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1. Introduction 

The assembly is a hardware-close way of programming. It is below the high-level 

programming languages (e.g.: C, Java, Python) but more readable for humans than binary 

machine codes. Assembly is ISA (Instruction-Set Architecture) dependent. This document is 

restricted to only x86-64 architecture which is the base of almost all Intel and AMD processors 

of modern computers. Two dialects of this assembly language can be used: Intel and AT&T 

syntax. The author focuses only on Intel syntax. Understanding assembly programming 

requires hardware knowledge. Familiarity with x86-64 ISA is required (only partially included 

here).  

The assembly source code in the Linux operating system is a simple text file(s) with “.s” 

extension. One of the instructions must be labeled by the main name, this will be the entry 

point of the execution. The gcc command can compile the assembly codes to executable files. 

For example, the test.s assembly source file can be compiled to an executable called run 

using the following command:  

gcc test.s -o run  

In some cases, the -no-pie switch is also required in the compilation command to create 

position-independent executables. In case of successful compilation, the program can be 

executed in a terminal by the  

./run  

command. (The source and the executable are in the same current folder.) The return value of 

the program (the main function) is stored in an environment variable. Its value can be seen by 

executing the  

echo $?  

command immediately after the termination of the program. The return value in Linux is 

interpreted as an unsigned char value, so only the last byte is considered as a non-negative 

whole number. Conventionally (but not always), the 0 return value indicates successful 

termination. 

2. Registers and memory 

Register set 

In the CPU all data and instructions are stored in registers. These are some sequential 

digital circuits in the processor with very short access time and a few bytes of storage capacity. 

The programmer can use several different-size general-purpose fixed-point registers.  

64-bit (quad word) registers:  

rax, rbx, rcx, rdx, rbp, rsp, rdi, rsi, r8, r9, r10, r11, r12, 

r13, r14, r15 

32-bit (double word) registers:  

eax, ebx, ecx, edx, ebp, esp, edi, esi, r8d, r9d, r10d, r11d, 

r12d, r13d, r14d, r15d 
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16-bit (word) registers:  

ax, bx, cx, dx, bp, sp, di, si, r8w, r9w, r10w, r11w, r12w, 

r13w, r14w, r15w 

8-bit (byte) registers:  

al, ah, bl, bh, cl, ch, dl, dh, bpl, spl, dil, sil, r8b, r9b, 

r10b, r11b, r12b, r13b, r14b, r15b 

Small registers are always parts of larger ones (aliases to the fragments of the whole registers) 

as it is illustrated in the following figure. 

 
When a 32-bit value is stored in a 64-bit register, the most significant 32 bits becomes 0s, in 

any other cases when a part of a register is overwritten the most significant bits do not change. 

All the above registers use the fixed-point representation of the stored values, so only 

integer values (signed/unsigned int/short/long/char) can be stored in them. 

Floating point values (i.e. real numbers) can be stored in other registers (see x87 architecture 

or MMX vector registers). 

Besides the general-purpose registers, some special registers are also important. The rip 

(instruction pointer) register plays the role of the program counter, so it always stores the 64-

bit memory address of the next binary instruction (within the code segment of the RAM). It is 

essential to control flow. During normal sequential execution, its value is incremented by the 

size of the current machine code instruction. 

The status register is called rflags. Its bits separately represent different states/settings 

of processor operation. Four of these bits have large importance even in simple codes, these are 

the following. 

CF (carry flag): it is 1, if there was a carry in the last arithmetic operation, so when x+1 bits are 

necessary to represent the results of the operation having x-bit operands, otherwise it is 0. 

OF (overflow flag): it is 1, if the result of an arithmetic operation is wrong in the case of signed 

fixed-point representation, else it is 0. It indicates an unexpected sign change. 

ZF (zero flag): it is 1, if the result of the last arithmetic operation is zero, otherwise it is a 0 bit. 

SF (sign flag): it is 1, if the result of the last operation is negative in the case of signed fixed-

point representation. Practically speaking it is the most significant bit of the result. 

These bits change during comparisons as well, so they are essential in the case of condition 

evaluations. 

There are so-called segment selector registers in x86-64 ISA, but they are used only for 

legacy reasons. Here is the list of them: CS (code segment), SS (stack segment), DS (Data 

segment), ES, FS, GS.  
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Memory 

Variables are stored in the RAM. Their locations are referred by memory addresses (thus 

a kind of memory cell identifiers). Each byte is addressable, i.e. has its own address, but bits 

inside a byte cannot be addressed. These addresses can be imagined as 64-bit unsigned integers. 

