
Algorithms
and basics of programming

Imre VARGA PhD
University of Debrecen, Faculty of Informatics

version 2.2.0
11 December 2024

Topics

• How to describe and solve a problem?

• What is algorithmic thinking?

• What is an algorithm?

• What kind of properties does it have?

• How to represent an algorithm?

• What does ’program writing’ mean?

• Does programming require abstract thinking?

• Examples, examples, examples…

• And a lot of other things…

2

Poet vs Programmer

3

Good programmer:
language knowledge + algorithmic thinking

To be, or not to be, that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep

William Shakespeare

To be, and to be, that is not the question:
The 'tis nobler of outrageous fortune,
Whether slings or arrows in the mind to die
And by opposing Sea against a Arms of troubles,
Or to take end them: to sleep, to suffer

definitely not William Shakespeare

same words
different meaning

(appearance) (content)

Problem solving with computer

Closely related to software life cycle

Problem solving with computer

5

Definition of problem

Solution design

Solution refinement

Testing strategy development

Program coding and testing

Completion of documentation

Program maintenance

1: Problem definition

• What is the task?

• What is the unknown (required result)?

• What is the relationship between the given/known
information and the unknown?

• Is the given information enough to solve the problem?

• The description of the problem must be precise

• User and programmer must work together

• It leads to complete specifications of the problem, the
input data and the desired output

6

2: Solution design

• Definition of the outline of solution

• Division of the original problem into a number of
subproblems

• Subproblems are smaller and easier to solve

• Their solution will be the components of our solution

• „Divide and conquer"

• Finally the problem will be converted to a plan of
well-known steps

7

3: Solution refinement

• Previous step is in very high-level: no indication given
how subtasks are to be accomplished

• Refinement is necessary by adding more details

• Avoid any misunderstandings

• A precise method consists of a sequence of
well-defined steps called an algorithm

• Representation: pseudocode, flowchart, etc.

8

4: Testing strategy development

• It is necessary to try the algorithm with several
different combinations of input data to make sure
that it will give correct results in all cases

• These different combinations of input data are called
test case

• It covers not only normal input values, but also
extreme input values to test the limits

• Complete test cases can be used to check the
algorithm

9

5: Program coding and testing

• Description of an algorithm in previous level cannot
be executed directly by computer

• Translation needed to a programming language

• After coding, the program must be tested using our
testing strategy

• If an error has been discovered, appropriate revision
must be made, and then the test rerun until the
program gives the correct solution under all
circumstances

• Process of coding and testing called implementation

10

6: Documentation completion

• Documentation begins with the first step of
development and continues throughout the whole
lifetime of the program

• It contains:

– Explanations of all steps

– Design decisions that were made

– Occurred problems

– Program list

– User instructions

– etc.
11

7: Program maintenance

• The program can’t wear out

• Sometimes the program may fail

• The reason of a program fail is that it was never
tested for this circumstance

• Elimination of newly detected error is necessary

• Sometimes the users need new features to the
program

• Update of documentations is needed

12

Solution refinement

The algorithm

Algorithm

Plan for performing a sequence of well-understood
actions to achieve the result in finite time.

The precise definition of the actions to be performed
to accomplish each task of solution design.

Some features:

• precise, unambiguous

• specified for all possible cases

• finite sequence of actions

• achieves the result

• efficiency, elegance, easy to use, …
14

Representation of algorithms

• Natural (spoken) human language

• Flowchart

• Pseudocode

• Structogram (flowblock)

• Graphs or plots

• Algebraic

• Data-flow diagram

• Hierarchical

• Tabular

• Program language
15

Example

Function y=sign(x)

• What is it?

• What does it mean?

• What is the result?

• How is it work?

• How can we determine its value?

• If x is -4, what is the value of y?

• …

16

y=sign(x)

Verbal (natural language) representation:

1. If input value x is 0, set the result to y=0.

2. Otherwise, if x>0, let the value of this function +1.

3. Else if x is less than 0, give the function -1.

17

+1

y=sign(x)

Graph representation:

18

x

y

-1

0

y=sign(x)

‘Algebraic-like’ representation:

x

y{-1, 0, +1}

x, x>0  y=+1

x, x<0  y=-1

x=0 y=0

19

y=sign(x)

Structogram representation:

20

y=0

y=-1y=+1

x=0
yes no

yes no
x>0

y=sign(x)

Flowchart representation:

21

x=0

y=0

y=+1 y=-1

x>0

true

true

false

false

Start

End

y=sign(x)

Pseudocode representation:

if x==0 then

y=0

else

if x>0 then

y=+1

else

y=-1

endif

endif

22

y = sign(x)

Representation by real programming language
(for example, in Python):

if x == 0:

y = 0

else:

if x>0:

y = +1

else:

y = -1

23

Components of flowcharts

• Starting/finish point

• Atomic instruction

• Input/output

• Condition

• Inserting another algorithm

• We can go along arrows.

24

x<y
true false

x=1

Start End

In: y Out: y

f(x) = xN

Base structures of algorithms

Sequence Selection Iteration

25

Start

Task 1

Task 2

Task 3

End

Start

condition
true false

Task A Task B

End

Start

condition

true

false

Task End

by flowcharts

Modifying algorithms

Algorithms often go through many changes to be better.

• Generalizing:
making them applicable to more cases

• Extending:
to include new kind of situations

• Foolproofing:
making an algorithm more reliable, failsafe or robust

• Embedding:
re-using that algorithm within another algorithm

26

Generalizing algorithms

27

Original: Generalized:

gross=net*(100%+25%)

Start

End

Input: net

Output: gross

gross=net*(100%+VAT)

Start

End

Input: net, VAT

Output: gross

Extending algorithms

28

Original: Extended:

salary=hours*rate

Start

End

In: hours, rate

Out: salary

Boss?
true false

salary=hours*ratesalary=profit/2

Start

End

Out: salary

In: profit In: hours, rate

Foolproofing algorithms

29

Original: Foolproofed:

age<18
true false

Start

End

In: age

Out: child Out: adult
age<18

yes no

age<0
true false

Start

End

Out: adultOut: child

Out: error

In: age

Embedding algorithms

30

Original:
y=abs(x)

Embedded:
y=sign(x)

x<0

y=-x

true false

y=+x

Start

End

X≠0

y=abs(x)

true false

Start

End

In: x

Out: x/y Out: 0

Alternative algorithms

There are often many ways to achieve the same thing.

Algorithms can be different in structure, but they can be
equivalent in behavior.

It means for identical input data, they will produce
identical results.

Sometimes there is serious reason to prefer one
algorithm over the other, while sometimes there isn’t.

In some cases, one algorithm may be considerably
smaller, faster, simpler, or more reliable than another.

31

Alternative algorithms

32

y=sign(x)

X=0

y=0

y=+1 y=-1

x>0

true

true

false

false

Start

End

In: x

Out: y

x<0

y=-x

true false

Start

End

Out: x/y

In: x

X0
false true

Out: x

y=x

Properties of algorithms

• Complete:
all of actions must be exactly defined

• Unambiguous:
there is only one possible way of interpreting actions

• Deterministic:
if the instructions are followed, it is certain that the
desired result will always be achieved

• Finite:
the instructions must terminate after a limited

number of steps

33

Wrong algorithms

How to get to the 5th floor from 2nd by elevator?

1. Call the lift.

2. Get in.

3. Push ‘5’ button.

4. Wait.

5. If the door opens, get out.

Problems (not complete):

• If the lift goes downward…

• If the lift stops on 3rd floor for somebody…

34

Wrong algorithms

How to make fried chicken?

1. Put the chicken into the oven.

2. Set the temperature.

3. Wait until it is done.

4. Serve it.

Problems (ambiguity):

• What is the optimal temperature (50°C or 200°C)?

• Is the chicken frozen or alive?

• When is it done?

35

Wrong algorithms

How to be a millionaire?

1. Buy a lottery.

2. Choose numbers.

3. Wait for prize or be sad.

Problems (stochastic, not deterministic):

• In most of the cases we won’t be a millionaire.

• Not always works.

36

Wrong algorithms

How to use a bus?

1. Wait for the bus.

2. Get on the bus.

3. Buy a ticket.

4. Sit down.

5. Get out of the bus.

Problems (infinite):

• If we are not in a bus stop, bus won’t stop.

• If we are in a building, bus will never arrive.

37

Crossing straight road on foot

38

Problems:

• Not complete

• Ambiguous

• …

Modification:

• Generalizing

• Extending

• Foolproofing

• Completing

Create a more detailed algorithm.

End

GoWait

falsetrue
Is coming
vehicle?

Look around

Start

Crossing straight road on foot

39

End

Start

Van közeli
„zebra”?

Is traffic
lights?

Is it blinking
green?

„Siren”
vehicle?

Is near
„zebra”?

Is it red?
Go through
straightly!

Look for
other place

Go there!

Wait it
has gone

Wait a bitWait it
has gone

falsetrue

falsetrue

falsetrue

truefalsetruefalse

truefalse

truefalse

truefalse

Is coming
vehicle?

Highway,
tunnel or
bridge?

Zebra-
crossing?

