

 Contents

Chapter 1: The Virtual Microcomputer Powering 1-1
the DIY Calculator

Chapter 2: The DIY Calculator’s CPU 2-1

Chapter 3: The DIY Calculator’s Interrupt Structure 3-1

Appendix A: Addressing Modes and Instruction Set A-1

Appendix B: Chip Packaging and Pin Descriptions B-1

Appendix C: Signal Descriptions and Timing Diagrams C-1

Appendix D: Assembly Language Overview D-1

Appendix E: Assembly Language in Backus-Naur Form E-1

Chapter 1
The Virtual Microcomputer
Powering the DIY Calculator

1-2 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Microprocessors and microcomputers
In the 1800s, mathematical tables such as logarithmic and trigonometric functions were
generated by teams of mathematicians working day and night on primitive mechanical
calculators. Due to the fact that these people performed computations they were referred to as
computers. Over the course of time, however, the term “computer” became associated with
machines that could perform computations automatically.

Although we typically think of computers in the context of electronic implementations based on
silicon chips, they can, in fact, be realized in a variety of ways, including mechanical, hydraulic,
and pneumatic systems. Furthermore, computers may be analog or digital in nature (or, in some
cases, a hybrid of both). Analog information represents a continuously varying quantity, such as
a light controlled by a dimmer switch; while digital information represents a quantity that can be
considered to be in one of a number of discrete states, or quanta, such as a traditional light
switch which is either OFF or ON. This data book focuses on digital electronic implementations,
because these account for the overwhelming majority of today’s computing systems.

In its broadest sense, a computer is a device that can accept information from the outside
world; process that information using logical and mathematical operations; make decisions
based on the results of this processing; and, ultimately, return the processed information to the
outside world in its new form.

The "brain" of the computer is its central processing unit (CPU), which is where all of the
number crunching and decision making is performed. The CPU communicates with other
components in the system using three groups of signals called the control bus, address bus,
and data bus. The read-only memory (ROM) and random access memory (RAM) devices are
used to store programs, data, and intermediate results, while the input and output ports allow
the CPU to communicate with the outside world (Figure 1-1).

CPU

ROM

RAM

In

Out

Port

Port

From the
Outside World

To the
Outside World

Control Bus
Address Bus
Data Bus

~reset

clock

IRQ

IACK

Figure 1-1. The main components forming a simple microcomputer

 The Official DIY Calculator Data Book 1-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

In today’s terminology, a microprocessor is commonly accepted to be a CPU implemented as a
single integrated circuit, while a microcomputer is a computer using a microprocessor as its
CPU. This data book describes the microprocessor and microcomputer used to power the DIY
Calculator. One unique aspect of the DIY Calculator is that it is implemented as a virtual
machine, which is delivered on a CD-ROM accompanying the book How Computers Do Math.

The rest of this chapter describes the microcomputer at the system level, while the remainder of
this data book concentrates on the CPU.

Logic 0 and Logic 1
Before we proceed, we should note that digital electronic computers are constructed from large
numbers of primitive logic gates and functions, each of which is formed from a group of
transistor switches. These switches can be in one of two states – OFF or ON – which physically
correspond to two different voltage levels. For the purposes of these discussions, however, we
have little interest in the actual voltages used. Furthermore, the terms OFF and ON are not
particularly relevant or useful in this context. Thus, as opposed to thinking in terms of voltage
levels or in terms of OFF and ON, we generally use more abstract terms called logic 0 (or
“false”) and logic 1 (or “true”).

Bits, Bytes, and Nybbles
Sometime in the late 1940s, the American chemist, topologist, and statistician John Wilder
Tukey realized that digital computers and the binary number system were destined to become
increasingly important. In addition to coining the word “software,” Tukey decided that saying
“binary digit” was a bit of a mouthful, so he started to look for an alternative. He considered a
variety of options – including binit and bigit – but eventually settled on bit, which is elegant in its
simplicity and is used to this day.

Binary values of 11002 and 110011102 would be said to be four and eight bits wide,
respectively. Groupings of four bits are relatively common, so they are given the special name
of nybble (or sometimes nibble). Similarly, groupings of eight bits are also common, so they are
given the special name of byte. Thus, “two nybbles make a byte,” which goes to show that
computer engineers do have at least a rudimentary sense of humor.

The DIY Calculator’s CPU
The CPU has four primary control signals: clock, ~reset, IRQ, and IACK, which are more
clearly illustrated in Figure 1-2.

An external clock generator supplies the clock signal, which switches back and forth between
two voltage levels. This signal drives the CPU’s clock input and is used to synchronize its
internal and external actions (signal relationships and timing diagrams are presented in
Appendix C).

Now consider the circuit connected to the ~reset input in Figure 1-2. This signal’s active state
is a logic 0 value, which is indicated by the tilde “~” character in its name. The switch S is
usually open, which means that the ~reset input is connected to a logic 1 value through the
resistor R. When the switch is closed, it connects the ~reset input directly to a logic 0, which

1-4 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

causes the CPU to be initialized into a well-known state. The switch is of a type that springs
open when released, thereby returning ~reset to a logic 1 and freeing the CPU to start to
perform its magic.

IRQ

IACK

CPU

Control Bus
Address Bus
Data Bus

~reset

clock

Clock
Gen

Logic 0

Logic 1

S
R

Figure 1-2. The CPU has four primary control signals

Sometimes even the best computer becomes hopelessly lost and confused; this is usually due
to programming errors caused by its human operators. In this case, the system may be
reinitialized by means of the ~reset input as discussed above. Also, an additional circuit (not
shown here) is used to automatically apply a logic 0 pulse to the ~reset input when power is
first applied to the system. This is referred to as a power-on reset.

The remaining control signals – IRQ (“interrupt request”) and IACK (“interrupt acknowledge”) –
are discussed in more detail in Chapter 3.

The data bus
The term bus is used to refer to a group of signals which carry similar information and perform
a common function. The DIY Calculator’s data bus is 8-bits wide (Figure 1-3).

Individual
Wires

To/From CPU From In Port

To Out Port

To/From RAM

From ROM

To/From Rest
of System

(a) Abstract view (b) Less abstract view

= Connection

Figure 1-3. The DIY Calculator’s data bus

The more abstract view of the data bus shows arrows indicating the directions in which signals
can travel between the various components attached to the bus. The less abstract view omits
these arrows to emphasize the fact that the bus is physically composed of simple wires. In
reality, the only thing that determines which way signals are traveling on the bus at any particular

 The Official DIY Calculator Data Book 1-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

time is the CPU (see also the discussions on the control bus later in this chapter. Due to the fact
that signals can travel in either direction on the data bus, this bus is said to be bidirectional.

The address bus
The totality of memory locations that can be addressed by a computer are referred to as its
address space. The DIY Calculator’s address bus is 16-bits wide, which allows it to address
216 = 65,536 memory locations numbered from 0 to 65,535 (or $0000 to $FFFF in hexadecimal,
where dollar “$” characters are used to indicate hexadecimal values) (Figure 1-4).

Each location in the memory is referred to as a word, and each word has the same width as the
data bus. Thus, as the DIY Calculator’s data bus is 8-bits wide, each word in the memory must
also be 8-bits wide. Each bit in a memory word can be used to store a logic 0 or a logic 1, and all
of the bits forming a word are typically written to or read from simultaneously.

�����������������
�����������������

�����������������
�����������������

�����
�����

�������
���������
���������

���������
������������������

��
��

����
����

CPU

Control Bus
Address Bus (points to memory)

Data Bus
$0000

Memory

$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000C
$000D
$000E

0

Memory word
$000A

Bit 7 Bit 0
Note that '$' characters indicate

hexadecimal numbers

0 1 1 0 1 0 1

~reset

clock

IRQ

IACK

Figure 1-4. The DIY Calculator’s address bus

The control bus
Paradoxically – although its name would appear to indicate something rather special – in some
respects the control bus is the simplest bus of all, because it consists of only two wires named
~read and ~write (Figure 1-5).

�����������������
����������������������������������

�����������������
���������������������

������
������
����
����

���������
���� ��

��
�����
�����

���������
���������

����

CPU

Address Bus
Data Bus

~write
~read Control Bus

~reset

clock

IRQ

IACK

Figure 1-5. The DIY Calculator’s control bus

1-6 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

In many systems these two signals are combined on a single wire, in which case a logic 1 is
used to indicate a read operation and a logic 0 is used to indicate a write (or vice versa). To be
perfectly honest, the clock, ~reset, IRQ, and IACK signals are also considered to form part
of the control bus, but these signals are often treated separately as is illustrated in our
diagrams.

Both the ~read and ~write signals are active when they carry logic 0 values, as is indicated by
the tilde “~” characters in their names. The CPU uses its ~read signal to indicate when it wishes
to receive (read) some data from whichever memory location it is currently pointing to with its
address bus. The location selected by the address bus passes the required data to the CPU by
means of the data bus. Similarly, the CPU uses its ~write signal to indicate when it wishes to
send (write) some data to whichever memory location it is currently pointing to with its address
bus. The CPU passes the data to the targeted location by driving it out onto the data bus.

kB, KB, kb, Kb, etc.
The use of the metric system of measurement – which was developed during the French
Revolution – was legalized in America in 1866. The International System of Units (SI) is a
modernized version of the original metric system. Four of the SI prefixes that are of interest to
us here are as shown in Table 1-1.

Name (SI) Symbol Factor Name (USA) Comment

T One million million

G One thousand million 4

M

k 103

106

109

1012

thousand

million

billion 4

trillion

kilo3

mega 2

giga 1

tera

1The term giga comes from the Latin gigas, meaning “giant.”
2The term mega comes from the Greek mega meaning “great” (hence the fact that Alexander the Great was known as
Alexandros Megos to his contemporaries).
3The term kilo comes from the Greek khiloi , meaning “thousand” (strangely enough, this is the only prefix with an actual
numerical meaning).
4In Britain, the term “billion” traditionally used to mean “a million million” (1012). However, for reasons unknown, the
Americans decided that “billion” should denote “a thousand million” (109). In order to avoid the confusion that would
otherwise ensue, most countries (including Britain) have decided to go along with the Americans on this one.

Table 1-1. Four SI units of interest

This leads to an interesting quirk when referencing the size of memory and storage devices in a
computer. In SI units, the qualifier k (kilo) represents one thousand (1,000), but computers are
based on the binary number system and the closest power of two to one thousand is 210, which
equals 1,024. Therefore a 1 kilobit (1 kb or 1 Kb) memory actually refers to a device containing
1,024 bits, while a 1 kilobyte (1 kB or 1 KB) memory refers to a component containing 1,024
bytes.

Similarly, the qualifier M (mega) is generally taken to represent one million (1,000,000), but the
closest power of two to one million is 220, which equals 1,048,576. Thus, a 1 megabit (1 Mb)
memory actually refers to a device containing 1,048,576 bits, while a 1 megabyte (1 MB)
memory refers to a component containing 1,048,576 bytes.

 The Official DIY Calculator Data Book 1-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Meanwhile, in the case of the qualifier G (giga), which is commonly understood to refer to one
thousand million (1,000,000,000), the closest power of two is 230, which equals 1,073,741,824.
This means that a 1 gigabit (1 Gb) memory actually refers to a device containing 1,073,741,824
bits, while a 1 gigabyte (1 GB) memory refers to a component containing 1,073,741,824 bytes.

Note the use of ‘b’ and ‘B’ to represent bit and byte, respectively. Also note that ‘M’ (mega) and
‘G’ (giga) are always uppercase, but people may use ‘k’ or ‘K’ to represent “kilo” (the lowercase
‘k’ is technically more correct, because this more closely matches the SI standard, but folks
often use the uppercase ‘K’ because this maintains consistency with ‘M’ and ‘G’.) Last, but not
least, a useful rule to remember is that no space is used between a numerical quantity and any
qualifying symbol for single letter qualifiers (for example, 5V, meaning “5 volts”), but spaces are
used for multi-letter qualifiers (for example, 4 KB, meaning “4 kilobytes”).

The memory (RAM and ROM)
For the purposes of these discussions, all of the memory devices in the DIY Calculator are
assumed to be 4 KB in size (that is, they each contain 4,096 byte-sized words of data). Although
their internal construction is quite different, ROM and RAM devices are very similar in external
appearance (Figure 1-6).

~chip_select

~read
~write

~cs
~rd

~wr

addr[11:0] data[7:0]

RAM

~chip_select

~read

~cs
~rd

addr[11:0] data[7:0]

ROM

Figure 1-6. ROM and RAM devices

Both ROMs and RAMs have a ~cs input, which is used to inform them when their services are
required (where “cs” is a common abbreviation for “chip select”). Similarly, both devices have
an ~rd (“read”) input, which informs them when the CPU wishes to perform a read operation.
However, only the RAM has a ~wr (“write”) input, which is used to inform it when the CPU
wishes to perform a write operation (the ROM does not have this input, because you can’t
write new data into a read-only memory). As the tilde “~” characters in their names would
suggest, the active states for the ~cs, ~rd, and ~wr inputs are logic 0s, which is commonly
the case for control signals.

Memory address decoding
Remember that all of the ROM and RAM devices in the DIY Calculator are assumed to have
a depth of 4 KB. Now let’s assume that we’ve got a bucket of these 4 KB memory devices
and we want to connect them together in such a way that – to the CPU – they appear to be a
contiguous 64 KB memory. (You will recall that 1 KB actually equals 1,024 bytes, so 64 KB
equates to the 216 = 65,536 byte-sized words that can be addressed by the DIY Calculator’s
16-bit address bus).

1-8 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The way this works is that all of the devices are going to be connected to the least-significant
twelve bits of the address bus: addr[11:0] (where these twelve bits can be used to address
the 212 = 4,096 locations contained in each of the 4 KB memory devices). The remaining four
address bus bits, addr[15:12], are going to be used to select between the individual memory
devices. Based on the fact that four bits can be used to represent sixteen different
combinations of 0s and 1s, what we’re going to do is to use a 4:16 decoder (Figure 1-7).

addr[15:12]

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

~cs[15:0]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Decoder
4:16

addr[15:12]

~cs[15]

~cs[0]

Figure 1-7. The 4:16 decoder

This device has four inputs connected to addr[15:12], and sixteen outputs connected to a
set of wires called ~cs[15:0] (as usual, the tilde “~” characters in their names indicate that
the active states of these outputs are logic 0s). Each pattern of 0s and 1s on the inputs causes
an individual output to be driven to its active state, and each of these outputs is used to select a
particular memory device. The only thing that remains to be done is to connect the decoder to
sixteen of our 4 KB memory devices in such a way that the CPU is fooled into thinking that it is
looking at a single 64 KB chunk of memory (16 × 4 KB = 64 KB) (Figure 1-8).

As we previously noted, the four most-significant bits of the address bus, addr[15:12],
are fed into our 4:16 decoder, and each of the outputs from the decoder can be used to select
a 4 KB ROM or RAM device. (In fact, we’re actually only going to use the ~cs[14:0] outputs to
select memory devices, because we’re saving ~cs[15] to select the input and output ports.)
The remaining address bits, addr[11:0], which are connected to all of the memory devices,
are used to point to a particular word within whichever device is selected by the decoder. Due to
lack of space, Figure 1-8 only shows three ROM devices – the remaining ROMs and RAMs
would be connected in a similar fashion. As we noted earlier, the ~read signal from the CPU is
connected to all of the ROMs and RAMs, but the ~write signal would only be connected to the
RAMs (because, by definition, we can’t write data into a “read-only” memory).

The main point to note is that the CPU doesn’t know anything about the tricks we’re playing
with multiple memory devices and our decoder. As far as it’s concerned, the address bus
appears to be pointing to 64 Kbytes of contiguous memory, which means that the CPU is as
happy as a clam.

 The Official DIY Calculator Data Book 1-9

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

data[7:0]

~rd~cs

~cs

~cs

~rd

~rd
~cs[0]

~cs[1]

~cs[2]

~cs[3]~cs[15]

~read~write

ROM

ROM

ROM

4:16Decoder

addr[15:12]

addr[15:0]

addr[11:0]

addr[11:0]

data[7:0]

~read~write

From CPU

To remaining ROM

and RAM devices

Figure 1-8. Memory address decoding

The memory map
A common method for representing the way in which a computer’s memory is organized is by
means of a diagram called a memory map (Figure 1-9).

$0000 $3FFF

$4000 $EFFF

ROM RAM

Figure 1-9. A simplified version of the DIY Calculator’s memory map

From this memory map, we see that the DIY Calculator has 16 Kbytes of ROM (in four 4 KB
chunks) starting at address $0000. Following the ROM there are 44 Kbytes of RAM (in eleven
4 KB chunks) starting at address $4000.

Observe that the last 4 KB chunk of the map doesn’t actually contain any memory. How can this
be? Well if you rewind your brain to the beginning of this chapter (Figure 1-1), you will recall our
mentioning the input ports and output ports that the system uses to communicate with the
outside world. There are a variety of ways in which the system can be configured to “talk” to its
input/output (I/O) ports, but one of the most common is known as memory-mapped I/O, in
which we fool the CPU into believing that these ports are actually standard memory locations.
Theoretically, we could use all 4,096 locations at the top of the memory map as input and
output ports, but this would be somewhat excessive to say the least.

1-10 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

In fact, addresses $F000 through $F01F are occupied by a set of thirty-two input ports (of which
the DIY Calculator’s front panel uses only one port at address $F011), while addresses $F020
through $F03F are occupied by a set of thirty-two output ports (of which the front panel employs
only two ports at addresses $F031 and $F032) (Figure 1-10).