When the processor reads or writes a value, not just its address must be specified, but also its 

representation length as well (byte: 8 bits, word: 16 bits, double word: 32 bits, quad 

word: 64 bits). 

More than one byte-long values are stored according to the little-endian byte order, so 

the least significant byte is located in the lowest address byte and the most significant byte is 

stored in the last byte of the memory space of the variable. Thus, reverse byte order is used, 

however the order of bits inside the bytes does not change. For example, the decimal value 

27 970 800 (which in binary notation looks like 1 10101010 11001100 11110000) is stored as 

the following 32-bit bit sequence: 11110000 11001100 10101010 00000001. 

A part of the RAM is managed specially. It is the so-called stack, which implements LIFO 

operation, by special assembly instructions (however the content can be still accessed directly 

as well). The top of the stack is the only important part of it. The rsp register stores the address 

of the top of the stack (i.e. the starting address of the last data). The value of the rsp content is 

decreasing automatically by the size of the value pushed in or decreased by the number of bytes 

popped out from the stack. In this way the stack is growing towards the lower addresses. 

3. Assembly instructions in general 

Each line of the assembly source files contains a maximum of one instruction. Each 

instruction can have 4 components: label, mnemonic, operand(s), comment. 

Label 

It is a kind of identifier of the given instruction. Usually, programmer must refer to 

another existing instruction, this can be done by the unique label of the given instruction. A 

label is an optional component so it can be skipped, but if a label is necessary, it must be at the 

beginning of the line. 

Formally, a label is a character sequence containing alphanumeric characters (English 

letters and/or digit characters) and/or underscore (‘_’) and/or dot (‘.’) characters finished by a 

colon (‘:’) character. This assembly language is not case-sensitive, so upper- and lower-case 

letter characters mean the same. Labels started by a dot character mean local names/identifiers 

valid only in the given source file. It is a readable text for the programmer, but in the 

background, it means the memory address of the given instruction (which is useful for control 

flow) or the address of a statically allocated memory location. More than one different labels 

can refer to the same memory address. 

Mnemonic 

It is the name of an assembly instruction/operation, usually a kind of abbreviation or short 

form referring to the meaning of an operation, for example, the mnemonic for the shift 

arithmetic right operation is ‘sar’. Each instruction line must contain a mnemonic. The x86-

64 ISA provides hundreds of mnemonics, but this document covers only the most frequently 
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used ones (see Chapter 4). Mnemonics started with a dot (‘.’) character are directives, so 

instructions that influence the compilation process. 

Operand 

These are values on which the given operations will be performed. A space or tab 

character is needed between the mnemonic and the first operand. An instruction can have 0, 1, 

2, or 3 operands. Three operands are very rare in x86-84 architecture. Zero operand means that 

an operation can be executed alone without the specification of operands. Sometimes 

specification of an operand is not necessary (however the operand itself is needed) because in 

this case, the required value can be found in a fixed location. If there is more than one operand 

they are separated by a comma (‘,’) character. According to the Intel syntax, the first operand 

is the destination operand where the result is usually stored overwriting the old content. 

Operands can be constants, register contents, or memory contents. Numeric constants 

(literals) can be given using simple decimal notation (e.g. 196) or in hexadecimal form using 

“0x” prefix (e.g. 0xC4). Both negative and positive integers can be used in the assembly code. 

(In the case of an 8-bit operand both -1 and 255 result in the 11111111 bit sequence as a 

value.) The operation itself will define which interpretation is used during calculations. The 

destination operand cannot be a constant. 

Only one of the operands can be memory content due to technical limitations. If an 

operand is a memory content, both its memory address and its representation length must be 

specified. The starting address must be given between square brackets (“[ ]”) according to 

the possible addressing modes, while the length (i.e. the number of bytes from the starting 

address) must be specified before the square bracket by one of the following 4 phrases: BYTE 

PTR, WORD PTR, DWORD PTR, QWORD PTR (1, 2, 4 and 8 bytes respectively). The address 

can be given in a complex way summarized by the following general form: [SS: B + I * 

SF + C], where SS is a segment selector register, B is a register containing a base address, I 

is playing the role of the index register (how many units far from the base address), SF is a 

scale factor (unit size), and C is a constant offset. Most components of the address calculation 

can be omitted. If I is not present, then SF must be also skipped. The SF can be 1, 2, 4, or 8. 