Look around

Logical operations and expressions

• Logical operations

40

AND false true

false false false

true false true

OR false true

false false true

true true true

• Logical opposite

If this is true, then it is false

= == 

< < 

> > 

 != =

 <= >

 >= <

XOR false true

false false true

true true false

true = NOT false

false = NOT true

X = NOT NOT X

Defined operations

41

+ Addition, pozitive sign

- Subtraction, negative sign

* Multiplication

/ Division

% Modulo operation (remainder)

(int) Truncation to integer

[…] Array indexing

{…} Array initialization

(…) Precedence, parameter list

= Assignment

== Equality

!= Not equality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

AND Logical „and" operation

OR Logical „or" operation

NOT Negation (logical „not" operation)

, Separator of values in lists

The numbers and operations are interpreted in the decimal number system.
The Length can mean the value of a quantity, while "Length" is just a text.

Order of operations
I. Parenthesis

1. ()

II. Unary operations
1. sign (+ -)

2. NOT

3. (int)

III. Arithmetic operations
1. * / %

2. + -

IV. Relational operations
1. < <= > >=

2. == !=

V. Logic operations
1. AND

2. OR
42

Order of operations

Frequent issues:

• What is the double of the sum of 3 and 4?
2*3+4 2*(3+4)

• Is the value of variable x between 5 and 10?
5 < x < 10 (5 < x) AND (x < 10)

• Is the value of variable x equal to 5 or 10?
x == 5 OR 10 (x == 5) OR (x == 10)

• Write the size word!
output size output "size"

43

Exercise: order of operations

What is the value of the following expressions,
if initially a=10 and b=20?

• a-1/2

• 2+b / a+1

• (int)a/b

• -a-b/-2

• NOT (a <= b)

• a == 10 OR b > a AND a * b != 200

• b+-a*2!=1/2 OR (int)(a/4)==2.5

44

Exercise: flowchart

45

• How do the values of x, y and s change
during the process, if x=5 and y=4?

• What is the output in this case?

• How many times will the condition
evaluated?

• What does this algorithm do?

• How can you modify it
to calculate the product of
x and y?

Start

End

In: x, y

Out: s

y>0
false true

s=s+1

y=y-1

s=x

Link to the solution

Exercise: flowchart
• How do the values of x and y change

during the process, if the input is 10?

• What is the output, if the input is 60?

• What does this algorithm do?

• Is it work, if x=1?

• If the input is 24, how
many iterations will
be executed?

46

Start

End

In: x

y=2

y<=x
true false

true false

Out: y

x=x/y

y=y+1

x%y==0

Exercise: flowchart

• What is the output, when
the input: a=3, b=9, c=5?

• What is the output, when
the input : a=5, b=2, c=7?

• What does this
algorithm do?

47

Start

End

In: a, b, c

a>c
true false

Out: R

a>b
true false b>c

true false

R=a R=b R=c

Exercise: flowchart

• Create a flowchart for the solution of a first-degree
equation given in ax+b=0 form.
For example, a=0.5; b=-6 → x=12

• Create a flowchart to tell whether a given year is a
leap year or not.
For example, 2023 → no; 2024 → yes

• Create a flowchart to print 3 numbers (given by the
user) in decreasing order.

• Create a flowchart to calculate the factorial of a
positive integer number given by the user.

• Create a flowchart to convert a positive decimal
integer to binary notation.

48

1 2

1 2

Pseudocode

Sequence:

statement1

statement2

statement3

…

49

Selection
(branching):

if condition then

statement(true)

else

statement(false)

endif

…

Iteration
(loops):

while condition do

statement(true)

enddo

statement(false)

…

Further keywords: input, output, stop, break, function,
endfunction, procedure, endprocedure, return, call

Conversion

flowchart pseudocode

• A condition can belong to a selection or an iteration

– Iteration: if arrow (enddo) goes backward

– Branching: if no way to go back to the condition,
and the branches join (endif)

• The false branch (else) of selection can be skipped

• Repetition happens in case of true condition only

• Branches of a selection can be swapped by the
negation of the condition

– In case of some iteration and selection it can be
necessary

50

Conversion

input T

while T!=20 do

if T>20 then

T=T-1

else

T=T+1

endif

enddo

output "Ready"

51

T!=20

T=T-1 T=T+1

T>20

false

true

true

false

Start

End

In: T

Out:„Ready"

Indentation

• The lines of a sequence are started in the same
position (same level of indentation)

• The body of an iteration indented relative to while

– Between do and enddo

• The branches of a selection indented relative to if

– Between then and else as well as between
else and endif

– Between then and endif (if no else branch)

• Multiple indentation for embedded structures

52

Pseudocode example

Approximation of the value of 

Greater R leads to
more precise value

53

input R

i=0

x=0

while x<=R do

y=0

while y<=R do

if x*x+y*y<=R*R then

i=i+1

endif

y=y+1

enddo

x=x+1

enddo

output 4*i/((R+1)*(R+1))

(x , y)

R

x

y

Exercise: Are they the same?

• Do the pseudocode and the flowchart
describe the same algorithm?

54

input a

input b

c=a

if b>0 then

b=b-1

c=c-1

else

output c

endif

Start

End

In: a, b

Out: c

b>0
false true

b=b-1

c=c-1

c=a

Exercise: conversion 1

55

• Represent this flowchart with pseudocode.

X==0

y=0
y=+1 y=-1

x>0

true

true

false

false

Start

End

In: x

Out: y

Exercise: conversion 2

56

• Represent this flowchart with
pseudocode. Start

End

In: x

Out: s

x>0false true

s=s+x

x=x-1

s=0

Exercise: conversion 3

57

• Represent this flowchart with pseudocode.

x==0

x=x-1 x=x+1

x>0

true

true

false

false

Start

End

In: x

Out: x

Exercise: pseudocode

• What is the output if a=10?

• What is the output if a=-4?

• What does the algorithm do?

• What does this algorithm do?

58

input a

if a<0 then

b=-1*a

else

b=a

endif

output b
input a

if a<0 then

a=-1*a

endif

output a

Exercise: pseudocode

• How do the values of a, b and c
change during the process,
if a=7 and b=3?

• What is the output in this case?

• How many times will the
condition evaluated?

• What does this algorithm do?

• Convert it to flowchart.

59

input a

input b

c=a

while b>0 do

b=b-1

c=c-1

enddo

output c

Exercise: pseudocode

• How do the values of N and R
change during the process,
if N=73251 initially?

• What is the output in this case?

• What does this algorithm do?

Legend:

%: modulo operation
(remainder after division)

(int): integer part
(ignore fractional part)

60

input N

R=0

while N>0 do

R=R*10+N%10

N=(int)(N/10)

enddo

output R

Exercise: pseudocode

• What is the output, if N=15, B=2?

• What is the output, if N=16, B=2?

• What is the output, if N=10, B=2?

• What is the output, if N=5, B=2?

• What is the output, if N=30, B=3?

• What is the output, if N=20, B=3?

• What is the output, if N=64, B=8?

• What does this algorithm do?

61

input N

input B

R=0

P=1

while N!=0 do

R=R+(N%B)*P

P=P*10

N=(int)(N/B)

enddo

output R

Exercise: pseudocode

• How do the values of A, B and C
change during the process,
if A=24 and B=18 initially?

• What is the output in this case?

• Try it with A=30 and B=105.

• Try it with A=165 and B=48.

• What does this algorithm do?

(Euclidean algorithm)

62

input A

input B

while B>0 do

C=B

B=A%B

A=C

enddo

output A

Exercise: pseudocode

• How do the values of x, y, z and
w change during the process,
if x=12 and y=30 initially?

• What is the output in this case?

• Try it with x=14 and y=15.

• Try it with x=18 and y=18.

• What does this algorithm do?

63

input x,y

z=x*y

while y>=1 do

w=y

y=x%y

x=w

enddo

output z/x

Exercise: pseudocode

• How do the values of A and B
change during the process,
if A=24 and B=18 initially?

• What is the output in this case?

• Try it with A=30 and B=105.

• Try it with A=165 and B=48.

• What does this algorithm do?

• Create a flowchart for this
algorithm.

64

input A

input B

while A!=B do

if A>B then

A=A-B

else

B=B-A

endif

enddo

output B

Exercise: congruential generator

65

input m, a, x

x0=x

while 1==1 do

x=(a*x)%m

output x, ” ”

if x==x0 then

break

endif

enddo

What is the output of the
algorithm in case of the
following inputs?

• a=5, m=16, x=1

• a=12, m=7, x=6

• a=12, m=7, x=1

• a=16807,
m=2147483647,
x=1672552800

Exercise: even or odd

Algorithm represented by natural language:

1. Get a number.

2. Check that it is larger than one or not.

3. If it is larger, subtract two and continue with Step 2.

4. Otherwise check it zero or not.

5. If it is zero, write ‘E’.

6. Else write ‘O’.

Write this algorithm in pseudocode (and with flowchart).

66

Exercise: selections

• 3 numbers are given. Write the pseudocode
algorithm to determine the minimal value of them.

• 3 positive numbers are given. Is it possible to draw a

triangle having these 3 side lengths? Write a

pseudocode for the triangle inequality problem.

• 3 positive numbers are given. Is it possible to draw a

right-angled (90°) triangle having these 3 side

lengths?

67

Exercise: iterations

• Write the pseudocode of the algorithm, which gives
the sum of integers within the [10; 20] closed
interval.

• Write the pseudocode of the algorithm, which gives

the factorial of a positive integer given by the user.

For example: 6! → 720

• Write the pseudocode of the algorithm, which gives

the value of the xy power. The x and y values are

given by the user.

