne output, if N=16, B=27?
ne output, if N=10, B=27?
he output, if N=5, B=27
he output, if N=30, B=3?
he output, if N=20, B=3?

he output, if N=64, B=8?

What does this algorithm do?

Exercise: pseudocode

input A
input B
while B>0 do
C=B
B=A%B
A=C
enddo
output A

How do the values of A, B and C

change during the process,
if A=24 and B=18 initially?

What is the output in this case?
Try it with A=30 and B=105.

Try it with A=165 and B=48.
What does this algorithm do?

Exercise: pseudocode

input X%,V
Z=X*Yy
while y>=1 do
W=y
Y=X%Yy
X=W
enddo
output z/x

How do the values of x, y, z and
w change during the process,
if x=12 and y=30 initially?

What is the output in this case?
Try it with x=14 and y=15.

Try it with x=18 and y=18.
What does this algorithm do?

Exercise: pseudocode

input A
input B
while A!=B do
1f A>B then
A=A-B
else
B=B-A
endif
enddo
output B

How do the values of A and B
change during the process,
if A=24 and B=18 initially?

What is the output in this case?
Try it with A=30 and B=105.

Try it with A=165 and B=48.
What does this algorithm do?

Create a flowchart for this
algorithm.

Exercise: congruential generator

input m, a, X What is the output of the

x0=x algorithm in case of the
while 1==1 do following inputs?
x=(a*x) sm * a=5, m=16, x=1
output x, " T, 3212, m=7, x=6
if x==x0 then ’ ’
break e a=12, m=7/, x=1
enddo m=2147483647,

x=1672552800

Exercise: even or odd

Algorithm represented by natural language:

Get a number.

Check that it is larger than one or not.

If it is larger, subtract two and continue with Step 2.
Otherwise check it zero or not.

If it is zero, write ‘E’.

o Uk W E

Else write ‘O’.

Write this algorithm in pseudocode (and with flowchart).

Exercise: selections

* 3 numbers are given. Write the pseudocode
algorithm to determine the minimal value of them.

e 3 positive numbers are given. Is it possible to draw a
triangle having these 3 side lengths? Write a
pseudocode for the triangle inequality problem.

e 3 positive numbers are given. Is it possible to draw a
right-angled (90°) triangle having these 3 side
lengths?

Exercise: iterations

* Write the pseudocode of the algorithm, which gives
the sum of integers within the [10; 20] closed
Interval.

* Write the pseudocode of the algorithm, which gives
the factorial of a positive integer given by the user.
For example: 6! =2 720

* Write the pseudocode of the algorithm, which gives
the value of the xY power. The x and y values are
given by the user.

Exercise: square root (i

The square root of a number can be approximated by
the Newton-Raphson method. The following iterative
formula is needed, which converges to the solution.

* Write an algorithm, which does the iteration until the
difference between two subsequent values is less
than the threshold given by the user.

20

Xog = N . V17.654 = 4.20167
2
xi — N W 10
Xi = X; —
1+1 l le 5 i O —e . o—0—0-.

_limxl-=\/N o 1 2 3 4 5 6

1—00

Exercise: primes

* Write the pseudocode of the algorithm, which tell
whether a number (integer, above 1) given by the
user is a prime or not.

* Write the pseudocode of the algorithm, which prints
those prime numbers whose product is equal to a
positive integer given by the user.

(Prime factorization)

Exercise: leap days

* The user tells two years (in increasing order)
between 1901 and 2099. Write an algorithm to
determine how many leap days are between the first
days of the two given years.

For example
Input:
1979 2023
output:
11 leap days are between 1 January 1979 and
1 January 2023.

Exercise: fractions

A traditional fraction can be given by 2 integers.

* Write the pseudocode of the algorithm, which can
simplify traditional fractions.
For example: 36/90 =2 2/5

* Write the pseudocode of the algorithm, which can do
operations (+ - * / separately) on fractions.

For example : 4/6+2/8 211/12; (2/3) / (4/5) = 5/6

* Write the pseudocode of the algorithm, which can
convert a decimal real number to traditional fraction.
For example : 0.375 = 3/8

Exercise: sequences

The Fibonacci sequence starts with 0 and 1, then each
further element is the sum of the previous 2 values.
* Write the pseudocode of the algorithm, which ...
... print the first 100 elements of Fibonacci sequence.
... print the elements of the sequence below 1000.

The Collatz conjecture defines a sequence, started by

an arbitrary positive integer. Each further element

(a..,) is affected by the prior value (a.). If a, is even,

then a. ,=a./2, otherwise a, ,=3a.+1.

* Write the algorithm generating all elements until
a.=1, strated by a user-given value.

==

Arrays

* Sequence of N elements, where all item is accessible
by an index (integer, between 0 and N-1)
N=> initialization:
Al]l={2,93,4,-1,3} ‘—{A[O]=2, A[1]=93, .., A[4]
sum=0
i=0
while 1<N do
sum=sum+A[1]
i=i+1
enddo
output sum/N

Array example

* 5 numbersin array: reading, storing, writing back in
reverse order

N=5

Al]={0,0,0,0,0} N=5

i=0

while 1<N do A[O] | A[1] | A[2] | A[3] | A[4]

input A[1]

1=1+1 i
enddo
while 1>0 do

1=1-1

output A[1],
enddo

A

144 144

Exercise: signal coding

Given an array of N elements, where all the values are
Os and 1s (bits) in arbitrary order.

 Generate Manchester code for these values, so if a
value is 1, then write a zero and a one, otherwise a
one and a zero.

 Generate NRZI codes for these values, so first write a
zero (independently of the first array element). After
then if the given array value is O write the previously
written value otherwise the opposite of the previous
value.

Exercise: number of coins

Create an algorithm with pseudocode, which can tell
the minimal number of required coins to pay an
amount of money given by the user.

* Possible coins: 1, 2, 5, 10, 20, 50, 100

e Possible coins: 5, 10, 20, 50, 100, 200
(applying rounding rule of shops)

Searching and sorting

* Searching
Is the given value in the array (and if yes, where)?

— Linear search (with/without sentinel), binary
search, etc.

* Sorting
Rearrange elements of array in increasing/decreasing
order (in their original location).

— Selection sort, insertion sort, bubble sort, radix
sort, quick sort, heapsort, etc.

Exercise: searching

Suppose that A is an initialized array having N elements.

* Write a pseudocode to tell whether a value given by

the user is stored in the (unsorted/sorted) array. i)

(linear search with/without sentinel, binary search)
* How the number of steps depends on N?

* Write a pseudocode to tell the value of the (i)
largest/smallest element of the array.
* Write a pseudocode to tell the index of the first O

occurrence of the largest element of the array.
* How can we find the second greatest element?

Exercise: sorting

* How to swap the values of two variables?

i)

Suppose that A is an initialized array having N elements.

* Write a pseudocode to sort the elements of the array

in increasing order ...

... according to the selection sort algorithm
... according to the insertion sort algorithm
... according to the bubble sort algorithm
... according to the radix sort algorithm

* How the number of steps depends on N?

* How to make only one sorted array from all the
elements of two sorted arrays?

Exercise: bank card number

Bank Card Number (BCN): a{,a, ...,a14 0<a; <9

Replace each odd-position digit of a BCN with its double or
if this product is greater than 9 reduce it by 9. Then
calculate the sum of all digits. The BCN is valid if and only if
this sum is dividable by 10.

So, a BCN is valid if
16

a.
z ((i%z +1) *a; — {g} v (i%2) * 9) % 10 ==
i=1
The 16 digits of a BCN are stored in an array (each digit in a

separate array element). Write pseudocode that checks the
validity of a BCN.