The C can be given as a literal or one can use the label of memory allocation directives as well. 

To understand the address calculation, an example is explained. A programmer wants to refer 

to the 5th element of an integer array. In a high-level programming language (e.g. in C language), 

it is written as MyArray[4]. Assuming that the array index has already stored in the rcx 

register, the beginning of the array is 48 bytes ahead of the address stored in the rbp register 

and the integer type is represented on 4 bytes. In assembly instruction, DWORD PTR 

[rbp+rcx*4-48] is written as an operand. 

One of the operands or both of them can be specified in register(s). In most cases, the 

(register or memory) operands of a given instruction must be the same size. When the source 

operand (so the second operand in case of Intel syntax) is a constant value its representation 

length is determined by the destination operand. 
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Comment 

From a hashtag (‘#’) character until the end of the given line all content is ignored by the 

assembler (assembly compiler), thus programmers can use end-of-line comments. Comments 

are very useful in assembly because the code is not as readable as in high-level languages. 

4. Frequent instructions in detail 

A short description of the most often used assembly directives and executable instructions 

are given below. For a more detailed description please, read [1, 2]. 

Directives 

.2byte 

Allocates 2 bytes (e.g. an initialized static short int variable). The address of the 

allocated memory field can be referred to by the label written at the beginning of the line. It has 

only one operand, a constant which is stored in the allocated field as an initialization. 

.4byte 

Allocates 4 bytes (e.g. an initialized static int variable). The address of the allocated 

memory field can be referred to by the label written at the beginning of the line. It has only one 

operand, a constant which is stored in the allocated field as an initialization. (Static allocation.) 

.bss 

It indicates the beginning of the uninitialized data section. No operand is needed. 

.byte 

Allocates 1 bytes (e.g. an initialized static char variable). The address of the 

allocated memory field can be referred to by the label written at the beginning of the line. It has 

only one operand, a constant which is stored in the allocated field as an initialization. 

.comm 

Allocates uninitialized memory space in the data section. It has 2 operands: the first one 

behaves as a symbolic name of the starting address of the allocated area, while the second is 

the number of bytes that must be allocated. Creation of uninitialized static scalar or array 

variables. 

.data 

It indicates the beginning of the data section. Static memory allocation can happen after 

this. No operands. 

.globl 

It is followed by one or more symbolic names (later labels) that must be handled as global 

names. For example, the main must be a global name accessible anywhere in the code because 

it will be the address of the entry point for execution. If multiple symbolic names are given, 

they must be separated by comma (‘,’) characters. 

.intel_syntax 

Usually, the first instruction of the source code, when the programmer will use Intel 

syntax in the remaining part of the code. It has an operand: noprefix. 
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.section 

A read-only data segment must start with this instruction followed by the .rodata 

operand. For example, string constants are stored here. 

.string 

Memory allocation for a constant string. The starting address of the allocated memory 

field can be referred to by the label written at the beginning of the line. It has an operand: a 

character sequence surrounded by double quotes like "Hello World!\n". The number of 

the allocated bytes is determined by the length of the character given sequence including the 

termination zero (‘\0’) character as well (e.g. 14 bytes in the previous case). This allocation 

must be in a read-only part of the RAM, thus after the .section .rodata instruction. 

.text 

It indicates the beginning of the code segment (where the executable instructions are). It 

can be ignored if no other segments (e.g. .data, .bss) in the code. 

.zero 

Zero initialized memory allocation for static scalar or array variables. The starting address 

of the allocated memory field can be referred to by the label written at the beginning of the line. 

It has only one operand, the number of bytes to be allocated and initialized by only 0 bits. 

Executable instructions 

add 

Addition of the values of the operands. The sum overwrites the destination operand (so 

the first operand according to the Intel syntax). The operands and the result can be interpreted 

as both signed and unsigned fixed-point values. The SF, ZF, CF and OF status register bits are 

updated according to the result. 

and 

Bitwise AND operation on the operands. All bit positions of the operands are considered 

simultaneously according to the truth table of the logical AND operation. The result overwrites 

the destination operand. The OF and CF flags are cleared; the SF and ZF flags are set according 

to the result. 

call 

Subroutine invocation/call. It has only one operand (usually a symbolic name) referring 

to the address of the first instruction of the subroutine. The current value of the instruction 

pointer (rip) is stored to the top of the stack, the stack pointer (rsp) is decreased by 8, and 

then the rip is overwritten by the address given as the operand. 