Input and output portsRAMROM

$0000 $3FFF

$EFFF$4000

$F000 $F03F

Figure 1-10. A more sophisticated representation of the memory map

Once again, it’s important to note that the CPU regards these I/O port addresses as being
standard memory locations and doesn’t realize we’re using them for our own cunning purposes.
Finally, addresses $F040 through $FFFF are unused in this implementation (Table 1-2).

Addresses Function

$0000 to $3FFF

$4000 to $EFFF

ROM

RAM

$F000 to $F01F Input ports

$F020 to $F03F

$F040 to $FFFF

Output ports

Unused

Table 1-2. Summary of memory allocation

Input ports
As their name suggests, input ports allow the system to access information from the outside
world. First consider a simple input port (Figure 1-11).

in_data[7]

in_data[6]

in_data[0]

data[0]

data[6]data[7]

~i_enable

data[7:0]

in_data[7:0]~i_enable

From the outside world

tri-state buffer

Figure 1-11. A simple 8-bit input port

 The Official DIY Calculator Data Book 1-11

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Note that our input ports are 8-bits wide to match the DIY Calculator’s data bus. The input
signals driving the port, in_data[7:0], would be connected to something in the outside world;
for example, switches connected in such a way that they can represent either logic 0 or logic 1
values. The outputs from the port, data[7:0], are connected to the system’s data bus.
Inside the port are logic gates known as tri-state buffers, one for each of the data signals. These
buffers act in such a way that when their control inputs are in their active state (which is a logic 0
in this case), they pass whatever is on their data inputs through to their data outputs. By
comparison, when their control inputs are in their inactive state, the buffers effectively disconnect
themselves from the data bus and start to drive high-impedance (Z) values. (The use of tri-state
buffers is what allows different ports and devices to push data on to a common data bus.)

When the CPU wishes to read the values being presented to this port’s inputs, it must
somehow cause a logic 0 to be applied to the port’s ~i_enable signal. In the case of our
example system, there are thirty-two such input ports located at addresses $F000 to $F01F. In
order for the CPU to individually address these ports, it must be able to generate a unique
~i_enable signal for each port.

There are numerous ways of generating such signals. One technique would be to use the most
significant output from the 4:16 decoder, ~cs[15], to indicate that we wish to address a location
greater than or equal to $F000. We can then combine this signal with some additional logic that
decodes the least-significant address bus bits to give us thirty-two signals corresponding to
addresses $F000 to $F01F. Finally, we could combine each of these signals with the CPU’s
~read signal to give us thirty-two unique ~i_enable control signals, one for each input port.

Output ports
In the case of an output port, the signals driving the port, data[7:0], are connected to the
system’s data bus, while the port’s outputs, out_data[7:0], would be used to drive something
in the outside world; for example, lights connected in such a way that a logic 0 would turn them
OFF and a logic 1 would turn them ON (or vice versa) (Figure 1-12).

out_data[7]

out_data[6]

out_data[0]

data[0]

data[6]data[7]

~o_enable

data[7:0]

out_data[7:0]~o_enable

To the outside world

latch

Figure 1-12. A simple 8-bit output port

Inside the port are logic functions known as latches, (1) one for each of the data signals. These
latches act in such a way that, when their control inputs are in their active state (which is a logic

1Actually there are a variety of different types of output ports — we’re concentrating on

those based on latches because they’re relatively common and easy to understand.

1-12 Chapter 1: The Virtual Microcomputer Powering the DIY Calculator

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

0 in this case), they pass whatever is on their data inputs through to their data outputs. By
comparison, when their control inputs are in their inactive state, the latches remember the last
values they were driving and continue to drive them to the outside world.

When the CPU wishes to send a value to a port’s outputs, it must somehow cause a logic 0 to
be applied to that port’s ~o_enable signal. In the case of our example system, there are thirty-
two such input ports located at addresses $F020 to $F03F. In order for the CPU to individually
address these ports, it must be able to generate a unique ~o_enable signal for each port.

Once again, there are numerous ways of generating such signals. As before, we can use the
most significant output from the 4:16 decoder, ~cs[15], to indicate that we wish to address a
location greater than or equal to $F000. We can then combine this signal with some additional
logic that decodes the least-significant address bus bits to give us thirty-two signals
corresponding to addresses $F020 to $F03F. Finally, we could combine each of these signals
with the CPU’s ~write signal to give us thirty-two unique ~o_enable control signals, one for
each output port.

Chapter 2
The DIY Calculator’s CPU

2-2 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Rampaging around the CPU
Everything we’ve discussed thus-far has merely been limbering-up exercises to prepare our
mental muscles for the ordeals to come. Our real journey starts here and now as we quiver at
the brink, poised to hurl ourselves into the bowels of the DIY Calculator’s central processing
unit (CPU) (Figure 2-1).

CPU

Control Bus
Address Bus
Data Bus

~reset

clock

IRQ

IACK

Figure 2-1. External view of the CPU

Our path will carry us on a rollicking roller-coaster ride (thrill-seekers only need apply); this will
commence at a slow crawl to lull us into a false sense of security, followed by a screaming
plunge into the nether regions where we’ll disappear for a while until we rocket out of the
other side, clutching our stomachs and gasping for more.

Note: The discussions in this chapter assume familiarity with the DIY Calculator’s addressing
modes and instruction set, both of which are described in excruciating detail in Appendix A.

The accumulator (ACC) and status register (SR)
Before we commence our plunge into the unknown, it’s worth noting that the CPU contains two
very important registers called the accumulator (ACC) and the status register (SR) (Figure 2-2).

CPU

~reset

clock

IRQ
IACK

I = Interrupt mask flag
O= Overflow flag

Z = Zero flag
C= Carry flag

N= Negative (sign) flag

Accumulator[7:0]

��������������������
���

���������������������
���������������������

Status register [7
:0]

C

O

Figure 2-2. The accumulator (ACC) and status register (SR)

As its name implies, the accumulator – which is 8 bits wide in our system – is where the CPU
gathers, or accumulates, intermediate results. The ways in which the contents of the

 The Official DIY Calculator Data Book 2-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

accumulator can be modified and used will become apparent as we progress. Suffice it to say
that the CPU can be instructed to load a byte of data from any location in the DIY Calculator’s
memory into the accumulator (this involves taking a copy of the data in the memory; the
contents of the memory at that location remain undisturbed). The CPU can also be instructed to
perform a variety of arithmetic and logical operations on the data in the accumulator. Last but
not least, the CPU can be instructed to store (copy) the contents of the accumulator into a
memory location (this overwrites any existing contents in that memory location, but leaves the
contents of the accumulator undisturbed).

In the case of the status register, each bit forming the register is called a status bit. These bits
are also commonly referred to as status flags or condition codes because they serve to signal
that certain conditions have occurred. Due to the fact that we may require to load the status
register from the memory (or store its contents to the memory), it is usual to regard this register
as being the same width as the data bus (8 bits in the case of the DIY Calculator). However, our
CPU only actually employs five status flags, which occupy the five least-significant bits of the
status register. This means that the three most-significant bits of the register exist only in our
imaginations, so their non-existent contents are, by definition, undefined.

The negative (N) flag: This flag, which is also called the sign flag, typically contains a copy of
the most significant bit in the accumulator following an operation on the accumulator. This flag
is called “the negative flag” because – assuming the value in the accumulator is being regarded
as a signed, twos complement number – a logic 1 in the most-significant bit of the accumulator
indicates a negative value.

The zero (Z) flag: This flag is predominantly used to indicate whether or not the accumulator
contains a value of zero following an operation on the accumulator. However, this flag is also
used to indicate the presence or absence of a zero condition in the index register following the
INCX (“increment index register”) or DECX (“decrement index register”) instructions. The zero
flag is also used to indicate whether or not two numbers are equal following a CMPA (“compare
accumulator”) instruction.

The carry (C) flag: As its name implies, the carry flag is predominantly used to store any
carry-out (or borrow-out) from arithmetic operations performed on unsigned binary numbers.
However, the carry flag is also used to store “the bit that falls off the end” during a shift or rotate
instruction. This flag is also used to indicate if the value in the accumulator is greater than
another value following a CMPA (“compare accumulator”) instruction.

The overflow (O) flag: This flag is used to indicate when the result of an arithmetic operation
on a pair of signed (twos complement) binary numbers produces a result that cannot be
correctly represented because it is two large to fit in the 8-bit accumulator.

The interrupt mask (I) flag: When the DIY Calculator is powered up, this flag is initialized
to contain a logic 0. It can subsequently be loaded with a logic 1 by means of a SETIM (“set
interrupt mask”) instruction; similarly, it can be re-loaded with a logic 0 by means of a CLRIM
(“clear interrupt mask”) instruction. When the interrupt mask flag contains a logic 1, the CPU
will respond to an external interrupt request (the concept of interrupts and the operation of the
interrupt mask flag are discussed in more detail in Chapter 3).

2-4 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Last but not least, we need to be aware of a certain convention as follows:
o A status flag is said to be "set" if it contains a logic 1, which is used to indicate a

TRUE condition. For example, if the zero flag is set (contains a logic 1), this indicates
that: "It's TRUE to say that the current value stored in the accumulator is zero" (that
is, all of the bits in the accumulator contain logic 0s).

o A status flag is said to be "cleared" if it contains a logic 0, which is used to indicate a
FALSE condition. For example, if the zero flag is cleared (contains a logic 0), this
indicates that: "It's FALSE to say that the current value stored in the accumulator is
zero" (that is, one or more of the bits in the accumulator contain a logic 1).

Unfortunately, this convention can appear somewhat counterintuitive – especially in the case of
the zero flag – and it takes a little effort to wrap your brain around it the first time you see it, but
you'll find that it does make sense once you get into the swing of things.

The CPU exposed
The CPU contains three main blocks of logic: the arithmetic logic unit (ALU), the control logic
that decodes and executes instructions, and the addressing logic that is use to point to the
various memory locations. The CPU also contains four 8-bit registers: the accumulator (ACC), a
temporary register (TMP), the instruction register (IR) and the status register (SR) (Figure 2-3).

ACC

TMP
SR

T-BUF

T-BUF

ALU

T-BUF

T-BUF
IR

Decode

 a
nd

 E

xecute

Addressing

Logic
System

CPU

Address
latch

System
address bus

Data
buffer

System
data bus

Figure 2-3. Internal view of the CPU

As we previously noted, the status register actually contains only 5 bits, but we typically treat it
as being an 8-bit entity. In fact, there’s some additional logic associated with the status register
that isn’t shown in this high-level view.

Each of the blocks marked T-BUF represents a group of eight tri-state buffers (one for each
data bus bit). All of the control signals (the black arrows) feeding the various registers and tri-
state buffers are generated by the instruction decoder and executer (control) logic.

 The Official DIY Calculator Data Book 2-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The arithmetic-logic unit (ALU)
The heart (or perhaps the guts) of the CPU is the ALU, because this is where of the nitty-gritty
number crunching and data manipulation takes place. As the DIY Calculator’s data bus is 8 bits
wide, our ALU works with 8-bit chunks of data (Figure 2-4).

ALU

ALU

Instru
ction

Status

Information

A[7:0]

B[7:0]

F[7:0]

CI = Carry-
in

CO = Carry-out

O = Overflo
w

N = Negative

Z = Zero

Figure 2-4. The ALU is where the “number crunching” takes place

The ALU accepts two 8-bit chunks of data as input (we’ll refer to these two inputs as A[7:0]
and B[7:0]); it “scrunches” them together using some arithmetic or logical operation; and it
and outputs an 8-bit result which we’ll call F[7:0]. Whatever operation is performed on the
data is dictated by a pattern of logic 0s and logic 1s called the ALU instruction. For example,
one pattern may instruct the ALU to add A[7:0] and B[7:0] together, while another may
request the ALU logically AND each bit of A[7:0] with the corresponding bit in B[7:0].

Note that the ALU is completely asynchronous, which means it is not directly controlled by – or
synchronized to – the main system clock. As soon as any changes are presented to the ALU’s
data, instruction, or carry-in inputs, these changes will immediately start to ripple through its
logic gates and will eventually appear at the F[7:0] data outputs and the status outputs.

The “core” ALU
We can start by visualizing an inner “core” ALU that performs only five simple functions as
illustrated in Table 2-1.

A[7:0]

A[7:0]

A[7:0]

A[7:0]

A[7:0]

Logical OR

Logical XOR

Addition (ADD)

Compare (CMP)

Logical AND

Function Outputs F[7:0] Flags Modified

N, Z

N, Z

N, Z

CO, O, N, Z

CO, Z

B[7:0]&

|

^

+

B[7:0]

B[7:0]

B[7:0]

B[7:0]

+ CI

Table 2-1. The ALU’s five core functions

2-6 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The three logical functions, AND, OR, and XOR are said to operate in a bitwise fashion, which
means that they operate on each bit independently. For example, in the case of the AND, A[0]
is AND-ed with B[0] to generate F[0], A[1] is AND-ed with B[1] to generate F[1], and so
forth. The ADD function adds A[7:0], B[7:0], and the CI (“carry-in”) signal together, while
the CMP (“compare”) function compares A[7:0] to B[7:0] to see which is the larger (this
function assumes that both A[7:0] and B[7:0] represent unsigned integers).

One way in which we could implement this core ALU would be to create individual blocks for
each of the functions and then “glue” these blocks together using a multiplexer (Figure 2-5).

A[7:0]

B[7:0]

F[7:0]

CMP

AND

OR

XOR

4:1 Multiplexer (8
 bits wide)

CIadd

Instru
ction

AeqBAgtB

Oadd

ADDCOadd

CIadd
COadd
Oadd
AgtB
AeqB

=
=
=
=
=

Carry-in to the adder
Carry-out from the adder
Overflow from the adder
A[7:0] is greater than B[7:0]
A[7:0] is equal to B[7:0]

Figure 2-5. One way to implement the five core ALU functions
(excluding any status logic)

In this scenario, we are using two instruction bits (which can represent four patterns of 0s and
1s) to control a 4:1 (four-to-one) multiplexer so as to select one of four input data channels,
each of which is 8 bits wide. The A[7:0] and B[7:0] signals are presented to all of the
function blocks, but the multiplexer selects the outputs only from the function in which we are
interested. The reason we require only a 4:1 multiplexer (as opposed to a 5:1 version) is that
the fifth function – the CMP – outputs only status information; that is, it doesn’t generate any
data that we need to feed through to the F[7:0] data outputs.

Note: The advantage of the multiplexer-based approach described here is that it’s easy to
understand, but we would be unlikely to use this technique in a real-world implementation.
This is because we’re interested in being able to perform only a single function at any
particular time; thus, we would examine the functions to find areas of commonality allowing us
to share gates between them. To put this another way, instead of having multiple distinct
functions feeding a multiplexer, we’d probably lose the multiplexer and “scrunch” all of the
functions together into one “super function”, thereby allowing us to reduce the ALU’s total
gate count and increase its speed.

 The Official DIY Calculator Data Book 2-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

So now we know how to implement the data-processing portion of our core ALU, but we’ve yet
to decide how we’re going to use the AgtB (“A greater than B”), AeqB (“A equal to B”), Oadd
(“overflow from the adder”), and COadd (“carry-out from the adder”) signals to generate the CO
(“carry-out”), O (“overflow”), N (“negative”), and Z (“zero”) status signals (Figure 2-6).

|

4:1 Mux in core ALU

F[0]

F[7]
Data outputs

from core ALU

AeqB

COadd

AgtB

Zint

2:1 Mux

2:1 Mux

Select

N

Z

CO

Negative, zero,

 a
nd carry-out

 signals fro

m

 core ALU

Figure 2-6. Generating status signals from the five core functions

The N (“negative”) signal is the easiest of all, because it’s simply a copy of the most-significant
bit of the data outputs (that is, F[7]). Things get a little more complicated when we come to the
Z (“zero”) signal, because this depends on the type of operation the ALU is performing. In the
case of the AND, OR, XOR, and ADD functions, the zero signal is set to logic 1 if the result
from the operation is all 0s. We can create an internal signal called Zint to implement this by
simply feeding all of the F[7:0] data outputs into an 8-bit NOR gate (the output from a NOR
gate is logic 1 if all of the inputs are logic 0; conversely, the output is logic 0 if any of the inputs
are logic 1). However, in the case of the CMP function, we wish the Z signal to be set to logic 1
if the two data values A[7:0] and B[7:0] are equal (this is represented by the AeqB signal
coming out of the CMP block).

The bottom line is that we’ve got a single signal, Z, which we wish to reflect the state of one of
two signals (Zint and AeqB) depending on the function being performed. We can achieve this
by feeding Zint and AeqB into a 2:1 multiplexer, whose select input is controlled by a third
instruction bit driving the core ALU. Similarly, we usually want the CO (“carry-out”) status signal
to reflect the carry-out from the ADD function on its COadd signal; however, if we’re performing
a CMP instruction, then we want the CO signal to be set to logic 1 if the unsigned binary value
on the A[7:0] inputs is greater than that on the B[7:0] inputs. Once again, we can achieve
this by feeding both the COadd and AgtB signals into a 2:1 multiplexer controlled by our third
instruction bit.

Note: Primitive logic gates like NOT, AND, OR, XOR, NAND, NOR, and XNOR – along with
more complex logic functions like multiplexers, latches, and registers – are introduced in the
book Bebop to the Boolean Boogie (An Unconventional Guide to Electronics), Second Edition,
ISBN: 0750675438, by Clive “Max” Maxfield (the only electronics book in the world to feature
a Seafood Gumbo recipe!),

2-8 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Last but not least, the Oadd (“overflow from the adder”) signal is used to directly drive the ALU’s
O (“overflow”) status signal. (The overflow for an 8-bit adder can be generated by XOR-ing the
carry-in and carry-out associated with the most-significant bit of the result, which would be bit
[7] in this case.)