68

Exercise: square root

The square root of a number can be approximated by
the Newton-Raphson method. The following iterative
formula is needed, which converges to the solution.

• Write an algorithm, which does the iteration until the
difference between two subsequent values is less
than the threshold given by the user.

69

𝑥0 = 𝑁

𝑥𝑖+1 = 𝑥𝑖 −
𝑥𝑖
2 − 𝑁

2𝑥𝑖
lim
𝑖→∞

𝑥𝑖 = 𝑁

Exercise: primes

• Write the pseudocode of the algorithm, which tell

whether a number (integer, above 1) given by the

user is a prime or not.

• Write the pseudocode of the algorithm, which prints

those prime numbers whose product is equal to a

positive integer given by the user.

(Prime factorization)

70

Exercise: leap days

• The user tells two years (in increasing order)
between 1901 and 2099. Write an algorithm to
determine how many leap days are between the first
days of the two given years.

For example
input:
1979 2023
output:
11 leap days are between 1 January 1979 and
1 January 2023.

71

Exercise: fractions

A traditional fraction can be given by 2 integers.

• Write the pseudocode of the algorithm, which can
simplify traditional fractions.
For example: 36/90 → 2/5

• Write the pseudocode of the algorithm, which can do
operations (+ - * / separately) on fractions.
For example : 4/6+2/8→11/12; (2/3) / (4/5) → 5/6

• Write the pseudocode of the algorithm, which can
convert a decimal real number to traditional fraction.
For example : 0.375 → 3/8

72

Exercise: sequences

The Fibonacci sequence starts with 0 and 1, then each
further element is the sum of the previous 2 values.
• Write the pseudocode of the algorithm, which …

… print the first 100 elements of Fibonacci sequence.
… print the elements of the sequence below 1000.

The Collatz conjecture defines a sequence, started by
an arbitrary positive integer. Each further element
(ai+1) is affected by the prior value (ai). If ai is even,
then ai+1=ai/2, otherwise ai+1=3ai+1.
• Write the algorithm generating all elements until
ai=1, strated by a user-given value.

73

Arrays

• Sequence of N elements, where all item is accessible
by an index (integer, between 0 and N-1)

N=5

A[]={2,93,4,-1,8}

sum=0

i=0

while i<N do

sum=sum+A[i]

i=i+1

enddo

output sum/N

74

initialization:
A[0]=2, A[1]=93, …, A[4]=8

Array example

• 5 numbers in array: reading, storing, writing back in
reverse order

N=5

A[]={0,0,0,0,0}

i=0

while i<N do

input A[i]

i=i+1

enddo

while i>0 do

i=i-1

output A[i], ” ”

enddo

75

A[0] A[1] A[2] A[3] A[4]

N=5

i

Exercise: signal coding

Given an array of N elements, where all the values are
0s and 1s (bits) in arbitrary order.

• Generate Manchester code for these values, so if a
value is 1, then write a zero and a one, otherwise a
one and a zero.

• Generate NRZI codes for these values, so first write a
zero (independently of the first array element). After
then if the given array value is 0 write the previously
written value otherwise the opposite of the previous
value.

76

Exercise: number of coins

Create an algorithm with pseudocode, which can tell
the minimal number of required coins to pay an
amount of money given by the user.

• Possible coins: 1, 2, 5, 10, 20, 50, 100

• Possible coins: 5, 10, 20, 50, 100, 200
(applying rounding rule of shops)

77

Searching and sorting

• Searching
Is the given value in the array (and if yes, where)?

– Linear search (with/without sentinel), binary
search, etc.

• Sorting
Rearrange elements of array in increasing/decreasing
order (in their original location).

– Selection sort, insertion sort, bubble sort, radix
sort, quick sort, heapsort, etc.

78

Exercise: searching

Suppose that A is an initialized array having N elements.

• Write a pseudocode to tell whether a value given by
the user is stored in the (unsorted/sorted) array.
(linear search with/without sentinel, binary search)

• How the number of steps depends on N?

• Write a pseudocode to tell the value of the
largest/smallest element of the array.

• Write a pseudocode to tell the index of the first
occurrence of the largest element of the array.

• How can we find the second greatest element?

79

Exercise: sorting

• How to swap the values of two variables?

Suppose that A is an initialized array having N elements.

• Write a pseudocode to sort the elements of the array
in increasing order …
… according to the selection sort algorithm
… according to the insertion sort algorithm
… according to the bubble sort algorithm
… according to the radix sort algorithm

• How the number of steps depends on N?

• How to make only one sorted array from all the
elements of two sorted arrays?

80

Exercise: bank card number

Bank Card Number (BCN): 𝑎1, 𝑎2… , 𝑎16 0 ≤ 𝑎𝑖 ≤ 9

Replace each odd-position digit of a BCN with its double or
if this product is greater than 9 reduce it by 9. Then
calculate the sum of all digits. The BCN is valid if and only if
this sum is dividable by 10.

So, a BCN is valid if

෍

𝑖=1

16

𝑖%2 + 1 ∗ 𝑎𝑖 −
𝑎𝑖
5

∗ 𝑖%2 ∗ 9 % 10 == 0

The 16 digits of a BCN are stored in an array (each digit in a
separate array element). Write pseudocode that checks the
validity of a BCN.

81

Exercise: most frequent age

• The number of inhabitants of a town below 18 years
is denoted by N. The ages of each child are stored in
an array called Age. Write an algorithm in
pseudocode, which tells which age is the most
frequent.

For example:
N=15

Age[]={1,3,2,0,5,10,17,3,10,0,3,2,15,1,3}

The most children is 3 years old.

Exercise: finding a pattern

• Two arrays are given. Array A has N elements and
array B has M elements. Write a pseudocode to
represent the algorithm determining whether all the
elements of array B (continuously, in the same order)
can be found in array A or not.

For example:

A

B

83

2 3 9 4 1 8 3 9 4 8 6

3 9 4 8

Exercise: first-fit allocation

The elements of the array (called M) illustrate the free
and occupied memory cells. Their number is denoted
by N. M[i]=1 means that the ith memory cell is
occupied and M[i]=0 means that the ith cell is free.

• Write a program, which asks for a positive integer
number (S) and tells the index of the first cell of the
first memory area containing at least S free cells
continuously.
For example, in the case of S=4, the answer is 12.

84

0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Exercise: memory-map conversion

The elements of the array (called M) illustrate the free
and occupied memory cells. Their number is denoted
by N. M[i]=1 means that the ith memory cell is
occupied and M[i]=0 means that the ith cell is free.

• Write a program to replace the original 1s to 0s and
to replace the original 0s to positive integers showing
the number of 0s in the original continuous
environment of the given cell.

85

0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 2 0 3 3 3 0 0 0 1 0 0 5 5 5 5 5 0 2 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Exercise: best-fit allocation

The elements of the M array illustrates memory cell
allocations. There are N elements. M[i]=0 mean that
the ith memory cell is occupied. M[i]=x (x>0)
means the ith cell is a part of a continuous memory
area of x free cells.

• Write a program, which asks a positive integer
number (S) and tells what is the index of the first cell
of the first occurance of the smallest memory area
containing at least S free cells (if exists)!
For example, in the case of S=3, the answer is 9.

86

1 0 5 5 5 5 5 0 0 4 4 4 4 0 1 0 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Subroutines

Separate unit of algorithms

Tool of recycling and abstraction

• Recycling: not necessary to type the same code-part
at different points of the code. We can teach some
activity and then use as a basic instruction. An
example of embedding.

• Abstraction: not just only one activity, but a set of
similar activities, specified by parameters. Realization
of generalization.

87

Subroutines

Two sorts of subroutines

• Function: a sequence of instructions in order to
determine a value somewhere in the code
E.g., What is the cosine of 45°?
x=cos(45)

• Procedure: a sequence of activities to do something
at a given point of the code (no return value)
E.g., Sort the N elements of the A array increasingly.

call SortArray(A,N)

88

Procedure example

Definition of procedure to print the * character N-times

procedure STARS (N)

while N>0 do

output "*"

N=N-1

enddo

endprocedure

89

name of procedure (formal) parameter

Instructions, activity to do

Procedure example

Calling the previous procedure within a code

output "How many stars you need?"

input S

call STARS (S)

output "I hope, you like it."

90

(actual) parameter

call of procedure (execution of its instructions)

Procedure example

Another procedure to tell the sign of a number
procedure SIGN (x)

if x>0 then

output "Positive"

else

output "Not positive"

endif

endprocedure

output "Give a number"

input N

call SIGN (N)
91

d
efin

itio
n

 o
f p

ro
ced

u
re

m
ain

 u
n

it

execution starts here

Function example

Definition of a function to determine the
maximum of two values

function MAX(A, B)

if A>B then

R=A

else

R=B

endif

return R

endfunction
92

name of function (formal) parameters

Instructions to determine the desired value

Instruction to give back the results

Function example

Calling the previous function within a code

output „Give two numbers"

input a, b

c = MAX (a,b)

output „The maximum: ", c

93

(actual) parameters

call of function (determination of a value)

The returned value is stored in variable c.

Function example

Another function to calculate the absolute value
function ABS (x)

if x<0 then

x=-1*x

endif

return x

endfunction

output „Give a number"

input N

A = ABS (N)

output „the absolute value is", A
94

d
efin

itio
n

 o
f fu

n
ctio

n

m
ain

 u
n

it

execution starts here

Procedure vs function

95

procedure Avg(x,y,z)

a=(x+y+z)/3

output a

endprocedure

call Avg(2,5,4)

The average is
on the screen.

function Avg(x,y,z)

a=(x+y+z)/3

return a

endfunction

output Avg(2,5,4)

The average is
on the screen.