cbw 

Convert byte (8-bit value) to word (16-bit value) using sign extension. No operands are 

explicitly given. The ah register is overwritten by the copies of the most significant bit of al 

register. It is a kind of type conversion from char to short. 

cdq 

Convert double word (32-bit value) to quad word (practically two 32-bit value) using sign 

extension. No operands are explicitly given. The edx register is overwritten by the copies of 

the most significant bit of eax register, so the most significant 4 bytes of the result are stored 
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in edx and the least significant 4 bytes of the result remain in the eax register. It is a kind of 

type conversion from int to long. 

cdqe 

Convert double word (32-bit value) to quad word (64-bit value) using sign extension. No 

operands are explicitly given. The most significant 4 bytes of rax register are overwritten by 

the copies of the most significant bit of eax register. It is a kind of type conversion from int 

to long. 

cmp 

Compares the values of the two operands, so it checks whether they are equal or the first 

operand is greater or less than the second in both interpretations (signed and unsigned fixed-

point) separately. (Practically the second operand is subtracted from the first, but the difference 

is discarded.) None of the operands change. Based on the comparison/subtraction the SF, ZF, 

CF and OF status register bits are updated according to the following table. 

cmp Op1, Op2 ZF CF SF OF 

unsigned 
Op1 < Op2 0 

1     

signed   1 0 

  Op1 == Op2 1       

unsigned 
Op1 > Op2 0 

0     

signed   0 0 

All conditional jump (jcc) instructions use these status register bits (usually set by the 

cmp instruction). 

cwd 

Convert word (16-bit value) to double word (32-bit value) using sign extension. No 

operands are explicitly given. The most significant 2 bytes of the eax register are overwritten 

by the copies of the most significant bit of ax register. It is a kind of type conversion from 

short to int. 

dec 

Decrementation. It has only one operand and its value is decreased by 1 during the 

execution. The SF, ZF and OF status register bits are updated according to the result. 

div 

Unsigned integer division. It has only one (!) operand the divisor, the dividend is not 

given explicitly. If the divisor/operand is a 32-bit value, then the dividend is the edx:eax 

register combination (i.e. it is only one 64-bit value, where the most significant 4 bytes are 

stored in the edx register and the least significant 4 bytes are in the eax register separately). 

After the integer division, the 32-bit quotient (truncated toward 0) overwrites the eax register 

content and the 32-bit reminder updates the edx register. Unsigned fixed-point interpretation 

is used, so the values cannot be interpreted as negative. The SF, ZF, CF and OF status register 

bits are unaffected. 

idiv 

Signed integer division. It has only one (!) operand the divisor, the dividend is not given 

explicitly. If the divisor/operand is a 32-bit value, then the dividend is the rdx:rax register 
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combination (i.e. it is only one 64-bit value, where the most significant 4 bytes are stored in the 

edx register and the least significant 4 bytes are in the eax register separately). After the 

integer division, the 32-bit quotient (truncated toward 0) overwrites the eax register content 

and the 32-bit reminder updates the edx register. Signed fixed-point interpretation is used, so 

the values can also be interpreted negative. The SF, ZF, CF and OF status register bits are 

unaffected. 

imul 

Signed multiplication of two values. Now only the 2-operand form is explained (however 

there are 1-operand and 3-operand forms as well). The product overwrites the destination 

operand. The CF and OF flags are set when the result must be truncated to fit in the destination 

operand size. 

inc 

Incrementation. It has only one operand and its value is increased by 1 during the 

execution. The SF, ZF and OF status register bits are updated according to the result. 

ja 

Jump if above. It has an operand which is a memory address (practically a symbolic name 

used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If CF is 0 and ZF is 0, then it overwrites 

the content of the instruction pointer (rip) by the address specified by the operand, else the 

rip just simply incremented by the length of this instruction. Thus, the execution either jumps 

to another part of the code or just goes on to the next instruction. The condition is equivalent to 

the status register content if a cmp instruction realizes that its first operand is above the second 

one using unsigned interpretation. Status register bits are not changed. (It has an alias: jnbe.) 

jae 

Jump if above or equal. It has an operand which is a memory address (practically a 

symbolic name used somewhere as a label of an instruction). It checks the status register bits 

(which are probably updated by the previous cmp instruction). If CF is 0, then it overwrites the 

content of the instruction pointer (rip) by the address specified by the operand, else the rip 

just simply incremented by the length of this instruction. Thus, the execution either jumps to 

another part of the code or just goes on to the next instruction. The condition is equivalent to 

the status register content if a cmp instruction realizes that its first operand is above or equal to 

the second one using unsigned interpretation. Status register bits are not changed. (It has an 

alias: jnb.) 