Extending the core ALU to perform subtractions and suchlike
Thus far, we’ve designed a core ALU that can perform five simple functions, but our CPU will
require more of us in order to implement the instruction set described in Appendix A. For
example, our core ALU has an ADD function that can add two 8-bit numbers together (along
with a carry-in signal), but we wish to be able to perform both addition and subtraction in the
form of the ADD (“add without carry”) and SUB (“subtract without carry”) instructions,
respectively. Furthermore, in order to perform multi-byte additions and subtractions, we require
the use of the ADDC (“add with carry”) and SUBC (“subtract with carry”) instructions.

The point is that the ADD, ADDC, SUB, and SUBC instructions are all going to employ the ADD
function in the core ALU. And while we’re pondering this poser, we might also decide to
consider the INCA and DECA instructions, which increment or decrement the contents of the
accumulator, respectively.

Note: At this point, it’s probably worth taking a few moments to remind ourselves as to how a
computer performs subtractions in the first place. Let’s assume we have two 8-bit binary
numbers called AA[7:0] and BB[7:0] and that we wish to subtract the latter value from the
former. We can represent this operation as follows (where F[7:0] represents the 8-bit result):

F[7:0] = AA[7:0] – BB[7:0]

From the discussions in Chapter 4 of our book How Computers Do Math, we know that we can
also represent this operation as shown below:

F[7:0] = AA[7:0] + (–BB[7:0])

In turn, we can obtain –BB[7:0] by taking the twos complement of BB[7:0], and we know
that the twos complement of a binary number is equal to its ones complement plus 1. Last but
not least, we know that the ones complement of a binary number can be generated by logically
negating it, which means converting all of its 0s to 1s, and vice versa. The end result is that we
can re-write our original equation as:

F[7:0] = AA[7:0] + !BB[7:0] + 1

Where !BB[7:0] represents the ones complement of BB[7:0].

In the fullness of time, we’re going to connect our 8-bit accumulator directly to the A[7:0]
inputs feeding the core ALU. By comparison, the core ALU’s B[7:0] inputs are going to be fed
from a special block of logic that we’ll call the complementor (Figure 2-7).

 The Official DIY Calculator Data Book 2-9

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

F[7:0]

Core ALU

Instruction

Status

AA[7:0]

B[7:0]

A[7:0]

Arith
' stuff

BB[7:0]

Extended
ALU

Complementor
block

Figure 2-7. Extending the core ALU to perform subtractions and suchlike

In the case of instructions such as AND, OR, XOR, ADD, and ADDC, we want our new
complementor block to pass whatever value is on the BB[7:0] inputs directly through to its
outputs without any modification. In the case of the SUB and SUBC instructions, however, our
new block must first logically negate the value on the BB[7:0] inputs (that is, swap all of the 0s
for 1s, and vice versa) before passing it on to the core ALU. Finally, in the case of instructions
such as INCA and DECA, we want our complementor block to generate the appropriate value to
be added to, or subtracted from, the accumulator (which, as we previously stated, is going to be
connected to the AA[7:0] inputs). One way in which we might implement this complementor
block is shown in Figure 2-8.

To the B[7:0] inputs

on the core ALU

$FE
$00

$01
-2

BB[7:0]

5:1 Multiplexer (8
 bits wide)

CI { A
DDC, SUBC }

CIadd

0 { A
DD, IN

CA }

1 {
SUB, DECA }

2-bit se
lect d

ecoded

from instru
ction

3:1 Mux
Complementor block

Additional status logic
in the core ALU

3-bit select d
ecoded

from instru
ction

!

Negator block
0

+1

Figure 2-8. The contents of the complementor block

The way this works is that, if the pattern on the instruction bits represents an operation such as
AND, OR, XOR, ADD, or ADDC, then we’ll decode them in such a way that they cause the 5:1
multiplexer in the complementor block to select the value on BB[7:0]. By comparison, a SUB
or SUBC instruction will cause the multiplexer to select the outputs from the negator block,
whose value is the logical inverse of that found on BB[7:0]. The negator block will be formed
from eight NOT gates, one for each data bit as shown in Figure 2-9.

2-10 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

(a) Gate-level view (b) Abstract view

BB[7]

BB[1]

BB[0]

!BB[0]
(via mux to B[0])

!BB[7:0]

!

^

!BB[1]
(via mux to B[1])

!BB[7]
(via mux to B[7])

BB[7:0]

Figure 2-9. The contents of a NOT-based negator block

Observe that an exclamation mark “!” is used to indicate a NOT function. Thus, !BB[0]
represents the logical negation of BB[0], !BB[1] represents the logical negation of BB[1],
and so forth. Furthermore, as the ones complement of a binary number is generated by
inverting all of its bits (swapping the 0s for 1s, and vice versa), !BB[7:0] is the ones
complement of BB[7:0].

In the case of a DECA instruction, the 5:1 multiplexer in Figure 2-8 will select a hard-wired value
of $FE, which – assuming we’re working with signed binary numbers – equates to –210 in
decimal (we’ll explain the reasoning behind this value in a moment). By comparison, an INCA
instruction will cause the multiplexer to select a hardwired value of $01 (which is of course +110
in decimal). The final input to the multiplexer is a hard-wired value of $00 (zero), whose purpose
will be revealed in the fullness of time.

Now observe the 3:1 multiplexer that we’ve added to the core ALU as illustrated in Figure 2-8.
This allows us to force the CIadd (“carry-in to the adder”) signal to a logic 0 for the ADD and
INCA instructions, and to force it to a logic 1 for the SUB and DECA instructions.

The way in which the ADD, ADDC, INCA, SUB, SUBC, and DECA instructions employ the ADD
function in the core ALU may be summarized as shown in Table 2-2.

Instruction ALU B[7:0] CIadd Operation performed

BB[7:0] 0 F[7:0] = AA[7:0] + BB[7:0] + 0

BB[7:0] CI F[7:0] = AA[7:0] + BB[7:0] + CI

$01 0 F[7:0] = AA[7:0] + $01 + 0

!BB[7:0] 1 F[7:0] = AA[7:0] + !BB[7:0] + 1SUB

INCA

ADDC

ADD

!BB[7:0] CI F[7:0] = AA[7:0] + !BB[7:0] + CISUBC

$FE 1 F[7:0] = AA[7:0] + $FE + 1DECA

Table 2-2. Summary of operations for the initial implementation

It now becomes apparent why we force our multiplexer to select the hard-wired $FE value (–210
in decimal) for the DECA instruction; in this case, the logic 1 on the CIadd signal means that the

 The Official DIY Calculator Data Book 2-11

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

operation actually performed by the extended ALU is A[7:0] + (–2) + 1. This is equivalent to
A[7:0] + (–1), which is equivalent to A[7:0] –1, which is – of course – what we wanted our
DECA instruction to do in the first place (phew!).

An alternative complementor block implementation
It’s important to understand that Figures 2-8 and 2-9 reflect just one of many implementation
alternatives. In fact, if the truth be told, our first pass implementation was not a very good one;
we just presented this version to get our creative juices flowing and to provide a basis for
comparison.

For example, our original complementor block comprised two functions: a 5:1 multiplexer and a
negator, where the negator simply comprises eight NOT gates (one for each signal in the data
path). We chose to use this form of negator because it made it easy to visualize what we were
trying to do, but we probably wouldn’t use this technique to create a physical realization.
Instead, a slightly better implementation would be to replace the negator’s eight NOT gates with
eight 2-input XOR gates, each of which could have one of its inputs connected to a common
control signal (Figure 2-10).

(a) Gate-level view (b) Abstract view

BB[7]

BB[1]

BB[0]

X-BB[0]
(via mux to B[0])

BB[7:0]

X-BB[7:0]

^

^

^

^

Control

X-BB[1]
(via mux to B[1])X-BB[7]

(via mux to B[7])

Control

Figure 2-10. The contents of an XOR-based negator block

In this case, a logic 0 on the control signal would pass the values on BB[7:0] through the XOR
gates unmodified (that is, signals X-BB[7:0] = BB[7:0]), while a logic 1 would cause these
values to be inverted (that is, X-BB[7:0] = !BB[7:0]). This would allow us to replace our 5:1
multiplexer with a 4:1 version that would require substantially fewer gates.

Furthermore, we could replace the three hard-wired data inputs ($FE, $01, and $00) in our
original implementation with just two hard-wired values ($FF and $00). This would allow us to
replace our new 4:1 multiplexer with a 3:1 version requiring even fewer gates (Figure 2-11).

2-12 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

To the B[7:0] inputs

on the core ALU

$FF

$00-1
BB[7:0]

3:1 Multiplexer (8
 bits wide)

CI { A
DDC, SUBC }

CIadd

0 { A
DD, DECA }

1 {
SUB, IN

CA }
2-bit se

lect d
ecoded

from instru
ction

3:1 Mux
Complementor block

Additional status logic
in the core ALU

2-bit select d
ecoded

from instru
ction

^

XOR-based

negator block
0

control signal decoded

from instructio
n

Figure 2-11. The contents of the alternative complementor block implementation

In this case, we’d also modify the 3:1 status logic multiplexer such that the ADDC and SUBC
instructions cause the CIadd (“carry-in to the adder”) signal to be driven by the current
contents of the carry flag (CI); the ADD and DECA instructions force CIadd to be driven by a
logic 0; and the SUB and INCA instructions force CIadd to be driven by a logic 1. The internal
machinations of this alternative implementation may be summarized as shown in Table 2-3:

Instruction ALU B[7:0] CIadd Operation performed

BB[7:0] 0 F[7:0] = AA[7:0] + BB[7:0] + 0

BB[7:0] CI F[7:0] = AA[7:0] + BB[7:0] + CI

$00 1 F[7:0] = AA[7:0] + $00 + 1

!BB[7:0] 1 F[7:0] = AA[7:0] + !BB[7:0] + 1SUB

INCA

ADDC

ADD

!BB[7:0] CI F[7:0] = AA[7:0] + !BB[7:0] + CISUBC

$FF 0 F[7:0] = AA[7:0] + $FF + 0DECA

Table 2-3. Summary of operations for the alternative complementor implementation

Extending the core ALU to perform shifts and rotates
Cheer up, because this part is going to be a doddle. We want to be able to shift and rotate the
contents of the accumulator using the following instructions: SHL (“shift left”), SHR (“shift right”),
ROLC (“rotate left through the carry bit”), and RORC (“rotate right through the carry bit”). One
way in which we could achieve this is to further extend our core ALU by “gluing” a new
shifter/rotator block onto it as shown in Figure 2-12.

 The Official DIY Calculator Data Book 2-13

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Core ALU

Instruction

Status

AA[7:0]

B[7:0]

A[7:0]

Arith' stuff
BB[7:0]

Extended

ALU

FF[7:0]

Complementor
block

Shifter/Rotator
block

F[7:0]

Figure 2-12. Extending the core ALU to perform shifts and rotates

Note that, although we’ve decided to attach this new block to the outputs of the core ALU, we
could stick in a number of other places if we so desired (for example, it could go between the
accumulator and the core ALU). However, the fact that we have attached this block to the
ALU’s outputs means that the logic we use to generate the Z (“zero”) and N (“negative”) status
flags must be removed from the core ALU’s F[7:0] outputs and reattached to the extended
ALU’s FF[7:0] outputs (the logic for the Z and N status flags was illustrated in Figure 2-6).
Before leaping headfirst into this new block, there’s one point we should discuss. As you may
recall, the multiplexer in our complementor block had one set of inputs connected to a hard-
wired value of $00 (see Figure 2-8), but we never got around to explaining why. Well, the
accumulator is going to be connected to the extended ALU’s AA[7:0] inputs. If we decide to
perform a shift or rotate operation, then we want the values on the AA[7:0] inputs to be
passed through the core ALU and fed directly into the shifter/rotator block without modification.
But we know that the core ALU is always going to try to perform some sort of function on this
data; after all, that’s what it’s there for! As usual, there are a number of different ruses we could
employ to address this problem, but the technique we decided to use is as follows:

o Assume that the extended ALU is presented with a SHL, SHR, ROLC, or RORC
instruction.

o This instruction is decoded in such a way that the multiplexer in the complementor
block selects the hard-wired $00 value; the core ALU is instructed to perform an
ADD operation; and the CIadd (“carry-in to the adder”) signal is presented with a
logic 0.

o Thus, the core ALU simply adds $00 to the value on the AA[7:0] inputs, which has
no effect whatsoever! The unmodified AA[7:0] value is then handed on to the
shifter/rotator block for it to perform the real operation (pretty cunning, huh?).

Now let’s dive into the shifter/rotator block itself. In the case of instructions such as AND, OR,
ADD, and SUB, we want our new block to simply pass whatever comes out of the core ALU
straight through without modification. It is only in the case of the shift or rotate instructions that
this new block comes into play (Figure 2-13).

2-14 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

0 {
SHL }

CI {
ROLC }

1-bit se
lect

bit0
2:1

1-bit se
lect

{ ROLR } C
I

{ SHR } F
[7]

bit7

2:1 FF[7:0]
3:1 Mux

F[7:0] fro
m

core ALU
2-bit se

lect

bit7
F[7:1]

bit0

F[6:0]

Note: All multiplexer select signals are
decoded from the ALU's instruction bits

Figure 2-13. The contents of the shifter/rotator block

The mainstay of the shifter/rotator is a 3:1 multiplexer, in which each input channel is 8 bits
wide. In the case of instructions like AND, OR, ADD, and SUB, we decode our instruction bits
such that they cause this multiplexer to choose the F[7:0] outputs from the core ALU and
pass them straight through to its FF[7:0] outputs. That is, the value on F[7] appears on
FF[7], the value on F[6] appears on FF[6], and so on (this is represented to the multiplexer
selecting the central set of inputs in Figure 2-13).

When we turn our attention to the SHR (“shift right”) and RORC (“rotate right through the carry
bit”) instructions, a little thought reveals that we want both of them to shift whatever is coming
out of the core ALU one bit to the right. That is, we want the value on F[7] to appear on
FF[6], the value on F[6] to appear on FF[5], and so on (this is represented by the main
multiplexer selecting the left-hand set of inputs in Figure 2-13).

In fact the only difference between these instructions is the value that comes out of FF[7], which
needs to be a copy of whatever was on F[7] for an SHR, or a copy of whatever is on the ALU’s
main CI (“carry-in”) input for an RORC. In order to achieve all of this, we use a simple 2:1
multiplexer to generate a signal called bit7; an SHR causes this multiplexer to select the input
connected to F[7], while an RORC causes it to select the input being driven by the CI signal.
Now consider the magnified view of the left-hand inputs to the main multiplexer shown in Figure
2-13. As we see, the most-significant input is connected to the bit7 signal, while the remaining
seven inputs are connected to F[7:1]. Thus, when the main multiplexer selects these inputs and
passes them through to its outputs, the effect is to shift the bits coming out of the core ALU one
bit to the right, and to insert whatever value is on the bit7 signal into the most-significant bit.

Similarly, we want both the SHL (“shift left”) and ROLC (“rotate left through the carry bit”)
instructions to shift whatever is coming out of the core ALU one bit to the left. That is, we want
the value on F[0] to appear on FF[1], the value on F[1] to appear on FF[2], and so on (this
is represented by the main multiplexer selecting the right-hand set of inputs in Figure 2-13). In
this case, the only difference between these instructions is the value that comes out of FF[0],
which needs to be a logic 0 for an SHL, or a copy of whatever is on the ALU’s main CI (“carry
in”) input for an ROLC.

 The Official DIY Calculator Data Book 2-15

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Once again, we use a simple 2:1 multiplexer to generate a signal called bit0; an SHL causes
this multiplexer to select the input connected to a logic 0, while an ROLC causes it to select the
input being driven by the CI signal. Now consider the magnified view of the right-hand inputs to
the main multiplexer. As we see, the most-significant inputs are connected to the F[6:0]
signals, while the least-significant input is connected to bit0. Thus, when the main multiplexer
selects these inputs and passes them through to its outputs, the effect is to shift the bits coming
out of the core ALU one bit to the left, and to insert whatever value is on the bit0 signal into
the least-significant bit.

The only remaining task required to complete our shifter/rotator is to modify the logic used to
drive the CO (“carry-out”) signal generated by the ALU. In our earlier discussions, we used a 2:1
multiplexer to select between the COadd signal from the ADD function and the AgtB signal from
the CMP function. To satisfy the requirements of our shifter/rotator, we now need to replace
that 2:1 multiplexer with a 4:1 version (Figure 2-14).

2-bit select

{ SHR, RORC } F
[0]

{ SHL, ROLC } F
[7]

CO
4:1 Mux

{ CMPA } A
gtB

{ ADD, SUB, IN
CA, etc } C

Oadd

Figure 2-14. Modified carry-out logic to accommodate shift and rotate instructions

As usual, the select inputs controlling this multiplexer are decoded from the instruction
bits driving the ALU. The ADD, OR, XOR, ADD, ADDC, SUB, SUBC, INCA, and DECA instructions all
cause the multiplexer to select the COadd signal as before, while the CMPA instruction causes it to
select the AgtB signal. In the case of the SHL or ROLC instructions, the multiplexer selects the
input connected to the F[7] signal coming out of the core ALU, where F[7] is the bit that
conceptually “drops off the end” when we shift everything to the left. Similarly, the SHR or RORC
instructions cause the multiplexer to select the [F0] signal coming out of the core ALU, which is
the bit that “drops off the end” when we shift everything to the right.