Exercise: most frequent age

 The number of inhabitants of a town below 18 years
is denoted by N. The ages of each child are stored in
an array called Age. Write an algorithm in

pseudocode, which tells which age is the most
frequent.

For example:

N=15
Agel]={1,3,2,0,5,10,17,3,10,0,3,2,15,1, 3}
The most children is 3 years old.

Exercise: finding a pattern

 Two arrays are given. Array A has N elements and

array B has M elements. Write a pseudocode to
represent the algorithm determining whether all the
elements of array B (continuously, in the same order)
can be found in array A or not.

For example:

A

2 3 9 4 1 8 3 9 4 8 6

Exercise: first-fit allocation

The elements of the array (called M) illustrate the free
and occupied memory cells. Their number is denoted
by N.M[1]=1 means that the 1t memory cell is
occupied and M[1]1=0 means that the ith cell is free.

* Write a program, which asks for a positive integer
number (S) and tells the index of the first cell of the
first memory area containing at least S free cells

continuously.
For example, in the case of S=4, the answer is 12.

oo-ooo--- --000000-0

o 1 2 3 4 10 11 T12 13 14 15 16 17 18 19

Exercise: memory-map conversion

The elements of the array (called M) illustrate the free
and occupied memory cells. Their number is denoted
by N.M[1]=1 means that the 1t memory cell is
occupied and M[1]1=0 means that the it cell is free.

* Write a program to replace the original 1s to Os and
to replace the original Os to positive integers showing
the number of Os in the original continuous
environment of the given cell.

o o o o o --- -- o o o o o o o
0 1 2 3 4 10 11 12 13 14 15 16 17 18 19
2 2 N 3 3 3 --- RN - s 5 5 s N 2 2
0 1 2 3 4 9 10 11 12 13 14 15 16 17 18 19

85

Exercise: best-fit allocation (i}

The elements of the M array illustrates memory cell
allocations. There are N elements. M[1i]=0 mean that
the 1t memory cell is occupied. M[1]=x (x>0)
means the it cell is a part of a continuous memory
area of x free cells.

* Write a program, which asks a positive integer
number (S) and tells what is the index of the first cell

of the first occurance of the smallest memory area
containing at least S free cells (if exists)!
For example, in the case of S=3, the answer is 9.

1B 5 5 5 5 5 BN 4+ 4 2 sl 1 B0 4+ 4 4 4
0 1 2 7 8

3 4 5 6 T9 10 11 12 13 14 15 16 17 18 19

Subroutines

Separate unit of algorithms
Tool of recycling and abstraction

* Recycling: not necessary to type the same code-part
at different points of the code. We can teach some
activity and then use as a basic instruction. An
example of embedding.

e Abstraction: not just only one activity, but a set of
similar activities, specified by parameters. Realization
of generalization.

Subroutines

Two sorts of subroutines

* Function: a sequence of instructions in order to
determine a value somewhere in the code
E.g., What is the cosine of 45°?
xX=cos (45)

* Procedure: a sequence of activities to do something
at a given point of the code (no return value)
E.g., Sort the N elements of the A array increasingly.

call SortArray (A, N)

Procedure example

Definition of procedure to print the * character N-times

name of procedure

procedure STARS
while N>0 do
output "*"
N=N-1
enddo

endprocedure

\

(formal) parameter

(N)

> Instructions, activity to do

89

Procedure example

Calling the previous procedure within a code

output "How many stars you need?"

input S (actual) parameter
e
call STARS (S) } call of procedure (execution of its instructions)

output "I hope, you like 1t."

90

Procedure example

Another procedure to tell the sign of a number
procedure SIGN (x) o,
1f x>0 then
output "Positive"
else
output "Not positive"
enditf
endprocedure

execution starts here

output "Give a number"
input N
call SIGN (N)

\

1un urew

aJnpado.id Jo uoniulap

Xe)
[

Function example

Definition of a function to determine the

maximum of two values
name of function (formal) parameters

N\
function MAX (A(,B%)

\

1f A>B then
R=A

elsge > Instructions to determine the desired value
R=B

endif

return R } Instruction to give back the results

endfunction

92

Function example

Calling the previous function within a code

output , Give two numbers"
(actual) parameters

input a,
c = MAX a‘% } call of function (determination of a value)
outp ,The maximum: ",

The returned value is stored in variable c.

93

Function example

Another function to calculate the absolute value

function ABS (x)
1f x<0 then
xXx=-1*x
endilf
return x
endfunction

execution starts here

output , Give a number"
input N

A = ABS (N)
output ,the absolute value 1is"

[Xo)
S

uo1OUNY JO UOIUIBP

1un urew

Procedure vs function

procedure AvVqg(X,V,Z) function Avg(x,v,z)
a= (x+y+z)/3 a= (x+y+z)/3
output a < - >return a
endprocedure endfunction
call Avg(2,5,4) 1f Avg(2,5,4)<4 then
output "Week!"
else
output "Good job!"
endif
The average is The average is not

on the screen. on the screen.

Scope

* Program units (functions, procedures, main program)
have own variables

 The names of a variables in two separate program
units can refer to different variables

— Even if the names are the same

function F(ABC)
return ARC+H+1

endfunction

Two separate variables
ABC = 3
ABC = F(7)

ABC = F(ABC) *2 ;

Exercise: subroutine (i)

function PP(a)

b=0
while b<a do
a = a—% * How the values of variables are
engd; ot changing during the execution, if
if a==b then the user gives 1 and 4 as inputs?
elggtum 1 e What is the output in this case?
return 0 * What does the function do when
endif the parameter is a positive
endfunction .
integer?
input a, b
a = ar*2

b = PP(at+b)+1
output b

Exercise: subroutine

function CHANGE (a
return 1-a

endfunction e \W
input Max ¢ W
1=0

7=0

while jJ<Max do
1 = CHANGE (1)
J = J+1
output 7j,

enddo

output 7

144 144

)

hat is the output if input is 57
nat does the program do?

nat is the role of the function?

Exercise: subroutine

function min (x, V)
1f x<y then

return x]
endi What is on the screen,

return vy when the user enters 4 and 5?

endfunction
function even (N)
return 1-N%2
endfunction
Cl]l={2,3}
input x,y
N=(min (min(x,C[1l]),x-3)+Cleven(y)]*5) %6
output N

Exercise: multplication table @

* Write a pseudocode, which contains a procedure to
to display the NxN multiplication table.
For example, if N=4:

Make a new line:
output NEWLINE

B TW N
0 o N
(00]

12116

100

Exercise: chessboard

* Write a pseudocode, which contains a procedure to
create an NxN chessboard pattern of '0’s and '1’s.
For example

if N=3: if N=4:

Exercise: time

Write an algorithm with pseudocode as follows:

* The code has to contain a function, which has 3
parameters (hour, minute, second)and based on
this it tells which second of the day is the time.

* The code has to contain a procedure which has an
integer parameter (it is the number of seconds in a
day) and the procedure prints out the time in

hour:minute:second format.

e Call these subroutines to check they work well.

Exercise: formula

* Write a pseudocode function, which has only one
parameter (N) and returns with the factorial of the
value x given by the following formula. Call the
function in the main program unit for a positive
integer number given by the user and print out the
return value of the function.

Qi - 1)
- ()

Exercise: DCB arithmetics

We would like to make mathematical operations with
binary numbers, but the pseudocode uses only decimal
numbers. Let’s apply a "trick". The operations should
use decimal values containing only O and 1 digits,
similar to binary numbers. Use subroutines.

* Write a pseudocode, which is able to calculate the
value of the following formula, where the values are
non-negative binary values given by the user.

XY

=7

Recursion

e When a subroutine calls itself

main.unit

a replica of
subroutine

call Groc(]

execution time order

a replica of
subroutine

> a replica of

subroutine

call proc{) >

T~

105

Recursion example

e Factorial (N!):
— |f the number (N) is 1, then the factorial is 1.
— Otherwise, NI =N * (N-1)! .