jb 

Jump if below. It has an operand which is a memory address (practically a symbolic name 

used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If CF is 1, then it overwrites the content of 

the instruction pointer (rip) by the address specified by the operand, else the rip just simply 

incremented by the length of this instruction. Thus, the execution either jumps to another part 

of the code or just goes on to the next instruction. The condition is equivalent to the status 

register content if a cmp instruction realizes that its first operand is below the second one using 

unsigned interpretation. Status register bits are not changed. (It has an alias: jnae.) 
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jbe 

Jump if below or equal. It has an operand which is a memory address (practically a 

symbolic name used somewhere as a label of an instruction). It checks the status register bits 

(which are probably updated by the previous cmp instruction). If CF is 1 or ZF is 1, then it 

overwrites the content of the instruction pointer (rip) by the address specified by the operand, 

else the rip just simply incremented by the length of this instruction. Thus, the execution either 

jumps to another part of the code or just goes on to the next instruction. The condition is 

equivalent to the status register content if a cmp instruction realizes that its first operand is 

below or equal to the second one using unsigned interpretation. Status register bits are not 

changed. (It has an alias: jna.) 

jc 

Jump if carry. It has an operand which is a memory address (practically a symbolic name 

used somewhere as a label of an instruction). It checks the status register bits. If CF is 1, then 

it overwrites the content of the instruction pointer (rip) by the address specified by the 

operand, else the rip just simply incremented by the length of this instruction. It is an alias for 

the jb instruction. Status register bits are not changed. (The jz, jo and js conditional jump 

instructions are similar to this just the ZF, OF and SF are checked respectively.) 

je 

Jump if equal. It has an operand which is a memory address (practically a symbolic name 

used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If ZF is 1, then it overwrites the content of 

the instruction pointer (rip) by the address specified by the operand, else the rip just simply 

incremented by the length of this instruction. Thus, the execution either jumps to another part 

of the code or just goes on to the next instruction. The condition is equivalent to the status 

register content if a cmp instruction realizes that its first operand is equal to the second one. 

Status register bits are not changed. 

jg 

Jump if greater. It has an operand which is a memory address (practically a symbolic 

name used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If ZF is 0 and OF is equal to SF, then it 

overwrites the content of the instruction pointer (rip) by the address specified by the operand, 

else the rip just simply incremented by the length of this instruction. Thus, the execution either 

jumps to another part of the code or just goes on to the next instruction. The condition is 

equivalent to the status register content if a cmp instruction realizes that its first operand is 

greater than the second one using signed interpretation. Status register bits are not changed. (It 

has an alias: jnle.) 

jge 

Jump if greater or equal. It has an operand which is a memory address (practically a 

symbolic name used somewhere as a label of an instruction). It checks the status register bits 

(which are probably updated by the previous cmp instruction). If OF is equal to SF, then it 

overwrites the content of the instruction pointer (rip) by the address specified by the operand, 

else the rip just simply incremented by the length of this instruction. Thus, the execution either 

jumps to another part of the code or just goes on to the next instruction. The condition is 
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equivalent to the status register content if a cmp instruction realizes that its first operand is 

greater than or equal to the second one using signed interpretation. Status register bits are not 

changed. (It has an alias: jnl.) 

jl 

Jump if less. It has an operand which is a memory address (practically a symbolic name 

used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If OF is not equal to SF, then it overwrites 

the content of the instruction pointer (rip) by the address specified by the operand, else the 

rip just simply incremented by the length of this instruction. Thus, the execution either jumps 

to another part of the code or just goes on to the next instruction. The condition is equivalent to 

the status register content if a cmp instruction realizes that its first operand is less than the 

second one using signed interpretation. Status register bits are not changed. (It has an alias: 

jnge.) 

jle 

Jump if less or equal. It has an operand which is a memory address (practically a symbolic 

name used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If ZF is 1 and OF is not equal to SF, then 

it overwrites the content of the instruction pointer (rip) by the address specified by the 

operand, else the rip just simply incremented by the length of this instruction. Thus, the 

execution either jumps to another part of the code or just goes on to the next instruction. The 

condition is equivalent to the status register content if a cmp instruction realizes that its first 

operand is less than or equal to the second one using signed interpretation. Status register bits 

are not changed. (It has an alias: jng.) 