≠

if Avg(2,5,4)<4 then

output "Week!"

else

output "Good job!"

endif

not

Scope

• Program units (functions, procedures, main program)
have own variables

• The names of a variables in two separate program
units can refer to different variables

– Even if the names are the same

96

function F(ABC)

return ABC+1

endfunction

ABC = 3

ABC = F(7)

ABC = F(ABC)*2

Two separate variables

Exercise: subroutine

97

• How the values of variables are
changing during the execution, if
the user gives 1 and 4 as inputs?

• What is the output in this case?

• What does the function do when
the parameter is a positive
integer?

function PP(a)
b=0
while b<a do
a = a-1
b = b+1

enddo
if a==b then
return 1

else
return 0

endif
endfunction

input a, b
a = a*2
b = PP(a+b)+1
output b

Exercise: subroutine

function CHANGE(a)

return 1-a

endfunction

input Max

i=0

j=0

while j<Max do

i = CHANGE(i)

j = j+i

output j, ” ”

enddo

output j
98

• What is the output if input is 5?

• What does the program do?

• What is the role of the function?

Exercise: subroutine

function min(x,y)

if x<y then

return x

endif

return y

endfunction

function even(N)

return 1-N%2

endfunction

C[]={2,3}

input x,y

N=(min(min(x,C[1]),x-3)+C[even(y)]*5)%6

output N

99

• What is on the screen,
when the user enters 4 and 5?

Exercise: multplication table

• Write a pseudocode, which contains a procedure to
to display the NxN multiplication table.
For example, if N=4:

Make a new line:
output NEWLINE

100

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

Exercise: chessboard

• Write a pseudocode, which contains a procedure to
create an NxN chessboard pattern of ’0’s and ’1’s.
For example

if N=3: if N=4:

101

Exercise: time

Write an algorithm with pseudocode as follows:

• The code has to contain a function, which has 3
parameters (hour, minute, second) and based on
this it tells which second of the day is the time.

• The code has to contain a procedure which has an
integer parameter (it is the number of seconds in a
day) and the procedure prints out the time in
hour:minute:second format.

• Call these subroutines to check they work well.

102

Exercise: formula

• Write a pseudocode function, which has only one
parameter (N) and returns with the factorial of the
value x given by the following formula. Call the
function in the main program unit for a positive
integer number given by the user and print out the
return value of the function.

𝑥 =
σ𝑖=1
𝑁 2𝑖 − 1

𝑁2

103

Exercise: DCB arithmetics

We would like to make mathematical operations with
binary numbers, but the pseudocode uses only decimal
numbers. Let’s apply a "trick". The operations should
use decimal values containing only 0 and 1 digits,
similar to binary numbers. Use subroutines.

• Write a pseudocode, which is able to calculate the
value of the following formula, where the values are
non-negative binary values given by the user.

𝑄 =
𝑋𝑌

𝑍

104

…
…
call proc()
…
…

Recursion

• When a subroutine calls itself

105

…
call proc()
…

…
…
…

…
call proc()
…

main unit

a replica of
subroutine

a replica of
subroutine

a replica of
subroutine

execution time order

Recursion example

• Factorial (N!):
– If the number (N) is 1, then the factorial is 1.
– Otherwise, N! = N * (N-1)!

function fact(N)

if N==1 then

return 1

else

return N*fact(N-1)

endif

endfunction

output fact(5)

106

5!

5*4!

5*4*3!

5*4*3*2!

5*4*3*2*1!

5*4*3*2*1

5*4*3*2

5*4*6

5*24

120

120

Exercise: recursion 1

procedure CONV (N , B)

if N!=0 then

call CONV ((int)(N/B) , B)

output N%B

endif

endprocedure

call CONV (16 , 8)

output NEWLINE

call CONV (19 , 2)
107

• Try to execute the algorithm.
• What is the output?
• How long is the call chain?
• Where is the reverse order

of digits coded?

integer part of the quotient

Exercise: recursion 2

• What is the output of the following recursive
algorithm?

procedure something(B,E,P)

if E>0 then

call something(B,E-1,P*B)

else

output P

endif

endprocedure

call something(5,3,1)

108

Exercise: recursion 3

• Write an algorithm, which asks for numbers from the
user until 0 is given and after then it prints all the
values (except the 0) in reverse order. The cardinality
of numbers is unknown. Don’t use any array in the
algorithm.

For example:

input: 1, 4, 65, -9, 2, 9, 2, 0

output: 2, 9, 2, -9, 65, 4, 1

109

Algorithmic thinking

Expectations:

• Knowledge (learning)

• Experiences (practice)

• Creativity, intelligence (capability, talent)

No guide (algorithm) on how to write algorithms.

The ability of algorithmic thinking cannot be acquired
through conning or pure memorizing.

No programmer without algorithmic thinking.

110

Thought-provoking question

• What will the user enter? (input)

• What must the user see? (output)

• Does anything need to be stored, or data
remembered? (variable)

• Has a variable already been assigned a value before
we use it? (initial value)

• How should a value be calculated? In what order and
which operations are required? (expression
evaluation)

• Are there any steps that are only necessary
sometimes in certain cases? (branching)

111

Thought-provoking question

• Do I need to repeat certain steps? (cycle)

• When should I perform something? (condition)

• Is it necessary to have all situations at the same time
or is one sufficient? (logical operator)

• Do I need to handle a series of connected values?
(array)

• Is there a group of activities that can be required in
multiple places of the code? (procedure, function)

• What are the values ​​that influence the operation of a
group of activities? (parameter)

112

Testing strategy development

Example of testing strategy

• Solving second degree equation

• General form: ax2 + bx + c = 0

• Input parameters: a, b, c

• Solution:

Does it work for all input?

• What is the output
if a=1, b=2 and c=1?

• What is the output
if a=1, b=2 and c=2?

114

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x2 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

Example of testing strategy

115

d = b2-4ac

x2 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d==0true false

x = -b/2a

out: x out: no solution

Does it work for all input?

• What is the output
if a=0, b=2 and c=6?

Example of testing strategy

116

d = b2-4ac

x2 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d==0true false

x = -b/2a

out: x out: no solution

a==0false true

x = -c/b

out: x

Does it work for all input?

• What is the output
if a=0, b=0 and c=1?

Example of testing strategy

117

It works for all input.

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d==0true false

x = -b/2a

out: x out: no solution

a==0false true

x = -c/b

out: x

b==0true false

Example of testing strategy
input a, b, c

if a==0 then

if b==0 then

output "error"

else

x=-c/b

output x

endif

else

d=b*b-4*a*c

if d>0 then

x1=(-b+sqrt(d))/(2*a)

x2=(-b-sqrt(d))/(2*a)

output x1, x2

else

if d==0 then

x=-b/(2*a)

output x

else

output "error"

endif

endif

endif

118

Good solution in pseudocode:

It works for all input.

To reach this state we have had
to test the algorithm with
more different input
combinations the so-called
test cases and then we have
had to modify the algorithm.

We have used testing strategy.

The used testing strategy

119

a b c output Comment OK

3 7 2 -1/3 ; -2 general case (not zero, d>0) ✓

0 2 6 -3 a is zero (first degree) ✓

2 0 -8 2 ; -2 b is zero (x2=-c/a) ✓

1 2 0 0 ; -2 c is zero (x[ax+b]=0) ✓

0 0 1 "error" more zeros (not equation) ✓

1 2 2 "error" d<0 (no solution) ✓

1 2 1 -1 d=0 (only one solution) ✓

-2 -10 -1 -4.9 ; -0.1 negative inputs ✓

2.3 -4.2 0.83 1.6 ; -0.23 not integer values ✓

10-5 105 1 -10-5 ; 1010 extreme small/large values ✓

test cases

Exercise: testing strategy

Conversion of number notation

• Create a testing strategy for
this algorithm.

• Which values of N and B are
acceptable?
(When does the algorithm
give expected result?)

120

input N

input B

R=0

P=1

while N!=0 do

R=R+(N%B)*P

P=P*10

N=(int)(N/B)

enddo

output R

Exercise: testing strategy

• You have a pseudocode, which has two finite input
values (x and y) and prints out the value of xy. The
algorithm must work for any integer y values and all
real numbers x. If the theoretical/mathematical
result is an undefined value or not a finite value, an
error message is required. If y is a number which is
not an integer, an error message is also required.

121

𝐟 𝐱, 𝐲 = 𝒙𝒚

𝑥 ∈ ℝ \ {∞}
𝑦 ∈ ℤ \ {∞}

𝑓(𝑥, 𝑦) ∈ ℝ \ {∞}

Program coding

Creating source code
in real programming language

Programming levels

123

…

4GL SELECT name FROM people WHERE age=20

3GL if (x==0) printf("zero\n");

2GL mov eax, DWORD PTR [rbp-4]

1GL 10001011 01000101 11111100

tim
e

H
ig

h
-l

ev
el

p
ro

gr
am

m
in

g
la

n
gu

ag
es

Lo
w

-l
ev

el
p

ro
gr

am
m

in
g

la
n

gu
ag

es

machine
code

assembly

Language paradigms

124

Programming

Imperative

Procedural
Object-

oriented

Declarative

Functional Logical Dataflow

Other

• R
• LISP
• Haskell

• Prolog• Java
• C++
• Smalltalk

• C
• Pascal
• Fortran

• Labview
• Verilog

Syntax and semantics

Syntax: Formal rules of the program text.