5!
function fact (N) L g | 5%41
if N==1 then P 5%4*3!

L g &g Eg 5*4*3*21
PEPEPEPE 5*4*3*2*1!

return 1
else

RS < 4*3%2*1
return N*fact (N—l) PRl 5*54*3%2
endif | 5q kg Ea 5*4*6
endfunction L 5q &g 5*24
output fact (5) e 120

O 120

106

Exercise: recursion 1

procedure CONV (N , B)
1f N!=0 then integer partﬁf the quotient
4 R
call CONV ((int) (N/B) , B)
output N%B

endif * Try to execute the algorithm.
endprocedure * What is the output?
* How long is the call chain?
* Where is the reverse order

11 CONV (l1lo , 8 .
- () of digits coded?

output NEWLINE
call CONV (19 , 2)

Exercise: recursion 2

 What is the output of the following recursive
algorithm?

procedure something (B, E, P)
1f E>0 then
call something (B,E-1,P*B)
else
output P
endif
endprocedure
call something(5,3,1)

Exercise: recursion 3

e Write an algorithm, which asks for numbers from the
user until O is given and after then it prints all the
values (except the 0) in reverse order. The cardinality
of numbers is unknown. Don’t use any array in the
algorithm.

For example:
input: 1,4,65,-9,2,9,2,0
output: 2,9,2,-9,65,4,1

Algorithmic thinking

Expectations:

* Knowledge (learning)

* Experiences (practice)

e Creativity, intelligence (capability, talent)

No guide (algorithm) on how to write algorithms.

The ability of algorithmic thinking cannot be acquired
through conning or pure memorizing.

No programmer without algorithmic thinking.

Thought-provoking question

What will the user enter? (input)
What must the user see? (output)

Does anything need to be stored, or data
remembered? (variable)

Has a variable already been assigned a value before
we use it? (initial value)

How should a value be calculated? In what order and
which operations are required? (expression
evaluation)

Are there any steps that are only necessary
sometimes in certain cases? (branching)

Thought-provoking question

Do | need to repeat certain steps? (cycle)
When should | perform something? (condition)

Is it necessary to have all situations at the same time
or is one sufficient? (logical operator)

Do | need to handle a series of connected values?
(array)

Is there a group of activities that can be required in
multiple places of the code? (procedure, function)

What are the values that influence the operation of a
group of activities? (parameter)

Testing strategy development

Example of testing strategy

* Solving second degree equation

* General form: ax?+bx+c=0 _
/ in:a, b, c /
* |Input parameters: a, b, c I
: —b + Vb2 — 4ac d = b2-4ac
 Solution: x,=
’ 2a l
X, = (-b+d/2)/2a
Does it work for all input? !
. X, = (-b-d/?)/2a
* What is the output I
if a=1, b=2 and c=17 / out: x,, X, /

* What is the output
if a=1, b=2 and c=27 m’

Example of testing strategy

Does it work for all input?

 What is the output
[_iniabc / if a=0, b=2 and c=67

x, = (-b-d1/2)/2a

v

X, = (-b+d/2)/2a x=-b/2a

v v
/ out: Xy, X, / / out: x / / out: no solution /

Example of testing strategy

Does it work for all input?

/ inia,b,c / ¢ Whatisthe output

i if a=0, b=0 and c=17
fa|SEtrue

d = b%-4ac

false

x, = (-b-d%/2)/2a true

v

X, = (-b+d1/?)/2a x=-b/2a x=-c/b

v v v
/ out: X4, X, / / out: x / / out: no solution // out: x /

Example of testing strategy

Y a!b - It works for all input.

true
d = bz-4ac trufalse

false

X, = (-b- d1/2)/2a false

x=-c/b

X, = (-b+d1/2)/2a x=-b/2a

v v v v
/ out: X4, X, / / out: x / / out: no solution // out: x /

Example of testing strategy

Good solution in pseudocode:

It works for all input.

To reach this state we have had
to test the algorithm with
more different input
combinations the so-called
test cases and then we have
had to modify the algorithm.

We have used testing strategy.

input a, b, c
if a==0 then
if b==0 then
output "error"
else
x=-c/b
output x
endif
else
d=b*b-4*a*c
if d>0 then
x1=(-b+sqgrt (d))
x2=(-b-sqgrt (d))
output x1, x2
else
if d==0 then
x=-b/ (2*a)
output x
else
output "error"
endif
endif
endif

The used testing strategy

a b C output Comment OK
3 7 -1/3 ;-2 general case (not zero, d>0) | v
0 2 6 -3 a is zero (first degree) v
2 0 -8 2;-2 b is zero (x?=-c/a) v
1 2 0| O0;-2 cis zero (x[ax+b]=0) v
0 0 1| "error" more zeros (not equation) v
1 2 2| "error" d<0 (no solution) v
1 2 1 -1 d=0 (only one solution) v

2| -10| -1 -4.9;-0.1 | negative inputs v

23| -4.2| 0.83|1.6;-0.23 | notinteger values v

10| 10° 1|-10>; 1019 | extreme small/large values | v

test cases

=
=
(\o)

Exercise: testing strategy

Conversion of number notation

* Create a testing strategy for
this algorithm.

* Which values of N and B are
acceptable?
(When does the algorithm
give expected result?)

input N

input B

R=0

P=1

while N!=0 do
R=R+ (N%B) *P
P=P*10
N=(int) (N/B)

enddo

output R

Exercise: testing strategy

* You have a pseudocode, which has two finite input
values (x and v) and prints out the value of x¥. The
algorithm must work for any integer v values and all
real numbers x. If the theoretical/mathematical
result is an undefined value or not a finite value, an
error message is required. If v is a number which is
not an integer, an error message is also required.

f(x,y) = x¥

x € R\ {oo}

y € Z\ {0}
f(x,y) € R\ {0}

Program coding

Creating source code
in real programming language

Programming levels

High-level
programming

Low-level
programming

languages
A

languages
A

N/

4GL

3GL

2GL

1GL

SELECT name FROM people WHERE age=20

if (x==0) printf("zero\n");

awn

mov eax, DWORD PTR [rbp-4] assembly

machine

10001011 01000101 11111100 code

123

Language paradigms

* Java * Prolog * Labview
. Pascal e C++ . LISP * Verilog
* Fortran e Smalltalk * Haskell

124

Syntax and semantics

Syntax: Formal rules of the program text.
Semantics: Does it describe the desired algorithm?

Example (sign of a value):

function sign (a) Semantic error (a<0)

b=a
1f a>O then
(b Syntax error (endif)
enidf
return a/b <« Runtime error (if /0)

endfunction

Syntax of programing languages

Fortran:
REAL FUNCTION FACT (N
FACT=1
IF (N .EQ. O .OR. N
DO 20 K=2,N

20 FACT=FACT*N
RETURN
END

Python:
def Fact (N) :
f=1
for 1 in range(1l,N+1) :
f*x=1

return f

)

.EQ. 1) RETURN

Pascal:

FUNCTION FACT (N:INTEGER) :REAL;
BEGIN

IF N=0 THEN FACT:=1

ELSE FACT:=FACT (N-1) *Nj;
END;

C:
int Fact (unsigned N) {
return N<=17?1:N*Fact (N-1) ;

w: }

APL: Labie
FACT«{x/ww}

| True 't[

Exercise: Syntax and semantics

* Find syntactic and semantic errors of the following
algorithm written in pseudocode to determine the
not negative integer (E) power of the base (B).

input B

R=0

wihle E<=0
R=R*B
E-1=E

endo

output R

Interpreter and Compiler

* Processors understand only machine codes
— High-level source codes need some conversion
* Language implementations use different techniques