jmp 

Unconditional jump. Transfers program control to a different point in the instruction 

stream, so it overwrites the content of the instruction pointer (rip) by the address specified by 

the operand (which is practically a symbolic name used somewhere as a label of an instruction). 

jnc 

Jump if not carry. It has an operand which is a memory address (practically a symbolic 

name used somewhere as a label of an instruction). It checks the status register bits. If CF is 0, 

then it overwrites the content of the instruction pointer (rip) by the address specified by the 

operand, else the rip just simply incremented by the length of this instruction. It is an alias for 

the jnb instruction. Status register bits are not changed. (The jnz, jno and jns conditional 

jump instructions are similar to this just the ZF, OF and SF are checked respectively.) 

jne 

Jump if not equal. It has an operand which is a memory address (practically a symbolic 

name used somewhere as a label of an instruction). It checks the status register bits (which are 

probably updated by the previous cmp instruction). If ZF is 0, then it overwrites the content of 

the instruction pointer (rip) by the address specified by the operand, else the rip just simply 

incremented by the length of this instruction. Thus, the execution either jumps to another part 

of the code or just goes on to the next instruction. The condition is equivalent to the status 

register content if a cmp instruction realizes that its first operand is not equal to the second one. 

Status register bits are not changed. 
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lea 

Load effective address instruction which computes the address given in the second 

operand (specified with one of the addressing modes) and stores it in the first operand (a 

register). Formally, the second operand looks like a memory content operand, but the 

representation length is missing so only the address part is present between square brackets. 

Status register bits are not affected. 

leave 

It is used at the end of subroutines. It has no operands. It is equivalent to the following 

two consecutive instructions: mov rbp, rsp and pop rbp.  

loop 

It organizes an iteration using the rcx register as a counter. It has one operand, a memory 

address (practically given as symbolic name which is used as a label somewhere else). Each 

time the loop instruction is executed, the rcx register is decremented and then checked for 0. 

If the count is 0, the loop is terminated, and program execution continues with the instruction 

following the loop instruction. If the count is not zero, a jump is performed to the address 

specified in the destination operand, which is presumably the instruction at the beginning of the 

loop. 

mov 

Data transfer instruction, which copies the second operand (source operand) to the first 

operand (destination operand). The operands must have the same size. Status register bits are 

not affected. 

movsx 

Move with sign extension. This instruction has two operands, but their size is not the same 

namely the destination operand has more bits than the source operand. It copies the content of 

the second operand to the least significant part of the first operand and the remaining bits of the 

destination register are filled by the copies of the most significant bit (sign bit) of the source 

operand. Practically it results in the same signed value represented on more bits. Status register 

bits are not affected. 

movzx 

Move with zero extension. This instruction has two operands, but their size is not the 

same namely the destination operand has more bits than the source operand. It copies the 

content of the second operand to the least significant part of the first operand and the remaining 

bits of the destination register are filled by 0 bits. Practically it results in the same unsigned 

value represented on more bits. Status register bits are not affected. 

mul 

Unsigned multiplication of two values. It has only 1 operand (!). If the operand is a 32-

bit value, then the value of the eax register is multiplied by the value of the explicit operand 

and the 64-bit product is stored into the edx:eax register combination (i.e. the most significant 

4 bytes of the product are stored in the edx register and the least significant 4 bytes of the result 

go into the eax register separately). The CF and OF flags are set to 0 if the upper half of the 

result is 0 (so when the product is no longer than 32 bits, so edx is not really used) ; otherwise, 

they are set to 1. 
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neg 

Negation of the only one operand. It replaces the value of the operand (the destination 

operand) with its two's complement, so its effect is similar to a multiplication by -1. 

nop 

No operation. It does not do any useful thing (just cause some delay). It can be used as a 

placeholder as well. It has no effect to the general-purpose registers or to the status register. 

not 

Bitwise negation (ones-complement). It has one operand, and it changes all the bits of the 

operand to the opposite. 

or 

Bitwise OR operation on the operands. All bit positions of the operands are considered 

simultaneously according to the truth table of the logical OR operation. The result overwrites 

the destination operand. The OF and CF flags are cleared; the SF and ZF flags are set according 

to the result. 

pop 

Moves the top value out of the stack. It reads the memory address referred by the rsp 

register and this data is stored in the only one 64-bit operand then the value of the rsp register 

is incremented by 8. 