Semantics: Does it describe the desired algorithm?

Example (sign of a value):

function sign (a)

b=a

if a>0 then

b=-1*a

enidf

return a/b

endfunction

125

Syntax error (endif)

Semantic error (a<0)

Runtime error (if /0)

Syntax of programing languages

REAL FUNCTION FACT(N)

 FACT=1

 IF (N .EQ. 0 .OR. N .EQ. 1) RETURN

 DO 20 K=2,N

20 FACT=FACT*N

 RETURN

 END

126

FUNCTION FACT(N:INTEGER):REAL;

BEGIN

 IF N=0 THEN FACT:=1

 ELSE FACT:=FACT(N-1)*N;

END;

int Fact(unsigned N){

 return N<=1?1:N*Fact(N-1);

 }

Fortran:

Pascal:

C:

def Fact(N):

f=1

for i in range(1,N+1):

f*=i

return f

Python:

APL: LabView:

Exercise: Syntax and semantics

• Find syntactic and semantic errors of the following
algorithm written in pseudocode to determine the
not negative integer (E) power of the base (B).

input B

R=0

wihle E<=0

R=R*B

E-1=E

endo

output R

127

Interpreter and Compiler

• Processors understand only machine codes

– High-level source codes need some conversion

• Language implementations use different techniques

– Compiler
E.g.: Pascal, C, C++, Labview

– Interpreter
E.g.: PHP, JavaScript, Python

– Combined (bytecode to virtual machine)
E.g.: Java, C#

128

Compiler

• A software that creates a so-called object-code from
the source code

• Compiler makes lexical-, syntactic- and semantic
analysis, code generation

– Source codes have to be syntactically correct

• A so-called linker creates executable from object
codes, and the loader load it to RAM to run

• Compilation once, execution later several times

– Compilation and execution is separate

• Execution is fast

129

Interpreter

• Direct execution

– Analysis and generation at run time

• No object code

• Interpretation of instructions one by one

– Single instruction as input

• Syntactically incorrect code can be executed

– Errors may be hidden

• Interpreter is needed for any execution

– Interpretation and execution belong together

• Execution is often slow
130

Integrated Development Environment

• A (graphical) program to make the software
development easy and quick, provides tools/help to
the programmer

• IDE contains:
– Language-sensitive editor
– Compiler/interpreter, linker, loader
– Debugger
– Version control tool
– Project management
– Simulator

131

Integrated Development Environment

Most often used IDEs:

• Code::Blocks

• Dev-C++

• NetBeans

• Eclipse

• PyCharm

• MS Visual Studio

• Jbuilder

• MPLAB

132

Data representation, Datatypes

• Every data is stored in the memory in binary
• Different datatypes are used

– with different representation
– with different data-domain
– with different operations

• Most often applied data types:
– integer (5)

00000000000000000000000000000101

– real (5.)
0100000000010100

– string ("5")
0011010100000000

– char (’5’)
00110101

133

Fixed-point representation

How the computer stores (signed) integer numbers?

Steps:

• Remember the sign of the given value and convert
the absolute value of the integer into binary

• Add leading zeros (if needed) to reach given number
of digits (bits)

• If the sign is -1 (so if the value was negative) then

– Change every bit to the opposite

– Add 1 to the result in binary

• The fixed-point representation of the integer is ready

134

Fixed-point representation

135

S=-1
yes no

S=sign(N)

Start

End
In: N

Out: result

N=abs(N)

Convert N
to binary

Extend by
leading zeros

Change to
opposite bits

Add 1
to the result

+195
11000011

00000000 00000000 00000000 11000011

-195
+195

11000011
00000000 00000000 00000000 11000011
11111111 11111111 11111111 00111100
11111111 11111111 11111111 00111101

Examples

0
0

00000000 00000000 00000000 00000000

MSB = sign bit

Fixed-point representation

Representation
length

Minimum
value

Maximum
value

U
n

si
gn

e
d 1 byte 0 255

2 byte 0 65 535

4 byte 0 4 294 967 295

Si
gn

e
d

1 byte -128 127

2 byte -32 768 32 767

4 byte -2 147 483 648 2 147 483 647

136

Exercise: data representation

• Give the approximate population of the Earth with
32-bit fixed-point representation.

• Write the value of -1 with 32-bit fixed-point
representation.

• Which 4 bytes long fixed-point representation bit
sequence means: 15908?

• Which 4 bytes long fixed-point representation bit
sequence means: -666?

• What is the meaning of the following 4 bytes long
fixed-point representation bit sequence?
10000000 00000000 00000010 01001001

137

Units/elements of the source code

• Character set

• Lexical units

• Syntactic units

• Instructions

• Program units

• Compiling units

• Program

138

C
o

m
p

lexity in
crease

We use different
characters, symbols,

special keywords,
expressions, and rules

in each language.

Keywords, identifier, comments

• Keyword
Sequence of characters with special meaning
E.g.: if, else, while, do, for, return

• Identifier
Sequence of characters to give name to the
programmer’s own tools/objects
E.g.: i, Count, var2, abs_val

• Comment
Text in the code not for the compiler/interpreter but
for the programmer (reader human) as remark

139

Side_A = 5*cos(60)

Examples in C language.

Constants

• Constants (literals) means fix value in the source
code that cannot be altered by the program at
runtime

• It has type and value

– The value is defined by itself

– The type is defined by the form

• Special: Named constant is a fix value with identifier

• Examples
-12.34, 5, .5, 5., 0x1F, ’F’, "F", "apple"

while x>100 do

140

X = A + 23

Variables

• A memory location with identifier to store a value

• Most important tool in procedural languages

• Its components

– Name (identifier)

– Value (bit series in the RAM)

– Attributes (type)

– Address (RAM location)

• Example (in C language)
int A = 10;

float Jump1 = 11.5;

141

Operators

• Represents simple operations on data

• Can be unary, binary or ternary

• General groups of operators

– Arithmetic (E.g.: +, -, *, /, %)

– Comparison (E.g.: >, <, ==, >=, <=, !=)

– Logical (E.g.: &&, ||, !)

– Bitwise (E.g.: &, |, ^, ~, <<, >>)

– Assignment (E.g.: =, +=, *=)

– Other (E.g.: *, &, ? :, ., ->)

142

X = A + 23

Expressions

• Operators & Operands & Parentheses

• Operand can be: constant, variable, function call

• An expression has type and value (evaluation)

• Form can be

– Infix (preference/strength is necessary)
E.g.: 4 + 3 * 2

– Prefix
E.g.: + * 3 2 4

– Postfix
E.g.: 4 3 2 * +

143

Exercise: expression

• What is the value of this infix expression?
9+2*6/3>8-7

• What is the value of this expression (in C language)?
2>3&&3*5-6/2>=11%2

• What is the value of this prefix expression?
*; +; 1; 2; –; 9; 6

+; 1; -; *; 2; 13; /; 25; 5

• What is the value of this postfix expression? Convert
them into infix form.
30; 2; 15; 4; 6; +; -; *; /

1; 2; 13; *; 25; 5; /; -; +

144

just separator

Instructions

Unit of programs, that can be grouped as

• Declaration

• Assignment

• Conditional statement

– 2 branch

– More branch

• Iteration

– Conditional loop

– Counted loop

• Other
145

not executable

executable

Declaration, Assignment

Declaration

• Associate identifier and type

• RAM allocation, (sometimes) initialization of variable

• int i = 0;

• float Weight;

Assignment

• Giving value to a variable

• i = 6;

• Weight = 80.3 * i;

146

Conditional statement

Choosing from 2 execution branch

• Two separate instruction block

• Skip or execute an instruction block

• if(N<0.0) S=1;

else S=0;

Selecting from several execution branch

• switch (i){

 case 1: X=1; break;

 case 2: X=10; break;

 default: X=100;

}
147

Iteration

Repetition of instructions, activities several times

From operational point of view limiting cases

• Empty loop (the body/core never executed)

• Infinite loop (never stops, semantic error)

Types of iterations

• Conditional loop

– Pre-condition

– Post-condition

• Counted loop

• Other (Infinite, Combined)

148

Pre-conditional loop

The head contains a condition

Semantics

1. Evaluation of condition

2. If it is true, body is executed and evaluate again (go 1.)

Else loop ends, go to next instruction behind the loop

It can be empty loop
if condition is false initially

149

Body must change the condition

while (x<2){

i=i+1;

x=x-2;

}

Post-conditional loop

The end contains the condition

Semantics

1. Execute the body once

2. Evaluation of condition

3. If it is true (false), execute again the body (go Step 1.)
Else loop ends, go to next instruction behind the loop

It cannot be empty loop
body is executed at least once

150

do{

i=i+1;

x=x-2;

}

while (x<2);

Pseudocode to Python

Pseudocode:

input a

if a>0 then

b=a

else

b=-1*a

endif

while b!=0 do

b=b-1

enddo

output b

151

Python:

a = int(input())

if a > 0:

b = a

else:

b = -1*a

while b != 0:

b = b-1

print(b)

Python programming language

152

Exercise: Python

Find the occurrence of the following concepts in this
Python code.
• keyword
• comment
• identifier
• constant
• variable
• operator
• expression
• statement

153

Some calculation

Sum=0

for i in range(N):

Sum+=i

if(Sum==0):

print("Total"+Sum)

else:

z=10%2+N/N+cos(90)

#return z

Further readings

• Simon Harris, James Ross: Beginning algorithms,
(Wiley Publishing, 2006)

• Narasimha Karumanchi:
Data Structures and Algorithmic Thinking with Python,
(CareerMonk, 2017)

• Peter Wentworth, Jeffrey Elkner, Allen B. Downey and
Chris Meyers:
How to Think Like a Computer Scientist: Learning with
Python 3, (online, 2012)

• Metrowerks CodeWarrior: Principles of Programing
(online, 1995)

154

Solutions

Solution: flowchart

• Debugging:

• Output: 9

• 5 expression evaluations

• Addition: s=x+y

• Modifications (3 alternatives):
s=s+1 → s=s+x s=x → s=0
s=s+1 → s=s+x y>0→ y>1
s=s+1 → s=s+x Out: s → Out: s-x

156

Start

End

In: x, y

Out: s

y>0
false true

s=s+1

y=y-1

s=x

x y s

5 4 ?