— Compiler
E.g.: Pascal, C, C++, Labview

— Interpreter
E.g.: PHP, JavaScript, Python

— Combined (bytecode to virtual machine)
E.g.: Java, C#

Compiler

A software that creates a so-called object-code from
the source code

Compiler makes lexical-, syntactic- and semantic
analysis, code generation

— Source codes have to be syntactically correct

A so-called linker creates executable from object
codes, and the loader load it to RAM to run

Compilation once, execution later several times
— Compilation and execution is separate
Execution is fast

Interpreter

Direct execution

— Analysis and generation at run time

No object code

Interpretation of instructions one by one

— Single instruction as input

Syntactically incorrect code can be executed

— Errors may be hidden

Interpreter is needed for any execution

— Interpretation and execution belong together
Execution is often slow

Integrated Development Environment

* A (graphical) program to make the software
development easy and quick, provides tools/help to
the programmer

* IDE contains:
— Language-sensitive editor
— Compiler/interpreter, linker, loader
— Debugger
— Version control tool
— Project management
— Simulator

Integrated Development Environment

o x

Most often used IDEs:
° C o) d e B | oC k S 1; ;h@wguw,@mguu am 1

Projekt | Qsztalyok | [| * || [Twav.c
1 finclude<stdio.h>
#include<unistd.h>
#include<sys/stat.h>
#include<fentl. h>
#include<math. h>

3
a
s
[] ;
- 7 #define Duratien 3.0
8 #define Channelio 2
9

#define Bitj
10 #define Samf
11 #define Frefl File Edit View Search Project Build Debug Fortran wxSmith Toels Tools+ Plugins DoxyBlocks Settings Help
12 #define Ampfl. ~ & |E B ==l e
L sl Ed ey umalqajiorsen PP MEGIN S 6 M I

i | <global> v

15 int reading

[) 16] unsigned il ¢ b (D> I L DEFEIEC O EEEEE
17 unsigned
_ » i M . Sa—

19 int 4| Projects | Symbols)

= | T decstaio -
Work: .
File Edit View Navigate Code Ref 2 @ Workspace 2 decat
2| e
SecondDeg) 25 | readtin,(+ [lvoid back_word (char =wozd)
e ToNEL) s int 1=strlen(word);

. B pro.r € = #- I© | = Secon| B3 Fordito uzenctei | B Erstorrasok | dlh Fordits ki : f"‘;i:g;;glu’wm .

v SecondDegree D:\IK\P) Line: 1 Col: 2 Sel: 0 Lines: (] printE(" ")

9 }
& SecondDegree.py = I

|lll External Libraries

31 Hvoia packiara(onar wtex) ¢

a = float({input{"Give the coeff: o ©
< >
3 b = float(input{" b: "))
. : ¢ = float(imput{" c: "}} Logs &Lothers. x
a rl I I 5 if a 0.0: & 4| /) CodexiBlocks X | (L Searchresuis | /) Ccce X | €3 Buildlog | " Buid messages b
& if b 0. 0 second (s} "
saconars))
7 print (" Errortit")
8 else: hd
¥l =-c /b Windou
L) [‘= File Edlit View Navigat Source Refacto Run Debug Profile Team Tools Window Hel —
print ("x =", x1) 9 i g AU P
([ISl Ia | l IO else: + PEES e T = R T A O
d=Db*2-40%a*c Proje.. x|[Fies |services | —| ..ave[[Graphijava x[& Hancigava x 1 vo
if d » 0.0: 5-& 6 Hanol A |[souee | reory [[@ -0 QRSB P e B
¥l = (b +d ** 0.5) / (2.0 * [Source Packages Al = &
¥2 = (-b - d ** 0.5) / (2.0 * E1-E 6 tHanai 2 -
@ Ccoumn.java 5 " nanot:
° print(" x1 = {0}\n x2 = [1}". L@ orephisove : package hanoi;
. ' l I e I elsas o8 :En:mm 5| B inport java.util.Scanner;
@ Platform and Plugin Updates B source Fackages 5) .
L S e 7 public class Hanoi {
PyCharm Community Edition is r & private static final int EMPTY = 0
EEE o : nel -
Lses s private static final int FULL = 1
elses Havigator % | 10 public static void main(Stringl] a
[C@ Platform and Plugin Updates: PyCharm Community E... (moments ago) 21:14 CRLF [yampers o [[<empty> 11 int n, s, d, m:
. B Hanol il Svarem:ourprin ("Rive the <i7iY
+ @ man(suingl args) 3 =
S EvPTY it
FULL zint Output - Hanoi (jar) X -
3 ~
v
>
11 ms

132

Data representation, Datatypes

* Every data is stored in the memory in binary
e Different datatypes are used

— with different representation

— with different data-domain

— with different operations
* Most often applied data types:

— integer (5)
00000000000000000000000000000101

—real (5.)
0100000000010100

— string ("5")
0011010100000000

— char ('Y)
00110101

133

Fixed-point representation

How the computer stores (signed) integer numbers?
Steps:

Remember the sign of the given value and convert
the absolute value of the integer into binary

Add leading zeros (if needed) to reach given number
of digits (bits)

If the sign is -1 (so if the value was negative) then

— Change every bit to the opposite

— Add 1 to the result in binary

The fixed-point representation of the integer is ready

Fixed-point representation

Examples
+195

/ In: N / 11000011)
T 80000000 00000000 00000000 11000011

T S=sign(N) 132
+
—>/Out. result/ | 11000011
T N=abs(N) 00000000 00000000 00000000 11000011
Add 1 v 11111111 11111111 11111111 00111100
to the result Convert N'f 1 1111111 11111111 11111111 00111101
to binary
T v 0
Change to Extend by O)
opposite bits leading zero ‘)000000 00000000 00000000 00000000

no

MSB = sign bit

Fixed-point representation

4 byte

-2 147 483 648

Representation Minimum Maximum

length value value

= 1 byte 0 255

& 2 byte 0 65 535

)

c

- 4 byte O| 4294967 295
1 byte -128 127

k5

c 2 byte -32 768 32767

=

2 147 483 647

Exercise: data representation

Give the approximate population of the Earth with
32-bit fixed-point representation.

Write the value of -1 with 32-bit fixed-point
representation.

Which 4 bytes long fixed-point representation bit
sequence means: 159087

Which 4 bytes long fixed-point representation bit
sequence means: -6667

What is the meaning of the following 4 bytes long
fixed-point representation bit sequence?
10000000 00000000 00000010 01001001

Units/elements of the source code

e Character set

e Lexical units ,
g We use different
e Syntactic units S characters, symbols,
. = special keywords,
* |nstructions < .
5 expressions, and rules
n (]
* Program units ® in each language.
. . ®
 Compiling units
\4

* Program

Keywords, identifier, comments

Examples in C language.

* Keyword
Sequence of characters with special meaning
E.g.:.1f, else, while, do, for, return

* |dentifier
Sequence of characters to give name to the l
programmer’s own tools/objects Side A = 5*cos(60)
E.g:1, Count, var2, abs val v

* Comment

Text in the code not for the compiler/interpreter but
for the programmer (reader human) as remark

Constants

Constants (literals) means fix value in the source
code that cannot be altered by the program at
runtime

It has type and value

— The value is defined by itself

— The type is defined by the form

Special: Named constant is a fix value with identifier

Examples

-12.34, 5, .5, 5., Ox1lF, ’'F’, "E", "apple"
y

while x>100 do X=A +23

\

Variables

A memory location with identifier to store a value
Most important tool in procedural languages

Its components

— Name (identifier)

— Value (bit series in the RAM)

— Attributes (type)

— Address (RAM location)

Example (in C language)
int A = 10;
float [Jumpl = 11.5;

Operators

* Represents simple operations on data
* Can be unary, binary or ternary
* General groups of operators

— Arithmetic (E.g.:+, -, *, /, %)

— Comparison (E.g.: >, <, ==, >=
— Logical (E.g.: &&, |1, !)