push 

Moves the 64-bit value of the only one operand to the top of the stack, i.e. the value of 

the rsp register is first decremented by 8 and then to this address of the memory the system 

writes the content of the operand. The operand itself does not change. 

ret 

Return from subroutines. It has no operand (so the return value is not an operand). From 

the memory location addressed by current value of the rsp register, 64-bit data (a return 

address) is loaded to the program counter (rip) and then the stack pointer is increased by 8.  

rol 

Rotate left. It has 2 operands. It behaves similarly to the shl instruction, but the shifted 

out most significant bits periodically go to the “empty” least significant bit positions of the 

destination register. 

ror 

Rotate right. It has 2 operands. It behaves similarly to the shr instruction, but the shifted 

out least significant bits periodically go to the “empty” most significant bit positions of the 

destination register. 

sal 

Shift arithmetic left. The bits of the first operand are moving toward left by the number 

of positions specified by the second operand. The new “empty” positions of the result are filled 

by 0 bits. The previously most significant bits of the first operand are lost except the last 

(smallest position) one which is stored into the CF status register bits. It is the same as the shl 

instruction. 
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sar 

Shift arithmetic right (sign-keeping right shift). The bits of the first operand are moving 

toward right by the number of positions specified by the second operand. The new “empty” 

positions of the result are filled by copies of the most significant bit of the original value (i.e. 

in case of negative value 1 bits are set else 0 bits). The previously least significant bits of the 

first operand are lost except the last (largest position) one which is stored into the CF status 

register bits. 

seta, setb, setbe, setc, sete, setea, setg, setge, setl, setle, 

setnc, setne, setnz, setz 

Set byte on condition. This group of instructions (often referred as setcc) has only one 

8-bit operand. The operand is set to either 00000000 (false) or 00000001 (true) bit sequence 

based on a condition. The type of condition is indicated by the end of the mnemonic like the 

conditional jump (jcc) instructions. The decision is made according to the SF, ZF, CF, and OF 

status register bits (probably set by the previous cmp instruction). Flags are not modified. 

shl 

Shift (logic) left. The bits of the first operand are moving toward left by the number of 

positions specified by the second operand. The new “empty” positions of the result are filled 

by 0 bits. The previously most significant bits of the first operand are lost except the last 

(smallest) one which is stored into the CF status register bits. It is the same as the sal 

instruction. 

shr 

Shift (logic) right. The bits of the first operand are moving toward right by the number of 

positions specified by the second operand. The new “empty” positions of the result are filled 

by 0 bits. The previously least significant bits of the first operand are lost except the last (largest 

position) one which is stored into the CF status register bits. 

sub 

Subtraction of the values of the operands (i.e. the value of the second operand is 

subtracted from the value of the first operand. The difference overwrites the destination 

operand. The operands and the result can be interpreted as both signed and unsigned fixed-point 

values. The SF, ZF, CF and OF status register bits are updated according to the result.  

test 

Logical compare. It computes the bitwise logical AND of its two operands and sets the 

SF and ZF status flags according to the result. The result itself of the AND operation is 

discarded. 

xchg 

Exchange operands. It has 2 operands which are swapped, so the value of the first operand 

is stored in the second operand and simultaneously the original second operand overwrites the 

first operand. 

xor 

Bitwise XOR operation on the operands. All bit positions of the operands are considered 

simultaneously according to the truth table of the logical XOR operation. The result overwrites 
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the destination operand. The OF and CF flags are cleared; the SF and ZF flags are set according 

to the result. 

5. Calling conventions 

Programmers must use some conventions to be able to write codes compatible with the 

codes of other programmers. It describes how to call subroutines, how to pass parameters, how 

to give back a return value to the caller, how to implement local (dynamic lifetime) variable or 

how to implement a recursion. 

First, the values of the parameters must be prepared to pass before the invocation of a 

subroutine. If there are not more than 6 parameters, all of them are passed via registers. The 

value of the first fixed-point parameter must be loaded to the rdi, the second goes to the rsi, 

the third goes to the rdx, the fourth goes to the rcx, the fifth to the r8, and the sixth to r9. 