5 4 5

5 3 6

5 2 7

5 1 8

5 0 9

Back to the Exercise

x y

10 ?

10 2

5 2

5 3

5 4

5 5

1 5

Solution: flowchart

• Debugging:

• Output in
case of 60:
2 2 3 5

• Prime factorization

• No output

• Number of
repetitions: 5

157

Start

End

In: x

y=2

y<=x
true false

x%y==0
true false

Out: y

x=x/y

y=y+1

Solution: flowchart

• Input: a=3, b=9, c=5
Output: 9

• Input: a=5, b=2, c=7
Output: 7

• Maximum of numbers.

158

Start

End

In: a, b, c

a>c
true false

Out: R

a>b
true false b>c

true false

R=a R=b R=c

Solution: leap year 1

• Gregorian calendar

159

Start

End

In: y

y%4==0
true false

false true

Out: "yes"

y%100==0

Out: "no"

true false
y%400==0

Solution: leap year 2

• Gregorian calendar

160

Start

End

in: y

true false

out: "leap" out: "not leap"

y%400==0 OR
(y%4==0 AND

y%100!=0)

Solution: three values 1

• 3 values
in decreasing order

161

Start

Vége

a>c
true false

a>b
true false b>c

true false

in: a, b, c

out: a,b,c

true false

out: a,c,b out: b,a,c out: b,c,a out: c,a,b out: c,b,a

b>c
true falsea>b

Solution: three values 2

• 3 values
in decreasing order

162End

falsetrue

in: A,B,C

B>X

out: X, A+B+C-X-Y, Y

X=A

Start

X=B

falsetrue
C>X

X=C

falsetrue
B<Y

Y=A

Y=B

falsetrue
C<Y

Y=C

Solution: factorial

163

Start

End

In: num

num >1
true false

tmp=1

tmp=tmp*num

num=num-1
Out: fact

fact=tmp

Solution: binary numbers

• Conversion from decimal to binary (10 → 2)
E.g.: 2110 = 101012

164

Start

End

In: num

num>0
true false

rem=num%2

num=(int)(num/2)

Out: rem

Read output
backward

Solution: flowchart

• Binary incrementation
E.g.: 1010111 → 1011000

165

End

falsetrue

in: N

T%D!=0

out: T+D/10

T=N

Start

D=10

T=T-D/10

D=D*10

Solution: flowchart

• Collatz-conjecture

166

𝑎𝑛+1 =

𝑐,
𝑎𝑛/2,

3𝑎𝑛 + 1,

𝑖𝑓 𝑛 = 0
𝑖𝑓 𝑛 > 0 𝑎𝑛𝑑 𝑎𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑖𝑓 𝑛 > 0 é𝑠 𝑎𝑛 𝑖𝑠 𝑜𝑑𝑑

Start

End

In: a

a==1
true false

a=a/2 a=3*a+1

Out: "…"a%2=0
true false

Out: a

Solution: pseudocode

167

• Input: 10; Output: 10

• Input : -4; Output : 4

• Absolut value of a number

• Absolut value of a number

input a

if a<0 then

b=-1*a

else

b=a

endif

output b
input a

if a<0 then

a=-1*a

endif

output aAlternative algorithms!

Solution: Are they the same?

168

• Different meaning
(not alternative algorithms)

input a

input b

c=a

if b>0 then

b=b-1

c=c-1

else

output c

endif

Start

End

In: a, b

Out: c

b>0false true

b=b-1

c=c-1

c=a

Branch
condition

Loop
condition

Solution: conversion 1

Sign functions:
input x

if x==0 then

y=0

else

if x>0 the

y=+1

else

y=-1

endif

endif

output y
169

x=0

y=0
y=+1 y=-1

x>0

true

true

false

false

Start

End

In: x

Out: y

Solution: conversion 3

Always zero output:
input x

while x!=0 do

if x>0 then

x=x-1

else

x=x+1

endif

enddo

output x

170

X==0

x=x-1 x=x+1

x>0

true

true

false

false

Start

End

In: x

Out: x

Solution: pseudocode

171

• Debugging:

• Input: a=7, b=3; Output: 4

• 3 iteration steps

• 4 expression evaluations

• Calculation of difference
c=a-b

input a

input b

c=a

while b>0 do

b=b-1

c=c-1

enddo

output c

a b c

7 3 ?

7 3 7

7 2 6

7 1 5

7 0 4

Solution: pseudocode

172

• Debugging:

• Output: 15237

• Change the order of digits of an
integer.

input N

R=0

while N>0 do

R=R*10+N%10

N=(int)(N/10)

enddo

output R

N R

73251 0

7325 1

732 15

73 152

7 1523

0 15237

Solution: even or odd

input num

while num>1 do

num=num-2

enddo

if num==0 then

output "Even"

else

output "Odd"

endif

173

num>1

num=num-2

num==0

true

true

false

false

Start

End

In: num

Out: "Even" Out: "Odd"

Solution: selections
input a,b,c

if a<b then

if a<c then

output a

else

output c

endif

else

if b<c then

output b

else

output c

endif

endif

174

input a

input b

input c

if a<b AND a<c then

output a

else

if b<c then

output b

else

output c

endif

endif

input a,b,c

if a<=b AND a<=c then

output a

stop

endif

if b<=a AND b<=c then

output b

stop

endif

if c<=b AND c<=a then

output c

endif

input a,b,c

if c<a AND c<b then

output c

stop

endif

if b<a then

output b

stop

endif

output a

input a,b,c

if a<b then

d=a

else

d=b

endif

if c<d then

output c

else

output d

endif

input a,b,c

min=a

if b<min then

min=b

endif

if c<min then

min=c

endif

output min

M
in

im
u

m
 o

f 3
 n

u
m

b
e

rs: 6
 d

ifferen
t so

lu
tio

n
s

Solution: selections

• Triangle inequality

input a, b, c

if a<b+c AND b<c+a AND c<a+b then

output "Drawable triangle"

else

output "Not drawable triangle"

endif

175

a b

c

Solution: iterations
input B

input E

if E==0 AND B==0 then

 output "Undefined!"

 stop

endif

if E<0 then

 if B!=0 then

 B=1/B

 else

 output "Infinity!"

 stop

 endif

 E=E*(-1)

endif

P=1

while E>0 do

P=P*B

E=E-1

enddo

output P

176

Raising to power (P=BE)

General solution:
𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦/𝑧

Solution: iterations
output "Base"

input B

output "Exponent numerator"

input EN

if EN!=0 then

output "Exponent
denominator"

input ED

else

ED=1

endif

if B==0 AND EN==0 then

output "Undefined!"

stop

endif

if ED<0 then

ED=-1*ED

EN=-1*EN

endif

if EN<0 then

if B!=0 then

EN=-1*EN

B=1/B

else

output "Intinity!"

stop

endif

endif
177

T1=EN

T2=ED

while T2>0 do

T3=T2

T2=T1%T2

T1=T3

enddo

EN=EN/T1

ED=ED/T1

P=1

TE=EN

while TE>0 do

P=P*B

TE=TE-1

enddo

if ED==1 do

output P

stop

endif

if P<0 AND ED%2==0 then

output "No real root!"

stop

endif

if P<0 AND ED%2==0 then

output "No real root!"

stop

endif

R=0

D=1

if P<0 then

S=-1*P

else

S=P

endif

Th=0.0000001

while S>Th do

A=1

TE=ED

while TE>0 do

A=A*R

TE=TE-1

enddo

F=0

if D==1 AND A>P then

F=1

endif

if D==-1 AND A<P then

F=1

endif

if F==1 do

S=S/2.0

D=-1*D

endif

R=R+D*S

enddo

output R

Solution: square root

output „Which number?"

input Num

output „What is the threshold?"

input Threshold

Old=Num

Diff=Num

while Diff>Threshold do

New=Old-(Old*Old-Num)/(2*Old)

Diff=Old-New

Old=New

enddo

output „Square root:" Old

178

Solution: primes

179

• Is prime?

input N

S=2

while S<N do

if N%S==0 then

output "no"

stop

endif

S=S+1

enddo

output "yes"

Ready, end!