— Bitwise (E.g.: &, |, ~, ~, <<,
— Assignment (E.g.: =, +=, *=

— Other(Eg.:*, &, 2 =, ., —->)

Expressions

Operators & Operands & Parentheses

Operand can be: constant, variable, function call
An expression has type and value (evaluation)
Form can be

— Infix (preference/strength is necessary)
Eg: 4 + 3 * 2

Eg: + * 3 2 4

— Postfix
Eg. 4 3 2 * +

Exercise: expression (i

What is the value of this infix expression?
9+2*6/3>8-77

What is the value of this expression (in C language)?
2>3&&3*5-6/2>=11%2

What is the value of this prefix expression?

* + 1, 2;, —; 9, 6

+; 1;, —-; *; 2; 13; /; 25; 5

What is the value of this postfix expression? Convert
them into infix form.

30; 2; 15; 4; o6; +; -; * / just separator
1; 2; 13; *; 25; 5; /; =+

Instructions

Unit of programs, that can be grouped as

e Declaration } not executable

* Assighment

* Conditional statement
— 2 branch
— More branch

e Iteration ~ executable
— Conditional loop
— Counted loop

Other

Declaration, Assighment

Declaration

e Associate identifier and type

 RAM allocation, (sometimes) initialization of variable
e 1int 1 = 0;

 float Weight;

Assignment

* Giving value to a variable

* 1 = 06;

e Weight = 80.3 * 1;

Conditional statement

Choosing from 2 execution branch
 Two separate instruction block

* Skip or execute an instruction block

e 1f(N<O0.OQO) S=1;
else S=0;
Selecting from several execution branch
e switch (1) {
case 1: X=1; Dbreak;

case 2: X=10; break;
default: X=100;

Ilteration

Repetition of instructions, activities several times
From operational point of view limiting cases
* Empty loop (the body/core never executed)
* Infinite loop (never stops, semantic error)
Types of iterations
e Conditional loop
— Pre-condition
— Post-condition
 Counted loop
e Other (Infinite, Combined)

Pre-conditional loop

The head contains a condition
Semantics

1. Evaluation of condition

2. Ifitistrue, body is executed and evaluate again (go 1.)
Else loop ends, go to next instruction behind the loop

It can be empty loop
if condition is false initially

Body must change the condition

149

Post-conditional loop

The end contains the condition
Semantics
1. Execute the body once

2. Evaluation of condition

3. Ifitis true (false), execute again the body (go Step 1.)
Else loop ends, go to next instruction behind the loop

It cannot be empty loop do {

body is executed at least once -

)

[]
4
150

Pseudocode to Python

Pseudocode: Python:
input a a = 1nt (input())
1f a>0 then 1f a > 0:
b=a b = a
else else:
b=-1*a b = -1*a
endif
while b!=0 do while b !'= O0:
b=b-1 b = b-1
enddo

output b print (b)

Python programming language

Solving second degree equations
= float(input("Give the coefficients\n a: "))
= float(input (" b: "))
= float(input(” c: "))
if a == 0.0: # first degree
if b == 0.0:

print (" Error!!!")

O o oW =

else:
xl = -c / b
print ("= =", =x1)

else: # second degree

d=Db ** 2 - 4.0 * 3 *¥ C

if d > 0.0:
x1 = (b + d ** 0.5) / (2.0 * a)

d

X2 = (-b - *%x (0.5) / (2.0 * a)
print (" =1 = {(0O}\n =2z = {1}".format(xl, =x2))
else:

if d = 0.0:
xl = -b / (2.0 * a)
print (" = =", xl)
else:

. 152
print (" Error!!!")

Exercise: Python (i)

Find the occurrence of the following concepts in this
Python code.

* keyword

* comment # Some calculation

* identifier Sum=0

* constant for 1 in range (N) :

e variable Sum+=1i

* operator if (Sum==0) :

° expression print("Total"+Sum)
¢ statement else:

z=10%2+N/N+cos (90)
#freturn =z

153

Further readings

Simon Harris, James Ross: Beginning algorithms,
(Wiley Publishing, 2006)

Narasimha Karumanchi:
Data Structures and Algorithmic Thinking with Python,
(CareerMonk, 2017)

Peter Wentworth, Jeffrey Elkner, Allen B. Downey and
Chris Meyers:

How to Think Like a Computer Scientist: Learning with
Python 3, (online, 2012)

Metrowerks CodeWarrior: Principles of Programing
(online, 1995)

Solutions

Solution: flowchart

Back to the Exercise

N
J

Debugging: NI TN
5 4

?
4 5
3 6
2 7
1 8
9

g 0 U1 U1 U

Output: 9 0
5 expression evaluations
Addition: s=x+y
Modifications (3 alternatives):
s=s+1 2 s=s+x s=x =2 s=0
s=s+1 2 s=s+x y>0 2 y>1

// In: X,y //
v

S=X

false ‘ true

// Out: s //

s=s+1 = s=s+x Out:s = Out: s-X

s=s+1

v

y=y-1

156

Solution: flowchart Jv

Debugging: IEMIEE
10

?
10 2 / Inx_/
5 2

Output in 2 =

case of 60: z :

2235 . i

Prime factorization

No output

Number of

repetitions: 5

157

Solution: flowchart J
e Input: a=3, b=9, c=5
Output: 9
* Input: a=5, b=2, c=7 L In'aib'c/
OUtpUtZ 7 truefa|se
truefalse truefalse
R=a R=b R=c
)) J
v
e Maximum of numbers. [OutR_/

Solution: leap year 1

* Gregorian calendar

Solution: leap year 2

* Gregorian calendar

Solution: three values 1 Jv

* 3values
in decreasing order

trse true false

Y
/out: a,b,c//out: a,c,b//out: b,a,c//th: b,c,a/ out: c,a,b//out: c,b,a/
v T ¥ l v T ¥

Solution: three values 2 Jv

e 3values

in decreasing order / 'n:ﬁ'B'C/ g
X=A Y=A
true false trufalse
X=B Y=B
true false true false
X=C Y=C
X |
/ out: X, A+B+C-X-Y,Y /
v

Solution: factorial

/ In: num /

tmp 1

num >1 l

tmp= tmp num
fact=tmp
num=num-1 ¢
/ Out: fact /
v

Solution: binary numbers v

e Conversion from decimal to binary (10 =2 2)
E.g.:21,,=10101,

rem=num%?2
Read output
¢ backward
num=(int)(num/2) ac 1var

Y
/ Out: rem /

164

Solution: flowchart

* Binary incrementation

E.g.: 1010111 = 1011000
/ in: N /

¥
T=N

v
D=10

true alse
T%D!1=0

T=T-D/10 / out: T+D/10 /

\
D=D*10 ‘
5 CEnd >

Solution: flowchart Jv

* Collatz-conjecture

C, ifn=0 @
An+1 = { an/2, } ?
/ .

if n>0and a, is even
3an,+1, ifn>0¢ésa,isodd

Solution: pseudocode

input a * |Input: 10; Output: 10
1f a<0 then * |Input: -4; Output : 4
b=-1*a e Absolut value of a number
else
p=a * Absolut value of a number
endlf |
output b tnput a
1f a<0 then
a=-1*a
endif

Alternative algorithms! output a

Solution: Are they the same?

input a * Different meaning
(not alternative algorithms)

input b

c=a

if b>0@
p=b-1 Branch /Tinab /
c=c-1 condition 7

else c=a
output c ¥

: false true
endif '®

Loop i_
condition c=c-1

168

Solution:

conversion 1

Sign functions:
input x
1f x==0 then
y=0
else
1f x>0 the
y=+1
else
yv=-1
endif
endif
output vy

/ In:x /

true
@%

y=0

true false

Solution: conversion 3

Always zero output:

input x

while x!=0 do
1f x>0 then

xXx=x-1
else

x=x+1
endif /OUtI X/

enddo i
output x @

Solution: pseudocode

input a

input b

c=a

while b>0 do
b=b-1
c=c-1

enddo

output c

Debugging: 2 | b
7 3

7
7
7
7

3
2
1
0

~J

S 0 o

Input: a=7, b=3; Output: 4

3 iteration steps

4 expression evaluations

Calculation of difference

c=a-b

171

Solution: pseudocode v

input N Debugging: ““
R=0 73251
, 7325 1
while N>O0 ?o 232 1
R:R*10+N610 73 152
N=(int) (N/10) 7 1523
enddo 0 15237
output R

* Qutput: 15237

* Change the order of digits of an
integer.