And that’s all there is to it with regards to the ALU. The combination of the core ALU with the
complementor and the shifter/rotator blocks provides us with everything we need to satisfy all of
the DIY Calculator’s ALU-related instructions.

Connecting the accumulator and data bus to the ALU
Once we have a functional ALU, we need to connect it to our trusty old accumulator and a few
of its closest friends (Figure 2-15).

We commence by connecting the outputs from our 8-bit accumulator (ACC) to the extended
ALU’s AA[7:0] inputs. Similarly, we connect an 8-bit temporary register (TMP) to the ALU’s
BB[7:0] inputs. The inputs to both the accumulator and the temporary register are driven by
an internal 8-bit data bus, which is, in turn, linked to the outside world by means of an 8-bit bi-
directional data buffer.

2-16 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

ACC

TMP

T-Buf

ALU

ALU

Instructio
n

Status

Information
System

CPU

Data
buffer

System
data bus

Control signals

Internal
data bus

AA[7:0]

BB[7:0
]

FF[7:0]

Figure 2-15. Connecting the accumulator and data bus to the extended ALU

Both the accumulator and the temporary register have control signals in the form of clocks. The
fact that these signals are clocks is indicated by the chevrons (‘v’ shapes) on the symbols at the
point where the signals enter them. Note that these clocks are not the same as the CPU’s main
clock input, although they are derived from it. Also note that these clocks can be activated (or
not activated) individually as required, thereby allowing us to load one register or the other (or
neither of them).

Now consider the bi-directional data buffer linking the CPU’s internal data bus to the main
system’s data bus. This buffer also has control signals that dictate whether it will (a) allow data
from the outside world to pass into the CPU, (b) allow data from the CPU to pass to the outside
world, or (c) completely disconnect the internal data bus from the outside world.

Last but not least, we have an 8-bit tri-state buffer called T-Buf, which links the ALU’s FF[7:0]
outputs to the internal data bus. Depending on the state of the T-Buf’s control signal, it either
propagates the outputs from the ALU onto the data bus or it isolates the ALU from the bus. All
of the control signals for the registers, latches, and buffers are generated by the instruction
decoder and executer (control) logic that we haven’t gotten around to worrying about yet.

One cunning point occurs when we wish to take the contents of the accumulator, use the ALU
to perform some operation on these contents, and then feed the outputs from the ALU through
its tri-state buffers onto the internal data bus and store the result back in the accumulator. But
as soon as we load the accumulator with its new contents, these contents will be presented to
the ALU’s inputs, which will modify the results coming out of the ALU’s outputs, and so forth.

The reason this isn’t a problem is that the registers forming the accumulator and the gates
forming the ALU all have delays. This means that when we load the result from the ALU into the
accumulator, it takes a fraction of a second before the accumulator’s outputs begin to respond.
Similarly, when the outputs from the accumulator do respond, it takes some finite amount of
time for the effect to ripple through the ALU and work its way back to the accumulator’s inputs.
Thus, by the time these unwanted signals present themselves to the accumulator, the result we
were interested in is already safely stored away inside it.

 The Official DIY Calculator Data Book 2-17

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Connecting the status register to the ALU and data bus
The next step is to connect the ALU’s status signals to the status register (SR), and also to link
the status register to the CPU’s internal data bus (Figure 2-16).

ACC

TMP
SR

T-BUF

T-BUF

ALU

System

CPU

Data
latch

System
data bus

ALU Instru
ction

(fro
m control logic)

Status in
fo

(to/fro
m control)

Internal
data bus

Figure 2-16. Connecting the status register

In this simplified diagram, the status register is only shown as having a single clock. In reality,
each of the five register bits forming our status register (I, O, N, Z, and C) would have individual
clocks; alternatively they might share a common clock, but each would be equipped with an
individual clock-enable. Once again, all of these control signals will be generated by the
instruction decoder and executer (control) logic that we haven’t looked at yet.

This leads us to a related consideration, in that the ALU is always outputting values on its O, N,
Z, and CO status signals, but this doesn’t mean that we’re obliged to save all of them in the
status register, because one or more of these values may not be relevant in the context of the
instruction that’s being executed. (Note that the interrupt mask (I) status bit is handled by a
separate mechanism as discussed in Chapter 3.) Depending on the particular operation that
we’re trying to perform, the control logic in the instruction decoder and executer will only cause
the appropriate status register bits to be loaded.

When we power-up or reset the CPU, all of the status bits are cleared to logic 0s, and any
subsequent values in the status bits depend on the results generated by whatever instructions
have most recently been performed. Also, we occasionally require the ability to directly read
values from, and write values to, the status register, which explains why we connected this
register to the internal data bus. To better comprehend some of status register’s more subtle
details requires us to plunge a little deeper into the logic surrounding this little rapscallion
(Figure 2-17).

As we see, the inputs to our status register would actually be driven by a set of five 2:1
multiplexers, which are used to choose between the signals on the internal data bus and the
outputs from the ALU. These multiplexers all share a common select control signal generated
by our furtive control logic. Similarly, in Figure 2-13, we appeared to have two sets of outputs
from the status register, where the first set was connected to our control logic and the second
was used to drive the tri-state buffer. However, the status register really has only a single set of

2-18 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

outputs that are used to drive both the control logic and the tri-state buffers (the tri-state buffers
also share a common enable signal generated by our control logic).

Unused
7 6 5 4 3 2 1 0

From internal data bus

To internal data bus

7 6 5 4 3 2 1 0From ALU

 (O
, N, Z, CO)

From control unit (I)

To ALU (CI)

To co
ntrol unit

 (I,
 O, N, Z, C)

Logic 0

2:1 Multiplexers

C

O

Status Reg

Tri-state buffers

Figure 2-17. A closer look at the status register logic

Although some of the wires are shown as crossing over each other in this illustration, the only
points at which they are electrically connected are those indicated by small black dots. Also
remember that although we’ve only shown a single clock driving the status register, each bit
forming the register would have an individual clock (or a common clock and an individual
clock-enable).

As we previously discussed, our internal data bus is 8 bits wide, but our status register contains
only 5 bits. This isn’t a problem in the case of writing a value to status register, because all we
have to do is connect bits 0 to 4 of the internal data bus to the multiplexer inputs and forget
about bits 5 through 7. However, things are a little trickier when we wish to read a value from
the status register, because we only have 5 register bits available to drive our 8-bit bus. The
solution to this problem is quite simple, because although the status register itself contains only
5 bits, we can make the tri-state buffer 8 bits wide, and connect its three most-significant inputs
to a logic value of our choice (we’ll assume that they’re connected to logic 0).

Figure 2-17 also allows us to understand how the C (carry) flag can be driven by the ALU’s
carry-out (CO) output signal and, at the same time, can be used to drive the ALU’s carry-in (CI)
input signal. For example, in the case of one of our rotate instructions (ROLC and RORC), the bit
that’s shifted into the accumulator comes from the carry flag, while the bit that “drops off the
end” from the accumulator is copied (stored) into the carry flag. This is possible due to the
delays in the circuit, which mean that the original contents of the carry flag have already been
utilized by the time the new contents overwrite them.

Finally, note once again that the interrupt mask flag is not connected to the ALU, but is instead
driven directly by the control logic. (The concept of interrupts is discussed in detail in Chapter 3).

 The Official DIY Calculator Data Book 2-19

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Adding the instruction register (IR) and control logic
Now we come to consider the control logic that’s been lurking furtively in the background for
so long. In fact, there are two key pieces to the control logic: the instruction register (IR) and
the instruction decoder and executor (we’ll refer to the latter as the control logic for short)
(Figure 2-18).

ACC

TMP
SR

T-BUF

T-BUF

ALU

IR

Decode

 a
nd

 E

xecute

Syste
m

CPU

System
data bus

Internal
data bus

clock~reset

Control

 signals

IRQ
IACK

Figure 2-18. The instruction register (IR) and control logic

The control logic is the real “brain” of the CPU, because it supplies all of the timing and control
signals to the other units. This block has three main inputs from the outside world: the system
clock (clock), the system reset (~reset), and the interrupt request (IRQ). When the ~reset
signal is activated (either explicitly or when power is applied to the system), the control logic
initializes the CPU by clearing the accumulator, status register, and instruction register (along
with whatever else needs to be done).

Following initialization, the control logic causes the CPU to read an instruction from the main
system’s memory and store it in the instruction register (IR). The control logic then generates
whatever sequence of internal control signals are required to execute this particular instruction.
All of the control logic’s actions are synchronized to the main system clock, and each instruction
may require a number of clock cycles.

After a particular instruction has been executed, the control logic causes the next instruction to
be loaded from the main system’s memory, and so it goes. Finally, remember that the control
logic can use the values stored in the status register to make decisions, along the lines of: “If
the zero flag is set I’ll do one thing, otherwise I’ll do something else.”

Adding the addressing logic
The last major block in the CPU is the addressing logic, which the control logic uses to point to
locations in the main system’s memory and to the input and output ports. The complexity (or lack
thereof) of its addressing logic dictates the sophistication (or lack thereof) of the addressing
modes that can be supported by the CPU. As fate would have it, the DIY Calculator’s CPU offers
a reasonably varied potpourri of commonly used addressing modes, with the result that the
addressing logic is quite “hairy.”

2-20 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Remember that the DIY Calculator has a 16-bit address bus, which is why we show this bus as
being twice the width of our 8-bit data bus (Figure 2-19).

PC
 (M

S)

Adder & Stuff

PC
 (L

S)

 Addresslatch

 Databuffer

System

CPU

2:1 Mux

T-Buf

T-Buf

Internal data bus

Address
bus

System
data bus

2:1 Mux

Addressing
logic block

The ALU, ACC, SR, IR,
decode logic, and other
bits and pieces that we

looked at earlier go here

Figure 2-19. Inside the addressing logic block (simplified view)

Inside the addressing logic block are a number of 16-bit registers, each of which may be loaded
into the address latch and used to drive the address bus. For the sake of simplicity, Figure 2-19
shows only the main 16-bit register, which is referred to as the program counter (PC). The
program counter is actually formed from two 8-bit registers, which we’ve called PC-MS and
PC-LS for the most- and least-significant bytes, respectively. The two halves of the program
counter can be clocked independently or together (all of the control signals are driven by the
control logic that we introduced in the previous section). Thus, by means of the 2:1 multiplexers
driving their inputs, we can individually load each half of the program counter with a value from
the internal data bus. Similarly, the T-Buf tri-state buffers allow us to read the contents of PC-
MS or PC-LS back onto the internal data bus.

In order to point to a location in memory, the control logic loads the outputs from both halves of
the program counter into a 16-bit address latch, which, in turn, drives these signals onto the
main system’s address bus. Once the current value in the program counter is safely stored in
the address latch, the control logic may wish to modify the program counter’s contents. For
example, the control logic might decide to increment the program counter to point to the next
location in memory. In this case the control logic would use the 16-bit adder block to add $0001
to the current value in the program counter, and then store the result back into the program
counter via the 2:1 multiplexers.

Now, before we proceed any further, we need to take a slightly closer look at the contents of
the addressing logic’s adder block (Figure 2-20).

 The Official DIY Calculator Data Book 2-21

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

To the 2:1
multiplexers

Top
 secre

t

16-bit a
dder

5:1 Mux

From the PC

(or other registers)

$FFFF

 (=
 -1)

$0001

 (=
 +1)

$0002

 (=
 +2)

Adder
and stuff

Control sig
nals

from

instru
ction

decoder logic

$0000

 (= +0)

Figure 2-20. The addressing logic’s adder block

At the heart of this block is a 16-bit adder, which (not unnaturally) adds two 16-bit values together
and generates a 16-bit result. One set of the adder’s inputs come from the program counter (or
another register), while the other set is generated internally using a 5:1 multiplexer under the
direction of the main control logic. In the case of the DIY Calculator’s CPU, we can chose to modify
the value from the program counter (or another register) by adding it to $FFFF, $0000, $0001, or
$0002, which equate to the decimal values −110, +010, +110, and +210, respectively (we’ll consider
the fifth, “top secret” option in a moment). Of course, adding −1 to the existing contents of a
register is exactly the same as subtracting +1 from it, thereby giving us the ability to decrement the
contents of the program counter (or another register) should we so desire.

The addressing logic’s registers
In addition to the program counter (PC), the addressing logic contains five more 16-bit
registers: two temporary program counters called TPCA and TPCB, the stack pointer (SP), the
interrupt vector (IV), and the index register (X) (Figure 2-21).

Earlier we noted that each of these 16-bit registers is actually composed from two 8-bit chunks.
For the purposes of these discussions, however, we can simplify things by returning to consider
these registers as 16-bit entities, so long as we remember that each half of each register can
be controlled independently.

When the CPU is reset, the control logic automatically initializes the program counter to cause it
to point to address $0000, from whence the CPU will retrieve its first instruction.1 In order to do
this, the control logic causes he outputs from the program counter to be loaded into the 16-bit
address latch, which, in turn, drives these signals onto the main system’s address bus. Once
the current value in the program counter has been safety squirreled away in the address latch,
the control logic uses our 16-bit adder block to increment the program counter such that it’s
ready to point to the next memory location.

1 In the case of the DIY Calculator, address $0000 points to the first location in the ROM. For the purposes
of these discussions (and the discussions in the book How Computers Do Math), we may assume that the
instruction at address $0000 is an unconditional jump to the first location in the RAM at location $4000.

2-22 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

To tri-
state buffers

 (and internal data bus)

 Addresslatch

2:1 Mux
Adder & stu

ff 2:1 Mux

Address latch

From internal

data bus

System
address bus

Note that all of the control signals
have been omitted for simplicity

These are the "top secret" inputs to the
adder that we introduced in Figure 2-17

X Register

PC
TPCA
TPCB

SP
IV

6:1 Mux

Figure 2-21. The addressing logic’s six 16-bit registers

In fact, we can save time by performing both tasks concurrently; that is, at the same time as
we’re loading the value coming out of the program counter into the address latch, we can also
be incrementing this value using the adder block and feeding the result back into the program
counter via the 2:1 multiplexers. As usual, the reason this would work is because all of the
logical elements forming the loop have internal delays (albeit small ones), which means that the
original value in the program counter will have been safely stored in the address latch by the
time the new value comes out (see also the discussions in Appendix C for more details on the
way all of this works).

If the only register in our addressing logic were the program counter, then the only forms of
addressing we could support would be the implied and immediate modes. In order to implement
the more interesting addressing modes offered by the DIY Calculator (as detailed in Appendix A),
the other registers are employed as follows:

o The temporary program counter TPCA is used to implement absolute addressing
(including unconditional and conditional jumps).

o Both TPCA and TPCB are required to implement indirect addressing.
o The stack pointer (SP) is used to control stack operations, including the PUSH and

POP instructions and subroutine and interrupt calls and returns.

o The interrupt vector (IV) is used to point to the interrupt service routine (see
Chapter 3 for more details).

o The index register (X) and TPCA are used to implement indexed addressing. Also,
X, TPCA, and TPCB are used to implement pre-indexed indirect addressing and
indirect post-indexed addressing.

Note especially that the SP, IV, and X registers are not automatically initialized by a reset.
Instead, these registers must be loaded explicitly using the BLDSP (“big load stack pointer”),
BLDIV (“big load interrupt vector”), and BLDX (“big load index register”) instructions, respectively.

 The Official DIY Calculator Data Book 2-23

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

As is illustrated in Figure 2-21, the output from the index register (X) is connected to a 6:1
multiplexer, which feeds it into the adder block in the same way as the other registers (this
allows us to increment or decrement its contents using the INCX and DECX instructions,
respectively). However, the index register is somewhat different to the other registers, in that we
never actually load its contents directly into the address latch, but instead we use it to modify
the values coming out of the other registers.

In order to do this, we also take the outputs from the index register and feed them directly into a
second set of inputs to the adder block. This second set of inputs form the "Top Secret" signals
that we introduced in Figure 2-20. Thus, we can use the 6:1 multiplexer to select the outputs
from TPCA (or one of the other registers) and feed them to the adder block, where we now
have the ability to add them to the contents of the index register if we so desire.

Furthermore, as shown in Figure 2-21, we've added a new 2:1 multiplexer to feed the address
latch. This multiplexer can either select the signals from the 6:1 output multiplexer as before, or
it can directly select the outputs from the adder block when we wish to load the sum of the
index register and one of the other registers into the address latch.

Last but not least, the interrupt vector (IV) is also somewhat different to the other registers. This
is because, once we’ve loaded it with a value using a BLDIV (“big load interrupt vector”)
instruction, it simply hangs around waiting for an interrupt to occur (this is discussed in detail in
Chapter 3).

Note: In Figure 2-20, we show the adder as having four sets of hard-wired inputs: $FFFF,
$0000, $0001, or $0002, which equate to the decimal values −110, +010, +110, and +210,
respectively. Now it makes sense that we require the ability to add −110 so as to decrement
the contents of a register, and +110 to increment the contents of a registers, and +010 to leave
the contents of the register unchanged (for reasons that will be made clear in Appendix C),
but what about the +210 value?

Well, in the cause of conditional jump instructions such as JZ (“jump if zero”), these have an
opcode followed by two operand bytes. If the conditional test fails, we will need to jump over
these two operand bytes in order to reach the next instruction (again, the way this actually
works is discussed in toe-curling detail in Appendix C).