Solution: sequences

• First 100 elements of Fibonacci-sequence
F1=0

F2=1

output F1, F2

N=2

while N<=100 do

F3=F1+F2

output F3, " "

F1=F2

F2=F3

N=N+1

enddo

180

F1=0

F2=1

output F1, F2

N=2

while N<=100 do

F1=F1+F2

F2=F1+F2

output F1, " "

output F2, " "

N=N+2

enddo

Solution: sequences

• Elements of Fibonacci-sequence below 1000

F1=0

F2=1

output F1, F2

F3=F1+F2

while F3<1000 do

output F3, ” ”

 F1=F2

F2=F3

 F3=F1+F2

enddo

181

𝑓𝑖 =
0,
1,

𝑓𝑖−1 + 𝑓𝑖−2

𝑖𝑓 𝑖 = 1,
𝑖𝑓 𝑖 = 2,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Solution: leap days

182

input y1, y2

n=0

while y1<y2 do

if y1%4==0 then

n=n+1

endif

y1=y1+1

enddo

output n

input y1, y2

if y1%4!=0 then

y1=y1+4-y1%4

endif

if y2%4==0 then

y2=y2-4

else

y2=y2-y2%4

endif

output (y2-y1)/4+1

Performace?

Solution: searching

• Finding a value in an array
N=10

A[]={3,5,2,-7,0,34,5,3,567,9}

input Demanded

i=0

while i<N AND A[i]!=Demanded do

i=i+1

enddo

if i<N then

output "Found"

else

output "Not found"

endif
183

Solution: searching

• Maximal value and its index in an array
N=10

A[]={3,5,2,-7,0,34,5,3,567,9}

max_i=0

i=1

while i<N do

if A[i]>A[max_i] then

max_i=i

endif

i=i+1

enddo

output max_i, A[max_i]

184

Solution: sorting

• Exchange variable contents (x=5; y=8 → x=8; y=5)

z=x

x=y

y=z

• Alternative solution without temporary variable

x=x+y

y=x-y

x=x-y

185

x=y

y=x

Solution: sorting
• Bublesort
N=10

A[]={3,5,2,-7,0,34,5,3,567,9}

end=N-1

while end>0 do

i=0

while i<end do

if A[i]>A[i+1] then

x=A[i]

A[i]=A[i+1]

A[i+1]=x

endif

i=i+1

enddo

end=end-1

enddo

186

Visit this as well:
https://hu.wikipedia.org/wiki/Buborékrendezés

https://hu.wikipedia.org/wiki/Bubor%C3%A9krendez%C3%A9s
https://hu.wikipedia.org/wiki/Bubor%C3%A9krendez%C3%A9s

Solution: bank card number

i = 0
while i<=15 do
a[i] = 2*a[i]
if a[i]>=10 then
a[i] = a[i]-9
endif
i = i+2
enddo
i = 0
s = 0
while i<=15 do
s = s+a[i]
i = i+1
enddo
if s%10==0 then
output "valid"
else
output "invalid"
endif

187

i = 0

s = 0

while i<=15 do

s=s+(2-i%2)*a[i]

 s=s-{a[i]/5}*(1-i%2)*9

enddo

if s%10!=0 then

output "not "

endif

output "valid"

Luhn’s algorithm

a[]={1,3,4,2,6,5,7,8,9,7,6,5,1,0,5,7}

Solution: most frequent age
N=15

Age[]={1,3,2,0,5,10,17,3,10,0,3,2,15,1,3}

Distr[]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

i=0

while i<N do

Distr[Age[i]]=Distr[Age[i]]+1

i=i+1

enddo

freq=0

i=1

while i<18 do

if Distr[i]>Distr[freq] then

freq=i

endif

i=i+1

enddo

output "The age ", freq, " is the most frequent."

188

Solution: best-fit allocation
N=20

M[]={1,0,5,5,5,5,5,0,0,4,4,4,4,0,1,0,4,4,4,4}

input S

i=0

pos=0

while i<N do

if M[i]==S then

pos=i

break

endif

if M[i]>S AND M[i]<M[pos] then

pos=i

endif

i=i+1

enddo

if pos>0 OR M[pos]>=S then

output pos

endif

189

Solution: finding a pattern
N=11

A[]={2,3,9,4,1,8,3,9,4,8,6}

M=4

B[]={3,9,4,8}

iA=0

iB=0

while iA<N AND iB<M do

if A[iA]==B[iB] then

iB=iB+1

 iA=iA+1

else

iA=iA-iB+1

iB=0

endif

enddo

if iB==M then

output "Pattern found."

else

output "Not found."

endif

190

Solution: subroutine

function PP(a)
b=0
while b<a do
a = a-1
b = b+1

enddo
if a=b then
return 1

else
return 0

endif
endfunction

input a, b
a = a*2
b = PP(a+b)+1
output b

191

• The output: 2

• In case of even parameter it
gives 1, in odd case it gives 0.

a b a b

1 4 - -

2 4 - -

2 4 6

2 4 6 0

2 4 5 1

2 4 4 2

2 4 3 3

2 2 - -

Solution: subroutine

192

function CHANGE(a)

return 1-a

endfunction

input Max

i=0

j=0

while j<Max do

i = CHANGE(i)

j=j+i

output j

enddo

output j

• Max=5 → 1 1 2 2 3 3 4 4 5 5

• Writes natural numbers twice.

• 0→1 and 1→0 change

Solution: multiplication table

193

procedure MT(N)

i=1

while i<=N do

j=1

while j<=N do

output i*j, ” ”

j=j+1

enddo

output NEWLINE

i=i+1

enddo

endprocedure

call MT(8)

Solution: chessboard
function change(x)

return 1-x

endfunction

procedure chessboard(x)

color=0

s=1

while s<=x do

o=1

while o<=x do

output color

color=change(color)

o=o+1

enddo

output NEWLINE

if x%2==0 then

color=change(color)

endif

s=s+1

enddo

endprocedure

input x

call chessboard(x) 194

subroutine (function)

subroutine (procedure)

mainprogram

Solution: time

function secs(hour, min, sec)

return (hour*60+min)*60+sec

endfunction

procedure time(t)

s=t%60

 m=((int)(t/60))%60

 h=(int)(t/3600)

 output h, ":", m, ":", s

endprocedure

call time(secs(12,15,30))
195

Solution: DCB arithmetics

196

function get_digit(Num,Pos)

return (int)(Num/Pos)%10

endfunction

function set_digit(Num,Pos,Bit)

big=(int)(Num/(Pos*10))

little=Num%Pos

return big*Pos*10+Bit*Pos+little

endfunction

function magnitude(Num)

Pos=10

while Num>=Pos do

Pos=Pos*10

enddo

return Pos/10

endfunction

function max(A,B)

if A>B then

return A

else

return B

endif

endfunction

function add(A,B)

bigpos=max(magnitude(A),magnitude(B))

sum=0

carry=0

pos=1

while pos<=bigpos do

dA=get_digit(A,pos)

dB=get_digit(B,pos)

digit=dA+(dB+carry)

if digit>1 then

digit=digit-2

carry=1

else

carry=0

endif

sum=set_digit(sum,pos,digit)

pos=pos*10

enddo

if carry==1 then

sum=set_digit(sum,pos,1)

endif

return sum

endfunction

function sub(A,B)

bigpos=max(magnitude(A),magnitude(B))

diff=0

carry=0

pos=1

while pos<=bigpos do

dA=get_digit(A,pos)

dB=get_digit(B,pos)

digit=dA-(dB+carry)

if digit<0 then

digit=digit+2

carry=1

else

carry=0

endif

diff=set_digit(diff,pos,digit)

pos=pos*10

enddo

if carry==1 then

output "Negative difference"

endif

return diff

endfunction

function mul(A,B)

pos=magnitude(B)

prod=0

while pos>=1 do

prod=add(prod,pos*A*get_digit(B,pos))

pos=pos/10

enddo

return prod

endfunction

function div(A,B)

pos=magnitude(A)

quotient=0

D=(int)(A/pos)

while pos>=1 do

if D>=B then

digit=1

D=sub(D,B)

else

digit=0

endif

quotient=quotient*10+digit

pos=pos/10

D=D*10+get_digit(A,pos)

enddo

return quotient

endfunction

function pow(A,B)

p=1

while B>0 do

p=mul(p,A)

B=sub(B,1)

enddo

return p

endfunction

output "Enter 3 binary values: "

input X,Y,Z

output div(pow(X,Y),Z)

output "Oh, it was so easy, isn’t it?"

Solution: testing strategy

N B Result OK?

11 2 1011 ✓

2 5 2 ✓

0 9 0 ✓

43 0 - 

-10 4 22 

9 -2 -999 

10 1.5 - 

3.5 4 - 

31 16 25 

64 1 - 

1024 2 1410065408 

197

input N

input B

R=0

P=1

while N!=0 do

R=R+(N%B)*P

P=P*10

N=(int)(N/B)

enddo

output R
B {2,3,4,5,6,7,8,9,10}
N not negative integer number (N<Limit(B))

Solution: testing strategy
Input: x Input: y Expected output

2 3 8

0 3 0

2 0 1

0 0 Undefined value.

-2 3 -8

-2 4 16

2 -3 0.125

-2 -3 -0.125

0 -3 Infinite

0.2 3 0.008

-0.2 3 -0.008

0.2 -3 125

-0.2 -3 -125

2 0.3 Exponent is not an integer.