172

Solution: even or odd g
input num
while num>1 do / In: num /
num=num-2
enddo l
if num==0 then ”Um”“m*g
output "Even" l
else
output "Odd" / out:"Even" / / out:"Odd" /

endif =

Solution: selections

&

input a,b,c
if a<b then
if a<c then
output a
else
output c
endif
else
if b<c then
output b
else
output c
endif
endif

input a
input b
input c

output a
else
if b<c then
output b
else
output c
endif
endif

if a<b AND a<c then

input a,b,c

if a<b then

input a,b,c

min=a

if b<min then
min=b

endif

if c<min then
min=c

endif

output min

d=a
else
d=b
endif
if c<d then
output c
else
output d
endif

input a,b,c
if a<=b AND a<=c then

output a
stop

endif

if b<=a AND b<=c then
output b
stop

endif

if c<=b AND c<=a then
output c

endif

input a,b,c
if c<a AND c<b then
output c
stop
endif
if b<a then
output b
stop
endif
output a

SUOIIN|OS JUDJIBHIP 9 :SIaqWINU € JO WNWIUIA

Solution: selections

* Triangle inequality N

input a, b, c c
1f a<b+c AND b<c+a AND c<a+b then

output "Drawable triangle"
else
output "Not drawable triangle"

endif

Solution: iterations

input B
input E
if E==0 AND B==0 then
output "Undefined!"
stop
endif
if E<O then
if B!=0 then
B=1/B
else
output "Infinity!"
stop
endif
E=E* (-1)
endif
P=1
while E>0 do
P=P*B
E=E-1
enddo
output P

Raising to power (P=BE)

General solution: o
f(x,y,z) =xY/?

176

Solution: iterations

output "Base"

input B

output "Exponent numerator"
input EN

if EN!=0 then

output "Exponent
denominator"

input ED
else

ED=1
endif

if B==0 AND EN==0 then
output "Undefined!"
stop

endif

if ED<O then

ED=-1*ED
EN=-1*EN
endif

if EN<O then
if B!=0 then
EN=-1*EN
B=1/B
else
output "Intinity!"
stop
endif
endif

T1=EN

T2=ED

while T2>0 do
T3=T2
T2=T1%T2
T1=T3

enddo

EN=EN/T1

ED=ED/T1

P=1

TE=EN

while TE>0 do
P=P*B
TE=TE-1

enddo

if ED==1 do
output P
stop
endif

if P<0 AND ED%2==0 then
output "No real root!"
stop

endif

if P<0 AND ED%2==0 then
output "No real root!"
stop

endif

R=0
D=1
if P<0 then
S=-1*P
else
S=P
endif
Th=0.0000001
while S>Th do
A=1
TE=ED
while TE>0 do
A=A*R
TE=TE-1
enddo
F=0
if D==1 AND A>P then
F=1
endif
if D==-1 AND A<P then
F=1
endif
if F==1 do
S=5/2.0
D=-1*D
endif
R=R+D*S
enddo

output R 177

Solution: square root

output ,Which number?"

input Num

output ,What 1s the threshold?"

input Threshold

Old=Num

Dif f=Num

while Diff>Threshold do
New=01ld- (01d*01d-Num) / (2*01d)
Diff=01d-New
Old=New

enddo

output ,Square root:" 0ld

Solution: primes

* Is prime?
input N
S=2
while S<N do
1f N%$S==0 then
output "no"
stop

endif K\\\\\\
S=S+1

enddo
output "yes"

Ready, end!

179

Solution: sequences

* First 100 elements of Fibonacci-sequence

F1=0 F1=0

F2=1 F2=1

output F1, FZ2 output F1, FZ

N=2 N=2

while N<=100 do while N<=100 do
F3=F1+F2 F1=F1+F2
output F3, " " F2=F1+F2
F1=F2 output F1, " "
F2=F3 output F2, " "
N=N+1 N=N+2

enddo enddo

Solution: sequences

* Elements of Fibonacci-sequence below 1000
F1=0

0, if i =1,
Fe=1 fi = 1, ifi=2
output F1, FZ fi-1 + fi—2 otherwise
F3=F1+F2

while F3<1000 do
output F3, 7 7”
F1=F2
F2=F3
F3=F1+F2

enddo

Solution: leap days

input yl, vyZ2 input yl, y2
n=0 1f y1%4!=0 then

while yl<y2 do yl=y1+4-y1%4

f y1%4==0 then °SDAif
Y if y2%4==0 then
n=n+1
. y2=y2-4
endif clse
yl=yl+l y2=y2-y2%4
enddo endif

output n output (y2-yl)/4+1

Performace?

Solution: searching

* Finding a value in an array
N=10
Al]l={3,5,2,-7,0,34,5,3,567,9}
input Demanded
1=0
while 1<N AND A[1] !=Demanded do
1=i+1
enddo
1f 1<N then
output "Found"
else
output "Not found"
endif

Solution: searching

 Maximal value and its index in an array
N=10
Al]1={3,5,2,-7,0,34,5,3,567,9}
max 1=0
i=1
while 1<N do

1f A[1]>A[max 1] then

max 1=1

endif

i=1+1
enddo
output max 1, A[max 1]

Solution: sorting v

* Exchange variable contents (x=5; y=8 = x=8; y=5)

o

Y=Z2

e Alternative solution without temporary variable
X=Xty
Yy=X-y
X=X-Y

185

Solution: sorting v

* Bublesort
N=10
Al]={3,5,2,-7,0,34,5,3,567,9}
end=N-1
while end>0 do
1=0
while i<end do
1f A[1]>A[1+1] then
xX=AT[1]
A[1]=A[1+1]
Ali+1]=x
endif
1i=1+1
enddo
end=end-1
enddo

Visit this as well:
https://hu.wikipedia.org/wiki/Buborékrendezés

186

https://hu.wikipedia.org/wiki/Bubor%C3%A9krendez%C3%A9s
https://hu.wikipedia.org/wiki/Bubor%C3%A9krendez%C3%A9s

Solution: bank card number

a[]:{1131412161517181917161511101517}

1 =0
while 1<=15 do
alil] = 2*a[1]
if a[i]>=10 then
ali] = af[i1]-9
endif
i = 142
enddo
1 =0
s = 0
while i1<=15 do
s = s+al[i]
i = 1+1
enddo
1f s%10==0 then
output "valid"
else
output "invalid"
endif

1 =0
s = 0
while i<=15 do
s=s+ (2-1%2) *a[1]
s=s—-{al[i1]/5}*(1-1%2) *9
enddo
1f s%10!=0 then
output "not "
endif
output "valid"

Luhn’s algorithm

Solution: most frequent age ©

N=15
Agel]={1,3,2,0,5,10,17,3,10,0,3,2,15,1, 3}
pistri(]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
1=0

while i1i<N do
Distr[Age[i]]=Distr[Age[i1]]+1
i=i+1
enddo
freg=0
i=1
while 1<18 do
1if Distr[i]>Distr[freqg] then
freg=1
endif
i=i+1
enddo
output "The age ", freq, " 1is the most frequent."