2-24 Chapter 2: The DIY Calculator’s CPU

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

[THIS PAGE IS INTENTIONALLY LEFT BLANK FOR PRINTING PAGINATION]

Chapter 3
The DIY Calculator’s
Interrupt Structure

3-2 Chapter 3: The DIY Calculator’s Interrupt Structure

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Interrupts and interrupt handling
Generally speaking, we wish to create programs that can concentrate on the task for which they
are intended without being obliged to constantly check to see what’s happening in the outside
world. In some cases, however, we want the computer’s response to be fast and furious when
an external situation meriting action does arise. In order to facilitate this sort of thing, CPUs are
equipped with a special interrupt request (IRQ) input and an interrupt acknowledge (IACK)
output (Figure 3-1).

CPU

Control Bus
Address Bus
Data Bus

~reset

clock
IRQ

IACK

Figure 3-1. The CPU’s IRQ and IACK signals

The active state of the DIY Calculator’s IRQ signal is a logic 0. When the IRQ enters its active
state, this fact is stored in a special latching circuit (called the interrupt latch) inside the CPU,
thereby circumventing the problem of the IRQ going inactive before the CPU gets around to
checking it.

The CPU also contains a special status flag called the interrupt mask (I), which is used to
enable or disable interrupts, and which can be set or cleared under program control (the status
register and its interrupt mask bit were introduced in Chapter 2). The CPU supports two
instructions, SETIM and CLRIM, which set or clear its interrupt mask, respectively.

By default, the CPU powers up with the interrupt mask in its inactive state, which is a logic 0.
Thus, in order for the CPU to be able to “see” an interrupt request, the programmer has to use
a SETIM (“set interrupt mask”) instruction to place the mask in its active state (this instruction
also clears the interrupt latch). Similarly, if the programmer subsequently wishes to prevent the
CPU from responding to interrupt requests, then he or she can use a CLRIM (“clear interrupt
mask”) instruction to return the mask to its inactive state.

Note: Some CPUs use logic 0 as the interrupt mask’s active state, while others (like the DIY
Calculator’s CPU) use logic 1. There aren’t any hard-and-fast rules about this: “You pays your
money and you takes your choice,” as the old saying goes.

The CPU checks the state of the interrupt mask every time it completes a machine-code level
instruction. If the mask is inactive the CPU simply proceeds to the next instruction, but if the
mask is active the CPU takes a peek inside the interrupt latch to determine whether or not an
interrupt has been requested (Figure 3-2).

 The Official DIY Calculator Data Book 3-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Do next
instruction

mask?

latch?

Service
interrupt

no

no

yes

yes

Read the next opcode and execute the instruction

Once the instruction has been executed, check the
state of the interrupt mask. If the mask is inactive
then loop back, otherwise ...

... check the state of the interrupt latch to see if an
interrupt has been requested. If the latch is inactive
then loop back, otherwise ...

... call an interrupt service routine to deal with the
interrupt. When this routine terminates, return to the
main program to process the next instruction

Figure 3-2. High-level flowchart for interrupt handling

If an interrupt has been requested, the CPU jumps to a special subroutine called an interrupt
service routine. Some CPUs contain a hardwired interrupt address that points to another
address stored in the main memory. This second address, which is called the interrupt vector
(IV), is used to point to the first instruction in the interrupt service routine. By comparison, the
DIY Calculator’s CPU has slightly simpler interrupt structure, in that it contains a 16-bit interrupt
vector (IV) register that has to be loaded under program control using a BLDIV (“big load
interrupt vector”) instruction. Having the interrupt vector inside the CPU isn’t a particularly
common technique, but there’s no rule book that says a CPU cannot be implemented this way.

An example interrupt sequence
Before we start, it’s worth reminding ourselves that when the CPU powers-up or is reset, its
interrupt mask is loaded with a logic 0, thereby disabling the CPU’s ability to see an interrupt.
This means that if we want the DIY Calculator to respond to an interrupt, we first have to use a
SETIM (“set interrupt mask”) instruction, which loads the interrupt mask with a logic 1.

Also, every time an active (low-going or 1-0-1) pulse is presented to the CPU’s IRQ (interrupt
request) input, this event is stored in the interrupt latch inside the CPU. Bearing all of this in
mind, consider the following simple program:

Program to test the DIY Calculator’s interrupt capability
MAINDISP: .EQU $F031 # Output port for main display
SIXLEDS: .EQU $F032 # Output port for six LEDs

Here’s the start of the program itself
 .ORG $4000 # Specify the program’s origin

Initialize a temporary value
INITTEMP: LDA %01010101 # Load a simple binary pattern
 STA [TEMP] # and store to temp location

3-4 Chapter 3: The DIY Calculator’s Interrupt Structure

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Initialize everything else
GETREADY: LDA $09 # Load the accumulator
 BLDSP $4FFF # Load the stack pointer
 BLDIV SERVICE # Load the interrupt vector
 SETIM # Enable interrupts

Display 9876543210 over and over and over again
MAINLOOP: STA [MAINDISP] # Store ACC to main display
 DECA # Decrement the accumulator
 JNN [MAINLOOP] # Jump if ACC = $09 thru $00
 LDA $09 # else load ACC with $09
 JMP [MAINLOOP] # and do it all again

Here’s the interrupt service routine
SERVICE: PUSHA # Push accumulator onto the
stack
 LDA [TEMP] # Load ACC with TEMP value
 STA [SIXLEDS] # and write it to the LEDs
 XOR %11111111 # Invert all bits in ACC
 STA [TEMP] # and store the next value
 POPA # Get original value from stack
 RTI # Return to the main program

Reserve a 1-byte temporary location
TEMP: .BYTE

That’s all folks
 .END # End of the program

The main body of the test program
As we see, this program is really quite simple. First we define a couple of constant labels called
MAINDISP and SIXLEDs, to which we assign to the addresses of the output ports driving the
DIY Calculator’s main display and six LEDs, respectively.

After defining the origin of the program to be $4000, we arrive at label INITTEMP where we
load the accumulator with a binary value of %01010101, then we store this value in a temporary
location called TEMP.

Next, at label INITSTUF, we load the accumulator with an initial value of $09; we load the stack
pointer with $4FFF; and we initialize the interrupt vector by assigning the SERVICE label to it
(the assembler will automatically substitute this label for the start address of our interrupt
service routine, which is presented later in the program). Once everything is ready to rock-and-
roll, the final step in the initialization is to use a SETIM instruction to load the CPU’s interrupt
mask with a logic 1, thereby permitting the CPU to see an interrupt (the SETIM also clears the
interrupt latch, so as to ensure that the CPU only responds to any new interrupt requests).

The core of the main program commences at the MAINLOOP label. This is where we start to
loop around copying the contents of the accumulator to the main display, decrementing the
accumulator, and checking to see if the value in the accumulator is still greater-than-or-equal-
to 0. If it is, we jump back to grapple with the next value; if not, we reload the accumulator
with $09 and start the loop all over again.

 The Official DIY Calculator Data Book 3-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The interrupt service routine
When we eventually run this program, the main loop will keep running forever, unless (a) the
DIY Calculator is powered-down, (b) the CPU is reset, or (c) an interrupt occurs.

Remember that the CPU checks the state of the interrupt mask after every instruction and, as
we’ve now loaded the mask with a logic 1 (using our SETIM instruction), it will subsequently
proceed to check the state of the interrupt latch. Whenever the IRQ input enters its active state,
this will be stored in the CPU’s interrupt latch, and the CPU will see the interrupt as soon as it
finishes whatever instruction it’s currently working on. At this point, the CPU will push the
current contents of the program counter onto the stack, followed by the current contents of the
status register. The CPU also automatically loads the interrupt mask with a logic 0 to prevent
future interrupts from having any effect. The CPU then copies the contents of the interrupt
vector (IV) into the program counter (PC), which now points to the first instruction in the
interrupt service routine.

Some CPUs also push copies of one or more of the other internal registers onto the stack, such
as the accumulator and the index register, because there’s a good chance that the act of
servicing the interrupt will modify the contents of these registers. Simpler CPUs like the one
powering the DIY Calculator don’t do this automatically, so it’s up to us to save the contents of
any registers we deem to be important as soon as the interrupt service routine is entered. This
explains why the first thing we do upon entering our interrupt service routine at the SERVICE
label is to use a PUSHA instruction to push a copy of the current contents of the accumulator
onto the stack. We do this because we know that our example routine is going to modify the
accumulator, which would interfere with the main body of the program when we eventually
return to it.

Purely for the sake of this example, the only tasks performed by our interrupt service routine
are to load the accumulator with the bit pattern stored in our temporary location called TEMP
(this will be our original %01010101 value the first time the routine is called); copy this value to
the port driving the six LEDs; XOR the value with all ones (%11111111), which will invert all of
the bits leaving the accumulator containing %10101010; and store this new value back into the
temporary location. (The next time we invoke this routine, the value will end up being inverted
from %10101010 back to %01010101, and so forth each time the routine is called.)

Once these actions have been completed, we use a POPA instruction to restore the contents of
the accumulator to their original value when we entered the routine (you will recall that our first
action was to push the accumulator into the stack). Finally, we use an RTI (“return from
interrupt”) instruction to terminate the interrupt service routine and return us to the main body of
the program. The RTI causes the CPU to pop the original value of the status register back off
the stack and to then restore the program counter from the stack. Note that the act of popping
the status register off the stack will return the interrupt mask to a logic 1 (which was its value
when the status register was originally pushed onto the stack), thereby re-enabling the CPU’s
ability to see any future interrupts (as usual, this will automatically reset the interrupt latch).
Meanwhile, the other status flags will be returned to whatever states they were in at the point
when the interrupt service routine was first activated.

Testing our example interrupt service routine
Use the assembler to create the simple program presented above and save it into a file called
test-interrupts.asm. Assemble this program, use the On/Off button to power up the DIY

3-6 Chapter 3: The DIY Calculator’s Interrupt Structure

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Calculator, use the Memory > Load RAM command to load the test-interrupts.ram machine
code file into the calculator’s memory, and click the Run button to start executing the program .

The main display will immediately start filling up with the character sequence 9, 8, 7, 6, 5, 4, 3, 2,
1, 0 repeated over and over again. Also, observe that all of the LEDs are lit up, thereby indicating
that they are currently in an uninitialized state. If everything is happening too quickly and the main
display is an eye-watering blur of activity, use the Setup > System Clock command to access
the appropriate dialog and slow the calculator’s clock down to a comfortable level.

Next, click the Interrupt Request icon on the main tool bar (the red circle with a diagonal bar).
This causes the main program to pause while our interrupt service routine is called. As we
discussed above, the first time this routine is called, it will write %01010101 to the port driving
the six LEDs (only the right-most six bits will have any effect). The routine will then return
control to the main program, which will continue writing to the main display. If we decide to
activate the Interrupt Request a second time, the interrupt service routine will write a value of
%10101010 to the port driving the six LEDs before returning control to the main program.

A few final points to ponder
The interrupt acknowledge output
In the real world, as soon as the CPU begins to respond to an interrupt request, it will
automatically place its IACK (“interrupt acknowledge”) output into its active state. The IACK
signal can therefore be used to inform whichever unit called the interrupt in the first place that
the CPU has heard it’s plea for help and is in the process of servicing the interrupt. Similarly, as
soon as the interrupt service routine is terminated via an RTI instruction, the CPU automatically
returns its IACK output into its inactive state.

Nested interrupts
As we noted earlier, as soon as the CPU sees an interrupt, it will push the current contents of
the program counter onto the stack, followed by the current contents of the status register.
Next, the CPU copies the contents of the interrupt vector (IV) into the program counter (PC),
which now points to the first instruction in the interrupt service routine.

While it is doing all of this, the CPU also automatically loads the interrupt mask with a logic 0 to
prevent future interrupts from having any effect. By default, the interrupt mask will continue to
contain a logic 0 until this interrupt service routine has completed its mission. Having said this, it
is certainly possible to have nested interrupts. In this case, we would need to reload the
interrupt vector with the address of a new interrupt service routine and then use a SETIM
instruction to load the interrupt mask with a logic 1, thereby enabling future interrupts.

The HALT instruction
It sometimes occurs that the only thing we want the CPU to do is to pause a program and wait
for an interrupt to occur. The solution is to use a HALT instruction, which occupies only one byte
of memory. When the CPU sees a HALT, it stops executing the program and commences to
generate internal NOP (“no operation”) instructions. The only way out if the HALT is to call an
interrupt (or to reset the CPU). Note that, when the interrupt is called, the return address placed
on the stack will be for the instruction following the HALT (pretty cunning, huh?).

Appendix A
Addressing Modes
and Instruction Set

A-2 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Addressing modes
The term addressing modes refers to the way in which the CPU determines or resolves the
addresses of any data to be used in the execution of its instructions. Different computers can
support a wide variety of addressing modes, where the selection of such modes depends both
on the computer’s architecture and the whims of the designer. The seven addressing modes
supported by the DIY Calculator’s CPU are as follows:

a) Implied e) Indirect
b) Immediate f) Pre-indexed indirect
c) Absolute g) Indirect post-indexed
d) Indexed (or absolute-indexed)

Implied addressing (imp)
The implied addressing mode refers to instructions that comprise only an opcode without an
operand; for example, the INCA (“increment accumulator”) instruction. In this case, any data
required by the instruction and the destination of any result from the instruction are implied by
the instruction itself (Figure A-1).

MS LS

Opcode

PC

Opcode IR

Memory

(a)
(b)(c)

Figure A-1. Implied addressing (using INCA as an example)

An implied sequence commences when the PC reaches the opcode for an implied instruction
(a), loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is an
implied instruction, the CPU executes it and continues on to the next instruction.

Instructions that support implied addressing are: CLRIM, DECA, DECX, HALT, INCA, INCX, NOP,
POPA, POPSR, PUSHA, PUSHSR, ROLC, RORC, RTI, RTS, SETIM, SHL, and SHR.

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Standard immediate addressing (imm)
An instruction using standard immediate addressing has one data operand byte following the
opcode; for example, ADD $03 (“add $03 to the contents of the accumulator) (Figure A-2).

MS LS

Opcode
Data

PC

Opcode IR

Memory

(a)
(c)
(e) Result ACC

(b)

(d)

Figure A-2. Standard immediate addressing (using ADD as an example)

The sequence commences when the PC reaches the opcode for an immediate instruction (a),
loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is an
immediate instruction, the CPU reads the data byte pointed to by the PC, executes the
instruction using this data, stores the result in the accumulator (d), and increments the PC to
look for the next instruction (e).

Instructions that support standard immediate addressing are: ADD, ADDC, AND, CMPA, LDA, OR,
SUB, SUBC, and XOR.

Big immediate addressing (imm)
The big immediate addressing mode is very similar to the standard mode, but it refers to
instructions that are used to load the 16-bit X, SP, and IV registers. An instruction using big
immediate addressing has two data operand bytes following the opcode; for example, BLDSP
$01C4 (“load $01C4 into the stack pointer”) (Figure A-3).

MS LS

Opcode
MS Data

PC

Opcode IR

Memory

(a)
(c)
(e)

MS Data

(b)

LS Data
(g)

LS Data SP

(d)
(f)

Figure A-3. Big immediate addressing (using BLDSP as an example)

The sequence commences when the PC reaches the opcode for an immediate instruction (a),
loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is a big
immediate instruction, the CPU reads the MS data byte from memory, stores it in the MS byte
of the target register (d), and increments the PC (e). The CPU then reads the LS data byte from
memory, stores it in the LS byte of the target register (f), and increments the PC to look for the
next instruction (g).

Instructions that support big immediate addressing are: BLDSP, BLDX, and BLDIV.

A-4 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Standard absolute addressing (abs)
An instruction using standard absolute addressing has two address operand bytes following its
opcode, where these two bytes are used to point to a byte of data (or to a byte in which to store
data); for example, ADD [$4B06] (“add the data stored in location $4B06 to the contents of the
accumulator) (Figure A-4).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

MS Addr

(b)

LS Addr
(g)

LS Addr
Temp PC

(d)
(f)

DataResultACC
(h)(i)

Figure A-4. Standard absolute addressing (using ADD as an example)

The sequence commences when the PC reaches the opcode for an absolute instruction (a),
loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is a standard
absolute instruction, the CPU reads the MS address byte from memory, stores it in the MS byte
of one of the temporary PCs (d), and increments the main PC (e). The CPU then reads the LS
address byte from memory, stores it in the LS byte of the temporary PC (f), and increments the
main PC (g).

The main PC is now “put on hold” while the CPU uses the temporary PC to point to the target
address containing the data (h). The CPU executes the original instruction using this data,
stores the result into the accumulator (i), and returns control to the main PC to look for the next
instruction.

Instructions that support standard absolute addressing are: ADD, ADDC, AND, CMPA, LDA, OR,
STA, SUB, SUBC, and XOR.

Note: In the case of a STA (“store accumulator”), the contents of the accumulator would be
copied (stored) into the data byte in memory.

Note: The jump instructions JMP, JC, JNC, JN, JNN, JO, JNO, JZ, JNZ, and JSR can use
absolute addressing. However, in this case, the address operand bytes point to the target
address which will be loaded into the main PC.

 The Official DIY Calculator Data Book A-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Big absolute addressing (abs)
The big absolute addressing mode is very similar to its standard counterpart, but it refers to
instructions that affect our 16-bit X, SP, and IV registers. An instruction using big absolute
addressing has two address operand bytes following the opcode, and these two bytes are used
to point to a pair of bytes from which to load or store data; for example, BLDSP [$4B06] (“load
the two bytes of data starting at location $4B06 into the stack pointer) (Figure A-5).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

MS Addr

(b)

LS Addr

LS Addr
Temp PC

(d)
(f)

MS Data
(h)

MS DataSP

(i)
(k)

LS Data

LS Data

(g)

(j)

Figure A-5. Big absolute addressing (using BLDSP as an example)

The sequence commences when the PC reaches the opcode for an absolute instruction (a),
loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is a big
absolute instruction, the CPU reads the MS address byte from memory, stores it in the MS byte
of one of our temporary PCs (d), and increments the main PC (e). The CPU then reads the LS
address byte from memory, stores it in the LS byte of the temporary PC (f), and increments the
main PC (g).