If there are further fixed-point parameters, they must be stored in the stack. If the subroutine 

has real number parameters the first floating point parameter must be stored into the least 

significant single part of the xmm0 vector register, the second real parameter to the xmm1, and 

so forth. For those subroutines where the parameter list is not fixed, the number of floating 

point parameters must be saved into the eax register before the call. Then the caller can invoke 

the subroutine (procedure of function) by the call assembly instruction. This saves the return 

address (i.e. the current content of the rip) to the stack (rsp is decremented by 8) then it sets the 

rip to the address of the first instruction of the callee. At the beginning of the subroutine, the 

content of the rbp register must be pushed to the stack, then the content of the stack pointer 

(rsp) is copied to the base pointer (rbp) and after this, the rsp is decreased by the total 

number of bytes needed as local variables. Then the values of parameters (if any) are copied 

from an intermediate register (and stack) to local variables. After all the necessary instructions 

of the subroutine are done a leaving process is started. If the subroutine is a function with a 

fixed-point return value, then it must be stored in the proper part of the rax register before 

return. When the return value is a floating point value the xmm0 register must store the return 

value. The recovery of the stack and registers starts by the mov rsp, rbp instruction which 

is followed by a pop rbp. The last instruction of the callee is a ret, which pops the return 

address from the stack to the rip (and increments the rsp by 8). After the control is given 

back to the caller it removes parameters from the stack if any. 

6. Example 

There are two sample codes below. One of them is a C language program code, the other 

is an x86-64 assembly code (for Linux, gcc). They do the same. Comparing them can help to 

understand how to write real assembly code if you know how to write it in a high-level 

language. Please, read them carefully. 

The program contains 2 functions. The square function has an integer parameter (which 

is one of the local variables), and it returns by the square of this value. The main program unit 

has a loop to initialize an array with small integer square numbers and then it prints the last one 

to the screen. The assembly code can be much more optimized but in this form they are totally 

equivalent. 
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/* C program: loop, array, function, etc. */ 

#include<stdio.h> 

int square(int Num){ 

  int N2; 

  N2 = Num*Num; 

  return N2; 

} 

int main(){ 

  int i = 0, S[10]; 

  while(i<10){ 

    S[i] = square(i); 

    i++; 

    } 

  printf("Last: %d\n",S[9]); 

  return 0; 

} 

 

 

# x86-64 assembly program: loop, array, function, etc. 

 .intel_syntax noprefix 

 .globl square 

square: push rbp 

 mov rbp, rsp 

 sub rsp, 4   # Space for local variables 

 mov DWORD PTR [rbp-20], edi # Save parameter to RAM 

 mov eax, DWORD PTR [rbp-20] 

 imul eax, eax    # Calculate the square 

 mov DWORD PTR [rbp-4], eax  # Save into variable 

 mov eax, DWORD PTR [rbp-4] # Prepare return value 

 mov rsp, rbp 

 pop rbp 

 ret 

 .globl main 

main: push rbp 

 mov rbp, rsp 

 sub rsp, 64   # Space for local variables 

 mov DWORD PTR [rbp-44], 0 

 jmp .L4 

.L5: mov edi, DWORD PTR [rbp-44] #Passing the parameter 

 call square    # Invocation  

 movsx rdx, DWORD PTR [rbp-44] 

 mov DWORD PTR [rbp+rdx*4-40], eax 

 add DWORD PTR [rbp-44], 1 # Incrementation of i 

.L4: cmp DWORD PTR [rbp-44], 9 # Condition evaluation 

 jle .L5     # Go on or go back 

 mov esi, DWORD PTR [rbp-4] # First parameter 

 lea rdi, [.LC0]   # Second parameter 

 mov eax, 0    # No float parameters 

 call printf    # Built-in output 

 mov eax, 0    # EXIT_SUCCESS 

.L7: mov rsp, rbp 

 pop rbp 

 ret 

 .section .rodata 

.LC0: .string "Last: %d\n"   # Format string 



Imre VARGA PhD  Assembly programming 
 

16 
 

References 

1. x86 and amd64 instruction reference  

https://www.felixcloutier.com/x86/ (2023). 

2. Intel® 64 and IA-32 Architectures Software Developer’s Manual 

https://irh.inf.unideb.hu/~vargai/download/assembly/Intel.pdf (Intel, 2021). 

3. Ray Seyfarth: 

Introduction to 64 bit assembly programming for Linux and OS X, (Amazon, 2013). 

4. R. E. Bryant, D. R. O'Hallaron: 

Computer Systems - A programmer's perspective (Pearson, 2016). 

5. Joseph Cavanagh: 

X86 Assembly Language and C Fundamentals, (CRC Press, 2013). 

6. Richard Blum: 

Professional Assemby Language, (Wiley, 2005). 

 

https://www.felixcloutier.com/x86/
https://irh.inf.unideb.hu/~vargai/download/assembly/Intel.pdf