188

Solution: best-fit allocation Jv

N=20
mil]={1,0,5,5,5,5,5,0,0,4,4,4,4,0,1,0,4,4,4,4}
input S
1=0
pos=0
while 1<N do
1f M[1]==S then
pos=i
break
endif
1f M[1]>S AND M[1]<M[pos] then
pos=1
endif
i=i+1
enddo
1f pos>0 OR M[pos]>=S then
output pos
endif

189

Solution: finding a pattern v

N=11
Al]={2,3,9,4,1,8,3,9,4,8,6}
M=4
B[]={3,9,4,8}
1A=0
iB=0
while 1A<N AND 1B<M do
if A[1A]==B[1B] then
iB=iB+1
iA=iA+1
else
iA=iA-iB+1
iB=0
endif
enddo
if iB==M then
output "Pattern found."
else
output "Not found."
endif

190

Solution: subroutine

function PP(a)

b=0

while b<a-do
a = a-1
b = b+l

enddo
1f a=b then
return 1
else
return 0O
endif
endfunction

input a, b //
a = a*2
b = (a+b)

output b

a b a b
1 4

2 4

2 4 6

2 4 5 0
2 4 5 1
2 4 4 2
2 4 3 3
2 2

The output: 2

* In case of even parameter it
gives 1, in odd case it gives 0.

Solution: subroutine

function CHANGE (a)
return 1-a

endfunction e Max=5—->1122334455
1nput Max Writes natural numbers twice.
1=0

4 * 021 and 120 change
j:

while j<Max do
1 = CHANGE (1)
j=3+i
output 7

enddo

output 7

Solution: multiplication table

procedure MT (N)
1=1
while 1<=N do
J=1
while j<=N do
output 1*7,
Jj=7+1
enddo
output NEWLINE
1=1+1
enddo
endprocedure
call MT(8)

144 44

Solution: chessboard

function change (x)
return 1-x
endfunction

procedure chessboard (x)
color=0
s=1
while s<=x do
o=1
while o<=x do
output color
color=change (c
o=o0+1
enddo
output NEWLINE
if x%2==0 then
colongghanqe)
endif
s=s+1
enddo
endprocedure

input x
call chessboard (x

- subroutine (function)

- subroutine (procedure)

~ mainprogram

194

Solution: time

function secs (hour, min, sec)
return (hour*60+min) *60+sec
endfunction
procedure time (t)
s=t%060
m=((int) (t/60)) %60
h=(int) (t/3600)
output h, ":", m, ":", s

endprocedure

call time (5€€s(12,15,30))

195

olution: DCB arithmetics

function get_digit (Num, Pos)
return (int) (Num/Pos) %10
endfunction

function set_digit (Num, Pos,Bit)
big=(int) (Num/ (Pos*10)
little=Num%Pos
return big*Pos*10+Bit*Pos+little
endfunction

function magnitude (Num)
Pos=10
while Num>=Pos do
Pos=Pos*10
enddo
return Pos/10
endfunction

function max (A, B)
if A>B then
return A
else
return B
endif
endfunction

function add (A, B)

bigpos=max (magnitude (A) ,magnitude (B))

sum=0
carry=0
pos=1
while pos<=bigpos do
dA=get_digit (A, pos)
dB=get_digit (B, pos)
digit=dA+ (dB+carry)
if digit>1 then
digit=digit-2
carry=1
else
carry=0
endif
sum=set_digit (sum,pos,digit)
pos=pos*10
enddo
if carry==1 then
sum=set_digit (sum, pos,1)
endif
return sum
endfunction

function sub (A, B)

bigpos=max (magnitude (A) ,magnitude (B))

diff=0
carry=0
pos=1
while pos<=bigpos do
dA=get_digit (A, pos)
dB=get_digit (B, pos)
digit=dA- (dB+carry)
if digit<0 then
digit=digit+2
carry=1
else
carry=0
endif
diff=set_digit (diff,pos,digit)
pos=pos*10
enddo
if carry==1 then
output "Negative difference"
endif
return diff
endfunction

function mul (A, B)
pos=magnitude (B)
prod=0
while pos>=1 do

prod=add (prod, pos*A*get _digit (B, pos)

pos=pos/10
enddo
return prod
endfunction

function div (A, B)
pos=magnitude (A)
quotient=0
D= (int) (A/pos)
while pos>=1 do

if D>=B then
digit=1
D=sub (D, B)
else
digit=0
endif
quotient=quotient*10+digit
pos=pos/10
D=D*10+get_digit (A, pos)
enddo
return quotient
endfunction

function pow (A, B)
p=1
while B>0 do
p=mul (p,A)
B=sub (B, 1)
enddo
return p
endfunction
output "Enter 3 binary values: "
input X,Y,Z
output div (pow(X,Y),Z)

output "Oh, it was so easy, isn’t it?"

196

Solution: testing strategy

2 1011
2 5 2 v
0 9 0 v
43 0 x
-10 4 22 x
9 -2 -999 x
10 15 - x
3.5 4 - x
31 16 25 x
64 1 - “

1024 2 1410065408 x

B €{2,3,4,5,6,7,8,9,10}
N not negative integer number (N<Limit(B))

input N

input B

R=0

pP=1

while N!=0 do
R=R+ (N%B) *P

=P*10

N=(int) (N/B)

enddo

output R

197

Solution: testing strategy T

3 8
0
1

2
0 3
2 0
0 0 Undefined value.
-2 3 -8
2 4 16
2 3 0.125
2 3 -0.125
0 3
3
3

Infinite
0.2

-0.2

0.2 3 125

-0.2 -3 -125
2 0.3 Exponent is not an integer.

100 13 11 991 163 848 716 906 297 072 721

0.008
-0.008

198

Solution: syntax and semantics @

Syntax errors: Semantic errors:

Uninitialized E
input B Missing: input E

Missing ,,do" \%}6\) Multiplicative unity needed
wihle > while ——>Wilhle = R=0 2 R=1

R=R*B
E-1=E > E=E-1 —>FE-1=F

endo > enddo —>endo
output R No runtime errors

E<=0 =2 E>0

199

Solution: data representation

Population is more than 7 000 000 000.

J

Unsigned fixed point maximum is 232-1 = 4294967295.