The main PC is now “put on hold” while the CPU uses the temporary PC to point to the target
address containing the MS data byte (h) and store it in the MS byte of our target register (i).
The CPU then increments the temporary PC so as to point to the LS data byte (j) and store it in
the LS byte of our target register (k). The CPU now returns control to the main PC to look for
the next instruction.

Remember that the above sequence described a “big load” of one of our 16 bit registers (the
stack pointer in this example). In the case of a “big store”, the contents of the 16-bit register in
question would be copied (stored) into the two data bytes in memory.

Instructions that support big absolute addressing are: BLDSP, BLDX, BLDIV, BSTSP, and BSTX.

A-6 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indexed addressing (abs-x)
An instruction using the indexed addressing mode is very similar to its absolute counterpart, in
that it has two address operand bytes following the opcode. However, these two bytes are
added to the contents of the index register (X), and the result is used to point to a byte of data
(or to a byte in which to store data); for example, ADD [$4B06,X] (“add the data stored in
location ($4B06 + X) to the contents of the accumulator) (Figure A-6).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

MS Addr

(b)

LS Addr
(g)

LS Addr
Temp PC

(d)
(f)

DataResultACC

(h)
(i)

MS LS
Index Register (X)

+

Figure A-6. Indexed addressing (using ADD as an example)

The sequence commences when the PC reaches the opcode for an indexed instruction (a),
loads that opcode into the IR (b), and increments the PC (c). Recognizing that this is an
indexed instruction, the CPU reads the MS address byte from memory, stores it in the MS byte
of one of our temporary PCs (d), and increments the main PC (e). The CPU then reads the LS
address byte from memory, stores it in the LS byte of the temporary PC (f), and increments the
main PC (g).

The main PC is now “put on hold” while the CPU adds the contents of the temporary PC to the
contents of the index register and uses the result to point to the target address containing the
data (h). The CPU now executes the original instruction using this data and stores the result
into the accumulator (i). Finally, the CPU returns control to the main PC to look for the next
instruction. (Note that the act of adding the temporary PC to the index register does not affect
the contents of the index register. Also note that the index register must have been loaded with
a valid value prior to the first indexed instruction).

Instructions supporting this mode are: ADD, ADDC, AND, CMPA, LDA, OR, STA, SUB, SUBC, and XOR.

Note: In the case of a STA (“store accumulator”), the contents of the accumulator would be
copied (stored) into the data byte in memory. Also, the jump instructions JMP and JSR can use
indexed addressing; in this case, however, the result of adding the contents of the temporary
PC to the index register forms the target jump address, which is loaded into the main PC.

 The Official DIY Calculator Data Book A-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect addressing (ind)
As for an absolute instruction, an indirect instruction has two address operand bytes following
the opcode. However, these two bytes do not point to the target data themselves, but instead
point to the first byte of another pair of address bytes, and it is these address bytes that point to
the data (or to a byte in which to store data). Thus, an indirect instruction is so-named because it
employs a level of indirection. For example, consider an LDA [[$4B06]] (“load the accumulator
with the data stored in the location pointed to by the address whose first byte occupies location
$4B06) (Figure A-7).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

(b)

LS Addr
(g)

Data

(h)
MS Addr
LS Addr

(j)

MS Addr LS Addr
Temp PC A

(d)
(f)

MS Addr
Temp PC B

(i)
(k)

LS Addr

Data ACC
(m)(l)

Figure A-7. Indirect addressing (using LDA as an example)

When the PC reaches an indirect opcode (a), the CPU loads that opcode into the IR (b), and
increments the PC (c). Now the CPU reads the MS address byte from memory, stores it in the
MS byte of temporary PC A (d), and increments the main PC (e). Next, the CPU reads the LS
address byte from memory, stores it in the LS byte of temporary PC A (f), and increments the
main PC (g).

The CPU now employs temporary PC A to read the MS byte of the second address (h), store it
in the MS byte of temporary PC B (i), and increment temporary PC A (j). Next, the CPU reads
the LS byte of the second address and stores it in the LS byte of temporary PC B (k). The CPU
now uses temporary PC B to point to the target data (l) and loads this data into the accumulator
(m). Finally, the CPU returns control to the main PC to look for the next instruction.

Instructions that support indirect addressing are LDA and STA. Also, the jump instructions JMP
and JSR can use indirect addressing; in this case, however, the second address is the target
jump address which is loaded into the main PC.

A-8 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Pre-indexed indirect addressing (x-ind)
The pre-indexed indirect addressing mode is a combination of the indexed and indirect modes.
This form of addressing is so-named because the address in the opcode bytes is first added to
the contents of the index register, and the result points to the first byte of the second address. For
example, consider an LDA [[$4B06,X]] (“load the accumulator with the data stored in the
location pointed to by the address whose first byte occupies location ($4B06 + X)) (Figure A-8).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

(b)

LS Addr
(g)

Data

(h)

MS LS
Index Register (X)

+

MS Addr
LS Addr

(j)

MS Addr LS Addr
Temp PC A

(d)
(f)

MS Addr
Temp PC B

(i)
(k)

LS Addr

Data ACC
(m)(l)

Figure A-8. Pre-indexed indirect addressing (using LDA as an example)

When the PC reaches a pre-indexed indirect opcode (a), the CPU loads that opcode into the IR
(b), and increments the PC (c). Next, the CPU reads the MS address byte from memory, stores
it in the MS byte of temporary PC A (d), and increments the main PC (e). Now the CPU reads
the LS address byte from memory, stores it in the LS byte of temporary PC A (f), and increments
the main PC (g).

The CPU now adds the contents of temporary PC A to the contents of the index register, uses
the result to point to the MS byte of the second address (h), and stores this byte in the MS byte
of temporary PC B (i). The CPU then points to the LS byte of the second address (j), stores it in
the LS byte of temporary PC B (k), uses temporary PC B to point to the target data (l), and
loads this data into the accumulator (m). Finally, the CPU returns control to the main PC to look
for the next instruction.

Instructions that support pre-indexed indirect addressing are LDA and STA. Also, the jump
instructions JMP and JSR can use this form of addressing; however, in this case, the address
pointed to by the combination of temporary PC A and the index register is the target jump
address which is loaded into the main PC.

 The Official DIY Calculator Data Book A-9

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect post-indexed addressing (ind-x)
The indirect post-indexed addressing mode is similar in concept to pre-indexed indirect mode.
In this case, however, the address in the opcode bytes points to a second address, and it
is this second address that is added to the contents of the index register to generate the
address of the target data. For example, consider an LDA [[$4B06],X] (Figure A-9).

MS LS

Opcode
MS Addr

PC

Opcode IR

Memory

(a)
(c)
(e)

(b)

LS Addr
(g)

Data

(h)
MS Addr
LS Addr

(j)

MS Addr LS Addr
Temp PC A

(d)
(f)

MS Addr
Temp PC B

(i)
(k)

LS Addr

Data ACC
(m)(l)

MS
Index Register (X)

+

LS

Figure A-9. Indirect post-indexed addressing (using LDA as an example)

When the PC reaches an indirect post-indexed opcode (a), the CPU loads that opcode into the
IR (b), and increments the PC (c). Now the CPU reads the MS address byte from memory,
stores it in the MS byte of temporary PC A (d), and increments the main PC (e). Next, the CPU
reads the LS address byte from memory, stores it in the LS byte of temporary PC A (f), and
increments the main PC (g).

The CPU uses the contents of temporary PC A to point to the MS byte of the second address
(h), and stores this byte in the MS byte of temporary PC B (i). The CPU then increments
temporary PC A to point to the LS byte of the second address (j), and stores this byte in the LS
byte of temporary PC B (k). Now the CPU adds the contents of temporary PC B to the contents
of the index register, uses the result to point to the target data (l), and loads this data into the
accumulator (m). Finally, the CPU returns control to the main PC to look for the next instruction.

Instructions that support indirect post-indexed addressing are LDA and STA. Also, the jump
instructions JMP and JSR can use this form of addressing; in this case, however, the address
pointed to by the combination of temporary PC B and the index register is the target jump
address which is loaded into the main PC.

A-10 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Instruction set summary

NOP
HALT
SETIM
CLRIM

ADD
ADDC
SUB
SUBC

AND
OR
XOR

CMPA

SHL
SHR
ROLC
RORC

INCA
DECA
INCX
DECX

LDA
STA

BLDX
BSTX
BLDSP
BSTSP
BLDIV

PUSHA
POPA
PUSHSR
POPSR

JMP
JSR

JZ
JNZ
JN
JNN
JC
JNC
JO
JNO

RTS
RTI

No-operation, CPU doesn't do anything.
Generate internal NOPs until an interrupt occurs.
Set the interrupt mask flag in the status register.
Clear the interrupt mask flag in the status register.

Add data in memory to the accumulator.
Like an ADD, but include contents of the carry flag.
Subtract data in memory from the accumulator.
Like a SUB, but include contents of the carry flag.

AND data in memory to the accumulator.
OR data in memory to the accumulator.
XOR data in memory to the accumulator.

Compare data in memory to the accumulator.

Shift the accumulator left 1 bit (arithmetic shift).
Shift the accumulator right 1 bit (arithmetic shift).
Rotate the accumulator left 1 bit (through carry flag).
Rotate the accumulator right 1 bit (through carry flag).

Increment the accumulator.
Decrement the accumulator.
Increment the index register.
Decrement the index register.

Load data in memory into the accumulator.
Store data in the accumulator into memory.

Load data in memory into the index register.
Store data in the index register into memory.
Load data in memory into the stack pointer.
Store data in the stack pointer into memory.
Load data in memory into the interrupt vector,

Push the accumulator onto the stack.
Pop the accumulator from the stack.
Push the status register onto the stack.
Pop the status register from the stack.

Jump to a new memory location.
Jump to a subroutine.

Jump if the result was zero.
Jump if the result wasn't zero.
Jump if the result was negative.
Jump if the result wasn't negative.
Jump if the result generated a carry.
Jump if the result didn't generate a carry.
Jump if the result generated an overflow.
Jump if the result didn't generate an overflow.

Return from a subroutine.
Return from an interrupt.

Control

Arithmetic

Logical

Comparison

Shifts &
Rotates

Increments &
Decrements

Loads &
Stores

Push & Pop

Jumps

Returns

Table A-1. The DIY Calculator’s instructions by category

 The Official DIY Calculator Data Book A-11

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BSTSP

BSTX $A9 3 - - - - -

CLRIM $09 1 0 - - - -

CMPA $60 2 $61 3 $62 3 - - -

DECA $81 1 - - N Z -

DECX $83 1 - - - Z -

HALT $01 1 - - - - -

INCA $80 1 - - N Z -

INCX $82 1 - - - Z -

JC $E1 3 - - - - -

JMP $C1 3 $C2 3 $C3 3 $C4 3 $C5 3 - - - - -

JN $D9 3 - - - - -

JNC $E6 3 - - - - -

JNN $DE 3 - - - - -

JNO $EE 3 - - - - -

JNZ $D6 3 - - - - -

imp

ADD

ADDC

AND

BLDIV

BLDSP

BLDX

$10 2 $11 3 $12 3

$18 2 $19 3 $1A 3

$30 2 $31 3 $32 3

$F0 3 $F1 3

$50 3 $51 3

$A0 3 $A1 3

$59 3

op # op # op # op # op # op # op #

imm abs abs-x ind x-ind ind-x flags

I O N Z C

- O N Z C

- O N Z C

- - N Z -

- - - - -

- - - - -

- - - - -

- - - - -

Table A-2a. Instruction set summary (continued on next page)

Legend Flags Addressing Modes
op = Opcode
$ = Hexadecimal value
= Number of bytes
- = No change

= Magnitude comparison
= Shift or rotate thru carry bit
= Restored by popping status register

= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

A-12 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

POPA

POPSR $B1 1

PUSHA $B2 1 - - - - -

PUSHSR $B3 1 - - - - -

ROLC $78 1 - - N Z

RORC $79 1 - - N Z

RTI $C7 1

RTS $CF 1 - - - - -

SETIM $08 1 1 - - - -

SHL $70 1 - - N Z

SHR $71 1 - - N Z

STA $99 3 $9A 3 $9B 3 $9C 3 $9D 3 - - - - -

SUB $20 2 $21 3 $22 3 - O N Z C

SUBC $28 2 $29 3 $2A 3 - O N Z C

XOR $40 2 $41 3 $42 3 - - N Z -

imp

JO

JSR

JZ

LDA

NOP

OR

$E9 3

$C9 3 $CA 3 $CB 3 $CC 3 $CD 3

$D1 3

$90 2 $91 3 $92 3 $93 3 $94 3 $95 3

$00 1

$38 2 $39 3 $3A 3

$B0 1

op # op # op # op # op # op # op #

imm abs abs-x ind x-ind ind-x flags

I O N Z C

- - - - -

- - - - -

- - - - -

- - N Z -

- - - - -

- - N Z -

- - N Z -

Table A-2b. Instruction set summary (continued from previous page)

Legend Flags Addressing Modes
op = Opcode
$ = Hexadecimal value
= Number of bytes
- = No change

= Magnitude comparison
= Shift or rotate thru carry bit
= Restored by popping status register

= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

 The Official DIY Calculator Data Book A-13

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

ADD (Add without carry)
Description

This instruction adds the contents of a byte of data in memory to the current contents of the
accumulator and stores the result in the accumulator (the contents of the memory are not
affected). Note that the result is not affected by the contents of the carry flag, because the
carry-in to the ALU is forced to logic 0. See also the corresponding ADDC instruction.

Old ACC Byte in memory

+ Cin = 0

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $10 ADD $03 Add $03 to the ACC.
abs 3 $11 ADD [$4C76] Add the contents of memory location

$4C76 to the ACC
abs-x 3 $12 ADD [$4C76,X] Add the contents of a memory location to

the ACC, where the address of the memory
location is $4C76 plus the contents of the
X register

Flags affected
 O Set to 1 if the result overflows; otherwise cleared to 0
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0
 C Set to 1 if there is a carry out from the addition; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-14 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

ADDC (Add with carry)
Description

This instruction adds the contents of a byte of data in memory (along with the current
contents of the carry flag) to the current contents of the accumulator and stores the result in
the accumulator (the contents of the memory are not affected). See also the corresponding
ADD instruction.

Old ACC Byte in memory

+ Cin = carry flag

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $18 ADDC $03 Add $03 to the ACC
abs 3 $19 ADDC [$4C76] Add the contents of memory location

$4C76 to the ACC
abs-x 3 $1A ADDC [$4C76,X] Add the contents of a memory location to

the ACC, where the address of the memory
location is $4C76 plus the contents of the
X register

Flags affected
 O Set to 1 if the result overflows; otherwise cleared to 0
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0
 C Set to 1 if there is a carry out from the addition; otherwise cleared to 0

 Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-15

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

AND (Logical operation)
Description

This instruction logically ANDs the contents of a byte of data in memory with the current
contents of the accumulator and stores the result in the accumulator (the contents of the
memory are not affected). Note that this is a bit-wise operation, which means that bit 0 of the
old ACC is AND-ed with bit 0 of the memory to generate bit 0 of the new ACC. Similarly, bit 1
is AND-ed with bit 1, bit 2 with bit 2, and so forth. See also the OR and XOR instructions.

Old ACC Byte in memory

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

AND

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $30 AND $03 Logically AND $03 with the ACC
abs 3 $31 AND [$4C76] Logically AND the contents of memory

location $4C76 with the ACC
abs-x 3 $32 AND [$4C76,X] Logically AND the contents of a memory

location with the ACC, where the address of
the memory location is $4C76 plus the
contents of the X register

Flags affected
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-16 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BLDIV (“Big” load the interrupt vector)
Description

This instruction loads two contiguous bytes of memory into the 16-bit interrupt vector, MS
byte first (the contents of the memory are not affected). Note that, unlike the BLDSP and
BLDX instructions that have corresponding store instructions (BSTSP and BSTX), there is no
BSTIV. This is because the contents of the IV register can only be changed explicitly using
a BLDIV, which means that the programmer always knows what it contains (a programmer
who doesn’t is a nincompoop of no account).

2 bytes in memory

Interrupt vector (IV)

Bit 7 Bit 0 Bit 15 Bit 0

Addr (n)
Addr (n + 1)

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 3 $F0 BLDIV $6100 Load the IV with $6100
abs 3 $F1 BLDIV [$4C76] Load the IV with two bytes from memory,

where the first (MS) byte is located at
address $4C76

Flags affected
None

Flags Addressing Modes

= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-17

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BLDSP (“Big” load the stack pointer)
Description

This instruction loads two contiguous bytes of memory into the 16-bit stack pointer, MS byte
first (the contents of the memory are not affected).

2 bytes in memory

Stack pointer (SP)

Bit 7 Bit 0 Bit 15 Bit 0

Addr (n)
Addr (n + 1)

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 3 $50 BLDSP $4FFF Load the SP with $4FFF
abs 3 $51 BLDSP [$4C76] Load the SP with two bytes from memory,

where the first (MS) byte is located at
address $4C76

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-18 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BLDX (“Big” load the index register)
Description

This instruction loads two contiguous bytes of memory into the 16-bit index register, MS
byte first (the contents of the memory are not affected).