100 13 11 991 163 848 716 906 297 072 721
198

Solution: syntax and semantics

199

input B

R=0

wihle E<=0

R=R*B

E-1=E

endo

output R

Syntax errors: Semantic errors:

wihle → while

endo → enddo

Uninitialized E
Missing: input E

E-1=E → E=E-1

Multiplicative unity needed
R=0 → R=1

E<=0 → E>0

Missing „do"

No runtime errors

Solution: data representation

• Population is more than 7 000 000 000.
Unsigned fixed point maximum is 232-1 = 4294967295.
Not representable! (33 bits)

• -1:

11111111 11111111 11111111 11111111

• 15908:

00000000 00000000 00111110 00100100

• -666:

11111111 11111111 11111101 01100110

• 10000000 00000000 00000010 01001001:

-2147483063 (signed), 2147484233 (unsigned)
200

Solution: expression

• ((9+((2*6)/3))>(8-7))
value: true

• ((2>3)&&(((3*5)-(6/2))>=(11%2)))
value: false (C language: 0)

• * + 1 2 – 9 6
value: 9, i.e. ((1+2)*(9-6))
+ 1 - * 2 13 / 25 5
value: 22, i.e. (1+((2*13)-(25/5)))

• 30 2 15 4 6 + - * /

value: 3, i.e. (30/(2*(15-(4+6))))

1 2 13 * 25 5 / - +

value: 22, i.e. (1+((2*13)-(25/5)))
201

Solution: Python

202

• Keyword: for, in, if, else
• Comment: # Some calculation, #return z
• Identifier: Sum, N, print, z, cos
• Constant: 0, 10, 2, 90
• Variable: Sum, N, z
• Operator: =, +=, ==, %, +, /
• Expression: Sum=0, Sum+=i, Sum==0, "Total"+Sum,

z=10%2+N/N+cos(90)
• Function call: cos(90)
• statement: Sum=0, for …, if …else…, Sum+=1,

print(…), z=10%2+N/N+cos(90)

Some calculation
Sum=0
for i in range(N):

Sum+=i
if(Sum==0):

print("Total"+Sum)
else:

z=10%2+N/N+cos(90)
#return z

	1. dia: Algorithms and basics of programming
	2. dia: Topics
	3. dia: Poet vs Programmer
	4. dia: Problem solving with computer
	5. dia: Problem solving with computer
	6. dia: 1: Problem definition
	7. dia: 2: Solution design
	8. dia: 3: Solution refinement
	9. dia: 4: Testing strategy development
	10. dia: 5: Program coding and testing
	11. dia: 6: Documentation completion
	12. dia: 7: Program maintenance
	13. dia: Solution refinement
	14. dia: Algorithm
	15. dia: Representation of algorithms
	16. dia: Example
	17. dia: y=sign(x)
	18. dia: y=sign(x)
	19. dia: y=sign(x)
	20. dia: y=sign(x)
	21. dia: y=sign(x)
	22. dia: y=sign(x)
	23. dia: y = sign(x)
	24. dia: Components of flowcharts
	25. dia: Base structures of algorithms
	26. dia: Modifying algorithms
	27. dia: Generalizing algorithms
	28. dia: Extending algorithms
	29. dia: Foolproofing algorithms
	30. dia: Embedding algorithms
	31. dia: Alternative algorithms
	32. dia: Alternative algorithms
	33. dia: Properties of algorithms
	34. dia: Wrong algorithms
	35. dia: Wrong algorithms
	36. dia: Wrong algorithms
	37. dia: Wrong algorithms
	38. dia: Crossing straight road on foot
	39. dia: Crossing straight road on foot
	40. dia: Logical operations and expressions
	41. dia: Defined operations
	42. dia: Order of operations
	43. dia: Order of operations
	44. dia: Exercise: order of operations
	45. dia: Exercise: flowchart
	46. dia: Exercise: flowchart
	47. dia: Exercise: flowchart
	48. dia: Exercise: flowchart
	49. dia: Pseudocode
	50. dia: Conversion
	51. dia: Conversion
	52. dia: Indentation
	53. dia: Pseudocode example
	54. dia: Exercise: Are they the same?
	55. dia: Exercise: conversion 1
	56. dia: Exercise: conversion 2
	57. dia: Exercise: conversion 3
	58. dia: Exercise: pseudocode
	59. dia: Exercise: pseudocode
	60. dia: Exercise: pseudocode
	61. dia: Exercise: pseudocode
	62. dia: Exercise: pseudocode
	63. dia: Exercise: pseudocode
	64. dia: Exercise: pseudocode
	65. dia: Exercise: congruential generator
	66. dia: Exercise: even or odd
	67. dia: Exercise: selections
	68. dia: Exercise: iterations
	69. dia: Exercise: square root
	70. dia: Exercise: primes
	71. dia: Exercise: leap days
	72. dia: Exercise: fractions
	73. dia: Exercise: sequences
	74. dia: Arrays
	75. dia: Array example
	76. dia: Exercise: signal coding
	77. dia: Exercise: number of coins
	78. dia: Searching and sorting
	79. dia: Exercise: searching
	80. dia: Exercise: sorting
	81. dia: Exercise: bank card number
	82. dia: Exercise: most frequent age
	83. dia: Exercise: finding a pattern
	84. dia: Exercise: first-fit allocation
	85. dia: Exercise: memory-map conversion
	86. dia: Exercise: best-fit allocation
	87. dia: Subroutines
	88. dia: Subroutines
	89. dia: Procedure example
	90. dia: Procedure example
	91. dia: Procedure example
	92. dia: Function example
	93. dia: Function example
	94. dia: Function example
	95. dia: Procedure vs function
	96. dia: Scope
	97. dia: Exercise: subroutine
	98. dia: Exercise: subroutine
	99. dia: Exercise: subroutine
	100. dia: Exercise: multplication table
	101. dia: Exercise: chessboard
	102. dia: Exercise: time
	103. dia: Exercise: formula
	104. dia: Exercise: DCB arithmetics
	105. dia: Recursion
	106. dia: Recursion example
	107. dia: Exercise: recursion 1
	108. dia: Exercise: recursion 2
	109. dia: Exercise: recursion 3
	110. dia: Algorithmic thinking
	111. dia: Thought-provoking question
	112. dia: Thought-provoking question
	113. dia: Testing strategy development
	114. dia: Example of testing strategy
	115. dia: Example of testing strategy
	116. dia: Example of testing strategy
	117. dia: Example of testing strategy
	118. dia: Example of testing strategy
	119. dia: The used testing strategy
	120. dia: Exercise: testing strategy
	121. dia: Exercise: testing strategy
	122. dia: Program coding
	123. dia: Programming levels
	124. dia: Language paradigms
	125. dia: Syntax and semantics
	126. dia: Syntax of programing languages
	127. dia: Exercise: Syntax and semantics
	128. dia: Interpreter and Compiler
	129. dia: Compiler
	130. dia: Interpreter
	131. dia: Integrated Development Environment
	132. dia: Integrated Development Environment
	133. dia: Data representation, Datatypes
	134. dia: Fixed-point representation
	135. dia: Fixed-point representation
	136. dia: Fixed-point representation
	137. dia: Exercise: data representation
	138. dia: Units/elements of the source code
	139. dia: Keywords, identifier, comments
	140. dia: Constants
	141. dia: Variables
	142. dia: Operators
	143. dia: Expressions
	144. dia: Exercise: expression
	145. dia: Instructions
	146. dia: Declaration, Assignment
	147. dia: Conditional statement
	148. dia: Iteration
	149. dia: Pre-conditional loop
	150. dia: Post-conditional loop
	151. dia: Pseudocode to Python
	152. dia: Python programming language
	153. dia: Exercise: Python
	154. dia: Further readings
	155. dia: Solutions
	156. dia: Solution: flowchart
	157. dia: Solution: flowchart
	158. dia: Solution: flowchart
	159. dia: Solution: leap year 1
	160. dia: Solution: leap year 2
	161. dia: Solution: three values 1
	162. dia: Solution: three values 2
	163. dia: Solution: factorial
	164. dia: Solution: binary numbers
	165. dia: Solution: flowchart
	166. dia: Solution: flowchart
	167. dia: Solution: pseudocode
	168. dia: Solution: Are they the same?
	169. dia: Solution: conversion 1
	170. dia: Solution: conversion 3
	171. dia: Solution: pseudocode
	172. dia: Solution: pseudocode
	173. dia: Solution: even or odd
	174. dia: Solution: selections
	175. dia: Solution: selections
	176. dia: Solution: iterations
	177. dia: Solution: iterations
	178. dia: Solution: square root
	179. dia: Solution: primes
	180. dia: Solution: sequences
	181. dia: Solution: sequences
	182. dia: Solution: leap days
	183. dia: Solution: searching
	184. dia: Solution: searching
	185. dia: Solution: sorting
	186. dia: Solution: sorting
	187. dia: Solution: bank card number
	188. dia: Solution: most frequent age
	189. dia: Solution: best-fit allocation
	190. dia: Solution: finding a pattern
	191. dia: Solution: subroutine
	192. dia: Solution: subroutine
	193. dia: Solution: multiplication table
	194. dia: Solution: chessboard
	195. dia: Solution: time
	196. dia: Solution: DCB arithmetics
	197. dia: Solution: testing strategy
	198. dia: Solution: testing strategy
	199. dia: Solution: syntax and semantics
	200. dia: Solution: data representation
	201. dia: Solution: expression
	202. dia: Solution: Python