Not representable! (33 bits)
-1:
11111111 11111111 11111111 11111111

15908:
00000000 00000000 00111110 00100100

-0606:
11111111 11111111 11111101 01100110

10000000 00000000 00000010 01001001:

-2147483063 (signed), 2147484233 (unsigned)

Solution: expression v

((9+ ((2*6)/3))>(8-7))

value: true

((2>3)&& (((3*5)=(6/2))>=(11%2)))
value: false (C language: 0)

*+1 2 - 9 6

value: 9, i.e. ((1+2)*(9-6))

+ 1 - * 2 13 / 25 5

value: 22, i.e. (1+((2*13)-(25/5)))

3012115 4 6 +| -] * /

value: 3, i.e. (30/(2*(15-(4+6))))
1112 13 * 125 5 /I =+
value: 22, i.e. (1+((2*13)-(25/5)))

201

Solution: Python v

Keyword: for, in, if, else
Comment: # Some calculation, #return z

|dentifier: Sum, N, print, z, cos # Some calculation
Constant: 0, 10, 2, 90 iiiﬁﬁ“gem“
Variable: Sum, N, 7 else;:arint("Total"+Sum)
Operator: =, +=, ==, %, +, / .o TL082 /oS (90)

Expression: Sum=0, Sum+=i, Sum==0, "Total"+Sum,
z=10%2+N/N+cos(90)

Function call: cos(90)

statement: Sum=0, for ..., if ...else..., Sum+=1,
print(...), z=10%2+N/N+cos(90)

	1. dia: Algorithms and basics of programming
	2. dia: Topics
	3. dia: Poet vs Programmer
	4. dia: Problem solving with computer
	5. dia: Problem solving with computer
	6. dia: 1: Problem definition
	7. dia: 2: Solution design
	8. dia: 3: Solution refinement
	9. dia: 4: Testing strategy development
	10. dia: 5: Program coding and testing
	11. dia: 6: Documentation completion
	12. dia: 7: Program maintenance
	13. dia: Solution refinement
	14. dia: Algorithm
	15. dia: Representation of algorithms
	16. dia: Example
	17. dia: y=sign(x)
	18. dia: y=sign(x)
	19. dia: y=sign(x)
	20. dia: y=sign(x)
	21. dia: y=sign(x)
	22. dia: y=sign(x)
	23. dia: y = sign(x)
	24. dia: Components of flowcharts
	25. dia: Base structures of algorithms
	26. dia: Modifying algorithms
	27. dia: Generalizing algorithms
	28. dia: Extending algorithms
	29. dia: Foolproofing algorithms
	30. dia: Embedding algorithms
	31. dia: Alternative algorithms
	32. dia: Alternative algorithms
	33. dia: Properties of algorithms
	34. dia: Wrong algorithms
	35. dia: Wrong algorithms
	36. dia: Wrong algorithms
	37. dia: Wrong algorithms
	38. dia: Crossing straight road on foot
	39. dia: Crossing straight road on foot
	40. dia: Logical operations and expressions
	41. dia: Defined operations
	42. dia: Order of operations
	43. dia: Order of operations
	44. dia: Exercise: order of operations
	45. dia: Exercise: flowchart
	46. dia: Exercise: flowchart
	47. dia: Exercise: flowchart
	48. dia: Exercise: flowchart
	49. dia: Pseudocode
	50. dia: Conversion
	51. dia: Conversion
	52. dia: Indentation
	53. dia: Pseudocode example
	54. dia: Exercise: Are they the same?
	55. dia: Exercise: conversion 1
	56. dia: Exercise: conversion 2
	57. dia: Exercise: conversion 3
	58. dia: Exercise: pseudocode
	59. dia: Exercise: pseudocode
	60. dia: Exercise: pseudocode
	61. dia: Exercise: pseudocode
	62. dia: Exercise: pseudocode
	63. dia: Exercise: pseudocode
	64. dia: Exercise: pseudocode
	65. dia: Exercise: congruential generator
	66. dia: Exercise: even or odd
	67. dia: Exercise: selections
	68. dia: Exercise: iterations
	69. dia: Exercise: square root
	70. dia: Exercise: primes
	71. dia: Exercise: leap days
	72. dia: Exercise: fractions
	73. dia: Exercise: sequences
	74. dia: Arrays
	75. dia: Array example
	76. dia: Exercise: signal coding
	77. dia: Exercise: number of coins
	78. dia: Searching and sorting
	79. dia: Exercise: searching
	80. dia: Exercise: sorting
	81. dia: Exercise: bank card number
	82. dia: Exercise: most frequent age
	83. dia: Exercise: finding a pattern
	84. dia: Exercise: first-fit allocation
	85. dia: Exercise: memory-map conversion
	86. dia: Exercise: best-fit allocation
	87. dia: Subroutines
	88. dia: Subroutines
	89. dia: Procedure example
	90. dia: Procedure example
	91. dia: Procedure example
	92. dia: Function example
	93. dia: Function example
	94. dia: Function example
	95. dia: Procedure vs function
	96. dia: Scope
	97. dia: Exercise: subroutine
	98. dia: Exercise: subroutine
	99. dia: Exercise: subroutine
	100. dia: Exercise: multplication table
	101. dia: Exercise: chessboard
	102. dia: Exercise: time
	103. dia: Exercise: formula
	104. dia: Exercise: DCB arithmetics
	105. dia: Recursion
	106. dia: Recursion example
	107. dia: Exercise: recursion 1
	108. dia: Exercise: recursion 2
	109. dia: Exercise: recursion 3
	110. dia: Algorithmic thinking
	111. dia: Thought-provoking question
	112. dia: Thought-provoking question
	113. dia: Testing strategy development
	114. dia: Example of testing strategy
	115. dia: Example of testing strategy
	116. dia: Example of testing strategy
	117. dia: Example of testing strategy
	118. dia: Example of testing strategy
	119. dia: The used testing strategy
	120. dia: Exercise: testing strategy
	121. dia: Exercise: testing strategy
	122. dia: Program coding
	123. dia: Programming levels
	124. dia: Language paradigms
	125. dia: Syntax and semantics
	126. dia: Syntax of programing languages
	127. dia: Exercise: Syntax and semantics
	128. dia: Interpreter and Compiler
	129. dia: Compiler
	130. dia: Interpreter
	131. dia: Integrated Development Environment
	132. dia: Integrated Development Environment
	133. dia: Data representation, Datatypes
	134. dia: Fixed-point representation
	135. dia: Fixed-point representation
	136. dia: Fixed-point representation
	137. dia: Exercise: data representation
	138. dia: Units/elements of the source code
	139. dia: Keywords, identifier, comments
	140. dia: Constants
	141. dia: Variables
	142. dia: Operators
	143. dia: Expressions
	144. dia: Exercise: expression
	145. dia: Instructions
	146. dia: Declaration, Assignment
	147. dia: Conditional statement
	148. dia: Iteration
	149. dia: Pre-conditional loop
	150. dia: Post-conditional loop
	151. dia: Pseudocode to Python
	152. dia: Python programming language
	153. dia: Exercise: Python
	154. dia: Further readings
	155. dia: Solutions
	156. dia: Solution: flowchart
	157. dia: Solution: flowchart
	158. dia: Solution: flowchart
	159. dia: Solution: leap year 1
	160. dia: Solution: leap year 2
	161. dia: Solution: three values 1
	162. dia: Solution: three values 2
	163. dia: Solution: factorial
	164. dia: Solution: binary numbers
	165. dia: Solution: flowchart
	166. dia: Solution: flowchart
	167. dia: Solution: pseudocode
	168. dia: Solution: Are they the same?
	169. dia: Solution: conversion 1
	170. dia: Solution: conversion 3
	171. dia: Solution: pseudocode
	172. dia: Solution: pseudocode
	173. dia: Solution: even or odd
	174. dia: Solution: selections
	175. dia: Solution: selections
	176. dia: Solution: iterations
	177. dia: Solution: iterations
	178. dia: Solution: square root
	179. dia: Solution: primes
	180. dia: Solution: sequences
	181. dia: Solution: sequences
	182. dia: Solution: leap days
	183. dia: Solution: searching
	184. dia: Solution: searching
	185. dia: Solution: sorting
	186. dia: Solution: sorting
	187. dia: Solution: bank card number
	188. dia: Solution: most frequent age
	189. dia: Solution: best-fit allocation
	190. dia: Solution: finding a pattern
	191. dia: Solution: subroutine
	192. dia: Solution: subroutine
	193. dia: Solution: multiplication table
	194. dia: Solution: chessboard
	195. dia: Solution: time
	196. dia: Solution: DCB arithmetics
	197. dia: Solution: testing strategy
	198. dia: Solution: testing strategy
	199. dia: Solution: syntax and semantics
	200. dia: Solution: data representation
	201. dia: Solution: expression
	202. dia: Solution: Python