2 bytes in memory

Index register (X)

Bit 7 Bit 0 Bit 15 Bit 0

Addr (n)
Addr (n + 1)

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 3 $A0 BLDX $0C64 Load the X register with $0C64
abs 3 $A1 BLDX [$4C76] Load the X register with two bytes from

memory, where the first (MS) byte is located
at address $4C76

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-19

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BSTSP (“Big” store the stack pointer)
Description

This instruction stores the current contents of the 16-bit stack pointer into two contiguous
bytes of memory, MS byte first (the contents of the stack pointer are not affected).

2 bytes in memory

Stack pointer (SP)

Bit 0Bit 7Bit 0Bit 15

Addr (n + 1)
Addr (n)

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $59 BSTSP [$4C76] Store the SP into two bytes of memory,

where the first (MS) byte is located at
address $4C76

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-20 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

BSTX (“Big” store the index register)
Description

This instruction stores the current contents of the 16-bit index register into two contiguous
bytes of memory, MS byte first (the contents of the index register are not affected).

2 bytes in memory

Index register (X)

Bit 0Bit 7Bit 0Bit 15

Addr (n + 1)
Addr (n)

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $A9 BSTX [$4C76] Store the X register into two bytes of

memory, where the first (MS) byte is located
at address $4C76

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-21

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

CLRIM (Clear the interrupt mask)
Description

This instruction clears the interrupt mask bit in the status register to logic 0, thereby
preventing the CPU from seeing any future interrupts. See also the SETIM instruction
in this appendix and the discussions on interrupts in Chapter 3.

Old SRBit 7 Bit 0

I O N Z C

? ? ? ? ?
New SRBit 7 Bit 0

I O N Z C

0 ? ? ? ?CLRIM

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $09 CLRIM Load the interrupt mask bit with 0

Flags affected
 I Loaded with logic 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-22 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

CMPA (Compare accumulator to byte in memory)
Description

This instruction compares the contents of the accumulator to a byte in memory. The
instruction assumes that both quantities represent unsigned binary values. Based on this
assumption, the carry flag is set to logic 1 if the value in the accumulator is the greater
(otherwise it’s cleared to logic 0), while the zero flag is set to logic 1 if the values are equal
(otherwise it’s cleared to logic 0). The original values in the accumulator and memory are
not modified in any way.

ACC Byte in memory

Compare

Bit 7 Bit 0 Bit 7 Bit 0

Carry flag Zero flag

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $60 CMPA $03 Compare the contents of the ACC with $03
abs 3 $61 CMPA [$4C76] Compare the contents of the ACC with the

contents of memory location $4C76
abs-x 3 $62 CMPA [$4C76,X] Compare the contents of the ACC with the

contents of a memory location, where the
address of the memory location is $4C76
plus the contents of the X register

Flags affected
 Z Set to 1 if the two values are equal; otherwise cleared to 0
 C Set to 1 if the value in the accumulator is the greater; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-23

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

DECA (Decrement the contents of the accumulator)
Description

This instruction decrements (subtracts 1 from) the existing contents of the accumulator. See
also the counterpart to this instruction, INCA, and the somewhat similar instructions DECX
and INCX.

Old ACCBit 7 Bit 0

-1
New ACCBit 7 Bit 0

Original value Original value - 1

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $81 DECA Decrement (subtract 1 from) the contents

of the ACC

Flags affected
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-24 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

DECX (Decrement the contents of the index register)
Description

This instruction decrements (subtracts 1 from) the contents of the 16-bit index register. See
also the counterpart to this instruction, INCX, and the somewhat similar instructions DECA
and INCA. Note that this instruction only modifies the Z flag (unlike DECA which modifies
both the Z and N flags).

Bit 15Old XBit 15 Bit 0

-1

Original value

New X Bit 0

Original value - 1

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $83 DECX Decrement (subtract 1 from) the contents

of the X register

Flags affected
 Z Set to 1 of all of the bits in the result (the new contents of the X register) are 0;

otherwise cleared to 0.

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-25

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

HALT (Halt the CPU)
Description

This instruction instructs the CPU to cease processing instructions from the memory and to
start performing internal NOP (no-operation) instructions. Left to its own devices, the CPU will
continue to perform internal NOPs until the end of time, and the only way to override the
HALT is for the CPU to receive an interrupt (or for it to be reset). See also the NOP instruction
in this appendix and the discussions on interrupts in Chapter 3.

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $01 HALT Halts the CPU and causes it to perform

internal NOP instructions

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-26 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

INCA (Increment the contents of the accumulator)
Description

This instruction increments (adds 1 to) the contents of the accumulator. See also the
counterpart to this instruction, DECA, and the somewhat similar instructions DECX and INCX.

Old ACCBit 7 Bit 0

+1
New ACCBit 7 Bit 0

Original value Original value + 1

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $80 INCA Increment (add 1 to) the contents

of the ACC

Flags affected
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0.
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0. Note

that the reason incrementing the ACC can result in it containing zero is if
its original value were all 1s; that is, $FF in hexadecimal.

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-27

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

INCX (Increment the contents of the index register)
Description

This instruction increments (adds 1 to) the contents of the 16-bit index register. See also the
counterpart to this instruction, DECX, and the somewhat similar instructions DECA and INCA.
Note that this instruction only modifies the Z flag (unlike INCA which modifies both the Z
and N flags).

Bit 15Old XBit 15 Bit 0

+1

Original value

New X Bit 0

Original value + 1

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $82 INCX Increment (add 1 to) the contents

of the X register

Flags affected
 Z Set to 1 of all of the bits in the result (the new contents of the X register) are 0;

otherwise cleared to 0. Note that the reason incrementing the X register can result
in it containing zero is if its original value were all 1s; that is, $FFFF in hexadecimal.

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-28 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JC (Jump if carry)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the carry status flag is TRUE (contains a logic 1, thereby indicating that the
previous instruction generated a carry), otherwise the CPU ignores the operand and
continues to the next instruction. See also the corresponding JNC instruction.

Carry flag

= 1 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $E1 JC [$4C76] If the carry flag contains a logic 1 then jump

to address $4C76; otherwise continue to the
next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-29

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JMP (Jump unconditionally)
Description

This instruction is used to change the “flow” of the program by causing the CPU to
unconditionally jump to a new address. See also the somewhat related JSR instruction.

JMP Jump to a new address

This is the instruction that occupies the
memory location(s) before the JMP.

This is the instruction that occupies the
memory location(s) after the JMP. The
only way the program will ever reach this
instruction is if another jump instruction
targets it.

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $C1 JMP [$4C76] Jump to address $4C76
abs-x 3 $C2 JMP [$4C76,X] Add $4C76 to the contents of the X

register to form the target address $xxxx
and jump to this target address

ind 3 $C3 JMP [[$4C76]] Read the target address $xxxx stored in
the two bytes starting at address $4C76,
and then jump to this target address

x-ind 3 $C4 JMP [[$4C76,X]] Add $4C76 to the contents of the X
register to form a new address $zzzz.
Read the target address $xxxx stored in
the two bytes starting at address $zzzz and
jump to this target address

ind-x 3 $C5 JMP [[$4C76],X] Read the address $zzzz stored in the two
bytes starting at address $4C76, then add
$zzzz to the contents of the X register to
form the target address $xxxx and jump to
this target address

Flags affected
None

A-30 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JN (Jump if negative)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the negative status flag is TRUE (contains a logic 1, thereby indicating that
the result from the previous instruction was negative), otherwise the CPU ignores the
operand and continues to the next instruction. See also the corresponding JNN instruction.

Negative flag

= 1 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $D9 JN [$4C76] If the negative flag contains a logic 1 then

jump to address $4C76; otherwise continue
to the next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-31

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JNC (Jump if not carry)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the carry status flag is FALSE (contains a logic 0, thereby indicating that the
previous instruction did not generate a carry), otherwise the CPU ignores the operand and
continues to the next instruction. See also the corresponding JC instruction.

Carry flag

= 0 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $E6 JNC [$4C76] If the carry flag contains a logic 0 then jump

to address $4C76; otherwise continue to the
next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-32 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JNN (Jump if not negative)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the negative status flag is FALSE (contains a logic 0, thereby indicating that
the result from the previous instruction was positive (not negative)), otherwise the CPU
ignores the operand and continues to the next instruction. See also the corresponding JN
instruction.

Negative flag

= 0 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $DE JNN [$4C76] If the negative flag contains a logic 0 then

jump to address $4C76; otherwise continue
to the next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-33

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JNO (Jump if not overflow)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the overflow status flag is FALSE (contains a logic 0, thereby indicating that
the previous instruction did not generate an overflow), otherwise the CPU ignores the
operand and continues to the next instruction. See also the corresponding JO instruction.

Overflow flag

= 0 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $EE JNO [$4C76] If the overflow flag contains a logic 0 then

jump to address $4C76; otherwise continue
to the next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-34 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JNZ (Jump if not zero)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the zero status flag is FALSE (contains a logic 0, thereby indicating that
result from the previous operation was non-zero), otherwise the CPU ignores the operand
and continues to the next instruction. See also the corresponding JZ instruction.

Zero flag

= 0 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $D6 JNZ [$4C76] If the zero flag contains a logic 0 then jump

to address $4C76; otherwise continue to the
next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-35

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JO (Jump if overflow)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the overflow status flag is TRUE (contains a logic 1, thereby indicating that
the previous instruction generated an overflow), otherwise the CPU ignores the operand
and continues to the next instruction. See also the corresponding JNO instruction.

Overflow flag

= 1 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $E9 JO [$4C76] If the overflow flag contains a logic 1 then

jump to address $4C76; otherwise continue
to the next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-36 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JSR (Jump to a subroutine)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
subroutine. Note that the CPU automatically places a 2-byte return address on the top of the
stack before jumping to the subroutine. See also the related RTS instruction.

JSR

This is the instruction that
occupies the memory
location(s) before the JSR.

This is the instruction that
occupies the memory
location(s) after the JSR.

Calling program

RTS

These are the
instructions forming
the subroutine. The
RTS instruction tells
the CPU to return to
the calling program

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $C9 JSR [$4C76] Jump to the subroutine at address $4C76
abs-x 3 $CA JSR [$4C76,X] Add $4C76 to the contents of the X reg to form

the target address of the sub-routine ($xxxx)
and jump to this address

ind 3 $CB JSR [[$4C76]] Read the target address of the subroutine
($xxxx) stored in the two bytes starting at
address $4C76, then jump to this address

x-ind 3 $CC JSR [[$4C76,X]] Add $4C76 to the contents of the X register to
form a new address $zzzz. Read the target
address of the subroutine ($xxxx) stored in the
two bytes starting at address $zzzz and jump
to this address

ind-x 3 $CD JSR [[$4C76],X] Read the address $zzzz stored in the two
bytes starting at address $4C76, then add
$zzzz to the contents of the X register to form
the target address of the subroutine ($xxxx)
and jump to this target address

Flags affected
None

 The Official DIY Calculator Data Book A-37

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

JZ (Jump if zero)
Description

This instruction is used to change the “flow” of the program by causing the CPU to jump to a
new address if the zero status flag is TRUE (contains a logic 1, thereby indicating that the
result from the previous instruction was zero), otherwise the CPU ignores the operand and
continues to the next instruction. See also the corresponding JNZ instruction.

Zero flag

= 1 ? Jump to new address
yes

no

Continue to next instruction

From last instruction

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $D1 JZ [$4C76] If the zero flag contains a logic 1 then jump

to address $4C76; otherwise continue to the
next instruction

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-38 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

LDA (Load the accumulator)
Description

This instruction loads the contents of a byte of data in memory into the accumulator (the
contents of the memory are not affected). See also the corresponding STA instruction.

Byte in memory

ACC

Bit 7 Bit 0 Bit 7 Bit 0

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $90 LDA $03 Load the ACC with $03.
abs 3 $91 LDA [$4C76] Load the ACC with the contents of

address $4C76
abs-x 3 $92 LDA [$4C76,X] Add $4C76 to the contents of the X

register to form the target address $xxxx,
then load the ACC with the contents of the
target address

ind 3 $93 LDA [[$4C76]] Read the target address $xxxx stored in
the two bytes starting at address $4C76,
then load the ACC with the contents of the
target address

x-ind 3 $94 LDA [[$4C76,X]] Add $4C76 to the contents of the X
register to form a new address $zzzz.
Read the target address $xxxx stored in
the two bytes starting at address $zzzz,
then load the ACC with the contents of the
target address

ind-x 3 $95 LDA [[$4C76],X] Read the address $zzzz stored in the two
bytes starting at address $4C76, then add
$zzzz to the contents of the X register to
form the target address $xxxx, then load
the ACC with the contents of the target
address

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0

 The Official DIY Calculator Data Book A-39

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

NOP (No operation)
Description

This instruction is a little strange in that it doesn’t do anything at all, which may prompt the
question: “Why bother having it in the first place?” The point is that executing a NOP does
take a finite amount of time, which makes it useful for creating delay loops in a program.
Also, it’s sometimes useful to use a NOP instruction as the target for a breakpoint. See also
the HALT instruction, which causes the CPU to generate internal NOPs.

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $00 NOP Doesn’t actually do anything

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-40 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

OR (Logical operation)
Description

This instruction logically ORs the contents of a byte of data in memory with the current
contents of the accumulator and stores the result in the accumulator (the contents of the
memory are not affected). Note that this is a bit-wise operation, which means that bit 0 of
the old ACC is OR-ed with bit 0 of the memory to generate bit 0 of the new ACC. Similarly,
bit 1 is OR-ed with bit 1, bit 2 with bit 2, and so forth. See also the AND and XOR instructions.

Old ACC Byte in memory

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

OR

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $38 OR $03 Logically OR $03 with the ACC
abs 3 $39 OR [$4C76] Logically OR the contents of memory

location $4C76 with the ACC
abs-x 3 $3A OR [$4C76,X] Logically OR the contents of a memory

location with the ACC, where the address of
the memory location is $4C76 plus the
contents of the X register

Flags affected
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-41

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

POPA (Pop the accumulator off the top of the stack)
Description

This instruction first increments the stack pointer such that it points to the last byte placed
onto the stack, then it copies this byte into the accumulator. See also the corresponding
PUSHA instruction and the related POPSR and PUSHSR instructions.

Memory

ACC
Bit 7 Bit 0

Bit 7 Bit 0

(a) Stack pointer initially
pointing to the first free
location on the stack

(b) Increment stack pointer
to point to the byte on top

of the stack

(c) Copy into ACC

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $B0 POPA Pops the byte on top of the stack

into the ACC

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-42 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

POPSR (Pop the status register off the top of the stack)
Description

This instruction first increments the stack pointer such that it points to the last byte placed
onto the stack, then it copies this byte into the status register. Note that, as the status
register is only five bits wide, the three most-significant bits from the byte on top of the stack
are discarded. See also the corresponding PUSHSR instruction and the related POPA and
PUSHA instructions.

Memory

SR
Bit 7 Bit 0

Bit 4 Bit 0

(a) Stack pointer initially
pointing to the first free
location on the stack

(b) Increment stack pointer
to point to the byte on top

of the stack

(c) Copy into SR

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $B1 POPSR Pops the byte on top of the stack

into the SR

Flags affected
 I Loaded with whatever was in bit 4 of the byte on top of the stack
 O Loaded with whatever was in bit 3 of the byte on top of the stack
 N Loaded with whatever was in bit 2 of the byte on top of the stack
 Z Loaded with whatever was in bit 1 of the byte on top of the stack
 C Loaded with whatever was in bit 0 of the byte on top of the stack

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-43

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

PUSHA (Push the accumulator onto the top of the stack)
Description

This instruction first copies the contents of the accumulator onto the top of the stack; it then
decrements the stack pointer such that it points to the next free location (the contents of the
accumulator are not affected). See also the corresponding POPA instruction and the related
POPSR and PUSHSR instructions.

ACC

Bit 0Bit 7

(b) Copy onto stack

Memory

Bit 0Bit 7

(a) Stack pointer initially
pointing to the first free
location on the stack

(c) Decrement stack pointer
to point to the next free
location on the stack

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $B2 PUSHA Pushes the ACC onto the stack

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-44 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

PUSHSR (Push the status register onto the stack)
Description

This instruction first copies the contents of the status register onto the top of the stack; it
then decrements the stack pointer such that it points to the next free location (the contents
of the status register are not affected). Note that, as the status register is only five bits wide,
the three most-significant bits in the byte on top of the stack are coerced to logic 0s. See
also the corresponding POPSR instruction and the related POPA and PUSHA instructions.

SR

Bit 0Bit 7

(b) Copy onto the stack
(3 MS bits coerced to 0)

Memory

(a) Stack pointer initially
pointing to the first free
location on the stack

(c) Decrement stack pointer
to point to the next free
location on the stack

Bit 7 Bit 0

0 00

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $B3 PUSHSR Pushes the SR onto the stack

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-45

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

ROLC (Rotate accumulator left through the carry flag)
Description

This instruction rotates the contents of the accumulator 1 bit left and through the carry status
flag. The original contents of the carry flag are loaded into bit 0 of the ACC, while the original
contents of bit 7 of the ACC are loaded into the carry flag. See also the corresponding RORC
instruction and the related SHL and SHR instructions.

ACC

Bit 0Bit 7

Carry flag

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $78 ROLC Rotates the ACC 1 bit left and through

the carry flag

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0
 C Loaded with whatever was in bit 7 of the ACC

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-46 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

RORC (Rotate accumulator right through the carry flag)
Description

This instruction rotates the contents of the accumulator 1 bit right and through the carry status
flag. The original contents of the carry flag are loaded into bit 7 of the ACC, while the original
contents of bit 0 of the ACC are loaded into the carry flag. See also the corresponding ROLC
instruction and the related SHL and SHR instructions.

ACC

Bit 0Bit 7

Carry flag

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $79 RORC Rotates the ACC 1 bit right and through

the carry flag

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0
 C Loaded with whatever was in bit 0 of the ACC

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-47

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

RTI (Return from an interrupt)
Description

This instruction is used to terminate an interrupt service routine and return control back to
the main program. Remember that when an interrupt occurs, the CPU completes the
instruction it’s currently working on and then checks the state of the interrupt mask flag. If
this flag is active (logic 1), the CPU automatically pushes a return address onto the stack
followed by the current contents of the status register; it then jumps to the interrupt service
routine located at the address contained in the interrupt vector (the CPU also clears the
interrupt latch at this time).

By comparison, when the CPU sees an RTI instruction, it automatically pops the top-most
byte off the stack into the status register (much like a POPSR instruction). The CPU then
retrieves the 2-byte address from the top of the stack and uses this address as the entry
point for its return to the main program. Note that an interrupt service routine can contain a
number of RTI instructions. See also the somewhat related RTS instruction and the
discussions on interrupts in Chapter 3.

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $C7 RTI Exits the interrupt service routine and

returns control to the main program

Flags affected
 All The SR is reloaded with whatever its contents were when the interrupt caused it to

be pushed onto the stack (assuming the programmer hasn’t used the interrupt
service routine to modify the copy of the SR on the stack)

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-48 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

RTS (Return from a subroutine)
Description

This instruction is used to terminate a subroutine and return control to the calling program.
The CPU automatically retrieves a 2-byte address from the top of the stack and uses this
address as the entry point for its return to the calling program. Note that a subroutine can
contain a number of RTS instructions. See also the related JSR instruction and the
somewhat related RTI instruction.

JSR

This is the instruction that
occupies the memory
location(s) before the JSR.

This is the instruction that
occupies the memory
location(s) after the JSR.

Calling program

RTS

These are the
instructions forming
the sub-routine. The
RTS instruction tells
the CPU to return to
the calling program

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $CF RTS Exits the subroutine and returns control to

the calling program

Flags affected
None

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-49

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

SETIM (Set the interrupt mask)
Description

This instruction sets the interrupt mask bit in the status register to logic 1, thereby allowing
the CPU to see any future interrupts. See also the CLRIM instruction in this appendix and
the discussions on interrupts in Chapter 3.

Old SRBit 7 Bit 0

I O N Z C

? ? ? ? ?
New SRBit 7 Bit 0

I O N Z C

1 ? ? ? ?SETIM

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $08 SETIM Load the interrupt mask with 1

Flags affected
 I Loaded with logic 1

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-50 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

SHL (Shift accumulator left)
Description

This instruction shifts the contents of the accumulator 1 bit to the left. A logic 0 is shifted in
to the least-significant bit of the ACC, while the bit that “falls off the end” (bit 7 in this case)
is stored in the carry status flag. See also the corresponding SHR instruction and the related
ROLC and RORC instructions.

ACC

Bit 0Bit 7

Carry flag

Logic 0

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $70 SHL Shifts the accumulator 1 bit left

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0
 C Loaded with whatever was in bit 7 of the ACC

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

 The Official DIY Calculator Data Book A-51

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

SHR (Shift accumulator right)
Description

This instruction shifts the contents of the accumulator 1 bit to the right. This is an arithmetic
shift right (as opposed to a logical shift right, for which the CPU doesn’t have an instruction),
which means that the most-significant bit of the ACC is copied back into itself, while the bit
that “falls off the end” (bit 0 in this case) is stored in the carry status flag. See also the
corresponding SHL instruction and the related ROLC and RORC instructions.

ACC

Bit 0Bit 7

Carry flag

Addressing modes
Mode #Bytes Opcode Example code Comments
imp 1 $71 SHR Shifts the accumulator 1 bit right

(using an arithmetic shift technique)

Flags affected
 N Set to 1 if the MS bit of the ACC is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the ACC are 0; otherwise cleared to 0
 C Loaded with whatever was in bit 0 of the ACC

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-52 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

STA (Store the accumulator)
Description

This instruction stores the contents of the accumulator to a byte in the memory (the contents
of the accumulator are not affected). See also the corresponding LDA instruction.

Byte in memory

ACC

Bit 0Bit 7Bit 0Bit 7

Addressing modes
Mode #Bytes Opcode Example code Comments
abs 3 $99 STA [$4C76] Copy the contents of the ACC into address

$4C76
abs-x 3 $9A STA [$4C76,X] Add $4C76 to the contents of the X

register to form the target address $xxxx,
then copy the contents of the ACC into the
target address

ind 3 $9B STA [[$4C76]] Read the target address $xxxx stored in
the two bytes starting at address $4C76,
then copy the contents of the ACC into the
target address

x-ind 3 $9C STA [[$4C76,X]] Add $4C76 to the contents of the X
register to form a new address $zzzz.
Read the target address $xxxx stored in
the two bytes starting at address $zzzz,
then copy the contents of the ACC into the
target address

ind-x 3 $9D STA [[$4C76],X] Read the address $zzzz stored in the two
bytes starting at address $4C76, then add
$zzzz to the contents of the X register to
form the target address $xxxx, then copy
the contents of the ACC into the target
address

Flags affected
None

 The Official DIY Calculator Data Book A-53

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

SUB (Subtract without carry)
Description

This instruction subtracts the contents of a byte of data in memory from the current contents
of the accumulator and stores the result in the accumulator (the contents of the memory are
not affected). Note that the result is not affected by the contents of the carry flag, because
the carry-in to the ALU is forced to logic 1 (the carry-in is really a “borrow-not” in this case).
See also the corresponding SUBC instruction.

Old ACC Byte in memory

Cin = 1 (this is a "borrow-not")

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

Note: The diagram above is a stylized representation of the action of the SUB instruction. In
reality, the CPU doesn’t have a “subtractor block,” so the actual operation that is performed
to achieve the desired result is as follows (where the +1 on the far right-hand side of the
equation comes from the Cin (“carry-in”) signal):

new_ACC[7:0] = old_ACC[7:0] + NOT(byte_in_memory[7:0]) + 1

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $20 SUB $03 Subtract $03 from the ACC.
abs 3 $21 SUB [$4C76] Subtract the contents of memory location

$4C76 from the ACC
abs-x 3 $22 SUB [$4C76,X] Subtract the contents of a memory location

from the ACC, where the address of the
memory location is $4C76 plus the contents
of the X register

Flags affected
 O Set to 1 if the result overflows; otherwise cleared to 0
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0
 C Set to 1 if there is a carry out (really a “borrow-not”) from the subtraction;

otherwise cleared to 0 (which indicates a “borrow”)

A-54 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

SUBC (Subtract with carry)
Description

This instruction subtracts the contents of a byte of data in memory (along with the current
contents of the carry flag) from the current contents of the accumulator and stores the result
in the accumulator (the contents of the memory are not affected). See also the corresponding
SUB instruction.

Old ACC Byte in memory

Cin = carry flag (acting as a "borrow")

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

Note: The diagram above is a stylized representation of the action of the SUBC instruction.
In reality, the CPU doesn’t have a “subtractor block,” so the actual operation that is
performed to achieve the desired result is as follows:

new_ACC[7:0] = old_ACC[7:0] + NOT(byte_in_memory[7:0]) + Cin

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $28 SUBC $03 Subtract $03 from the ACC
abs 3 $29 SUBC [$4C76] Subtract the contents of memory location

$4C76 from the ACC
abs-x 3 $2A SUBC [$4C76,X] Subtract the contents of a memory location

from the ACC, where the address of the
memory location is $4C76 plus the contents
of the X register

Flags affected
 O Set to 1 if the result overflows; otherwise cleared to 0
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0
 C Set to 1 if there is a carry out (really a “borrow-not”) from the subtraction;

otherwise cleared to 0 (which indicates a “borrow”)

 The Official DIY Calculator Data Book A-55

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

XOR (Logical operation)
Description

This instruction logically XORs the contents of a byte of data in memory with the current
contents of the accumulator and stores the result in the accumulator (the contents of the
memory are not affected). Note that this is a bit-wise operation, which means that bit 0 of the
old ACC is XOR-ed with bit 0 of the memory to generate bit 0 of the new ACC. Similarly, bit 1
is XOR-ed with bit 1, bit 2 with bit 2, and so forth. See also the AND and OR instructions.

Old ACC Byte in memory

New ACC

Bit 7 Bit 0 Bit 7 Bit 0

Bit 7 Bit 0

XOR

Addressing modes
Mode #Bytes Opcode Example code Comments
imm 2 $40 XOR $03 Logically XOR $03 with the ACC
abs 3 $41 XOR [$4C76] Logically XOR the contents of memory

location $4C76 with the ACC
abs-x 3 $42 XOR [$4C76,X] Logically XOR the contents of a memory

location with the ACC, where the address
of the memory location is $4C76 plus the
contents of the X register

Flags affected
 N Set to 1 if the MS bit of the result is 1; otherwise cleared to 0
 Z Set to 1 of all of the bits in the result are 0; otherwise cleared to 0

Flags Addressing Modes
= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

=
=
=
=
=

Z
N
C
O
I

Zero
Negative
Carry
Overflow
Interrupt Mask

Registers
= Accumulator
= Program Counter
= Instruction Register
= Index Register
= Stack Pointer
= Interrupt Vector

ACC
PC
IR
X
SP
IV

Other
= Least-significant
= Most-significant
= Address

LS
MS
Addr

A-56 Appendix A: Addressing Modes and Instruction Set

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

[THIS PAGE IS INTENTIONALLY LEFT BLANK FOR PRINTING PAGINATION]

Appendix B
Chip Packaging
and Pin Descriptions

B-2 Appendix B: Chip Packaging and Pin Descriptions

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Chip packaging and pin descriptions
The DIY Calculator’s CPU is usually supplied in a plastic quad flat-pack package with an
0.1-inch pin pitch intended for commercial applications (0O C through 70O C), but other
options are available contact your nearest supplier for more details (Figure B-1).

ad
dr

[8
]

ad
dr

[9
]

ad
dr

[1
0]

ad
dr

[1
1]

ad
dr

[1
2]

ad
dr

[1
3]

ad
dr

[1
4]

ad
dr

[1
5]

VCC
clock
~reset

~write
IRQ
IACK
GND

addr[7]
addr[6]
addr[5]
addr[4]
addr[3]
addr[2]
addr[1]
addr[0]

da
ta

[0
]

da
ta

[1
]

da
ta

[2
]

da
ta

[3
]

da
ta

[4
]

da
ta

[5
]

da
ta

[6
]

da
ta

[7
]

~read

9
10
11
12
13
14
15
16

1 2 3 4 5 6 7 8

24 23 22 21 20 19 18 17

32
31
30
29
28
27
26
25

DIY Calculator

CPU

Figure B-1. The CPU in a quad flat-pack package (“birds-eye” view)

VCC and GND (power supply pins)
The CPU is usually powered with GND = 0V and VCC = +5V (other voltage options are available
– contact your nearest supplier for more details).

clock (input)
The DIY Calculator employs a single phase clock with a 1:1 mark-space ratio. The frequency of
the clock can range from 0 Hz to 10 MHz. (higher frequency variants are available – contact
your nearest supplier for more details).

See also the timing diagrams in Appendix C for more details as to the relationships between the
clock and other signals.

~reset (input, active-low)
When the ~reset input is placed in its active state (logic 0 = 0V), it causes the CPU to load the
program counter (PC) with address $0000. A reset condition also loads the status register (SR)
with $00, thereby disabling the interrupt mask flag. The reset will also force the IACK, ~read,
and ~write outputs into their inactive (logic 1) states. Once a reset sequence begins, the
~reset input must remain in its active state active for a minimum of 10 clock cycles. Similarly,
when power is first applied to the CPU, an external power-on reset circuit must force the ~reset
input into its active state for a minimum of 10 clock cycles.

 The Official DIY Calculator Data Book B-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Once the ~reset input returns to its inactive state, the CPU will automatically read its first
instruction from address $0000. (In the case of the DIY Calculator, address $0000 is the first
memory location in the ROM, and we may assume that this instruction is an unconditional jump
to address $4000, which is the first location in the RAM.)

Note: Resetting the CPU (including a power-on reset) leaves the stack pointer (SP), index
register (X), and interrupt vector (IV) in undefined states.

See also the timing diagrams in Appendix C for more details as to the relationships between the
~reset input and the other signals.

~read and ~write (outputs, active-low)
The CPU places its ~read or ~write outputs in their active (logic 0) states to inform other
devices in the system when it wishes to read or write data, respectively. Resetting the CPU (or
a power-on reset) will force these outputs into their inactive (logic 1) states.

See also the timing diagrams in Appendix C for more details as to the relationships between the
~read and ~write outputs and the other signals.

IRQ (input, active-low)
The interrupt request (IRQ) input is active low (logic 0). A low-going pulse on the IRQ will be
automatically stored in the CPU's interrupt latch. This means that the IRQ does not have to be
synchronized to the clock or remain active for any particular number of clock cycles. The IRQ
does, however, have a minimum pulse width requirement of 25 nanoseconds.

As was noted earlier, a reset or a power-on reset will load the status register with $00, thereby
disabling the interrupt mask flag. This means that the CPU will not respond to any activity on
the IRQ input following a reset. In order for the CPU to see an event on the IRQ input, the
programmer must use a SETIM instruction to set the interrupt mask in the status register to a
logic 1. (Note that the SETIM instruction also automatically resets the interrupt latch.)

Once the interrupt mask has been enabled, a low-going pulse on the IRQ input will cause an
interrupt to occur (see also Chapter 3). At this point, the CPU will push the current contents of
the program counter (PC) onto the stack, followed by the current contents of the status register
(SR). The CPU also loads the interrupt mask with a logic 0 to prevent future interrupts from
having any effect. The CPU then copies the contents of the interrupt vector (IV) into the
program counter, which now points to the first instruction in the interrupt service routine.

When the interrupt service routine is terminated by an RTI (“return from interrupt”) instruction,
the CPU pops the original value of the status register back off the stack, followed by the original
contents of the program counter. The act of popping the status register off the stack will return
the interrupt mask to a logic 1 (which was its value when the status register was originally
pushed onto the stack), thereby re-enabling the CPU’s ability to see any future interrupts. (Note
that this will automatically reset the interrupt latch.) Also, the other status flags will be returned
to whatever states they were in at the point when the interrupt was first activated.

See also the timing diagrams in Appendix C for more details as to the relationships between the
IRQ input and the other signals.

B-4 Appendix B: Chip Packaging and Pin Descriptions

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

IACK (output, active low)
As soon as the CPU starts to service an interrupt, it places its interrupt acknowledge (IACK)
output into its active state (logic 0). The IACK output will remain in this state until the CPU
receives an RTI ("return from interrupt") instruction or a reset occurs.

See also the timing diagrams in Appendix C for more details as to the relationships between the
IACK output and the other signals.

data[7:0] (bidirectional inputs/outputs)
The 8-bit data bus is bidirectional, and these pins may be used to load instructions and data
into the CPU or write values from the CPU.

See also the timing diagrams in Appendix C for more details as to the relationships between the
data[7:0] signals and the other signals.

addr[15:0] (outputs)
The CPU uses its 16-bit address bus to “point” to locations in the memory or to the various input
and output ports (which the CPU “sees” as being locations in memory).

See also the timing diagrams in Appendix C for more details as to the relationships between the
addr[15:0] signals and the other signals.

Appendix C
Signal Descriptions
and Timing Diagrams

C-2 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The CPU’s single-phase clock
The DIY Calculator’s CPU is driven by a single-phase clock, which is used to synchronize all of
its internal and external actions (Figure C-1).

clock

Period

Mark Space

1

0

Rising clock edge

Falling clock edge

Time

Figure C-1. The CPU’s single-phase clock

A clock’s period is the amount of time it takes to complete a full cycle (from 0 to 1 and back to 0
again). The frequency of a clock is the number of cycles it goes through per second, where
frequency is measured in Hertz (or Hz for short), so 25 Hz means “twenty-five cycles per second.”
The frequency is the reciprocal of the period, and vice versa, so for a frequency of 25 Hz the
period will be 1/25 seconds (that is 0.04 seconds). A clock cycle is split into two portions called
the mark (which refers to the portion of the cycle when the clock is a logic 1) and the space (the
portion when the clock is a logic 0).

The DIY Calculator’s clock has a 1:1 mark-space ratio, which means that the mark and the
space are of equal duration and each occupy 50% of the cycle. The frequency of the clock can
range from 0 Hz to 10 MHz (ten million cycles-per-second).(1) This doesn’t imply that the
frequency is supposed to wander around, but rather that you can drive the clock at any
frequency between these two limits.

Note: A clock frequency of 0 Hz may seem a little meaningless, because if the clock isn’t
“clocking” the CPU isn’t doing anything, but specifying the clock in this manner indicates that
the CPU won’t forget any internal information if the clock is halted or paused for any reason.
By comparison, certain microprocessors do require some minimum clock frequency to be
maintained.

Note: The single-phase clock used by the DIY Calculator is the simplest of all schemes; many
microprocessors use two or more clocks.

A generic read cycle
First, let’s consider a generic read cycle (Figure C-2). Before we start this cycle (just prior to the
rising clock edge we designate as #1), the address bus reflects some address associated with
the previous operation. Similarly, the data bus is in its high-impedance state, which means that
neither the CPU nor any other devices are currently driving any values onto this bus.

1Higher frequency variants are available -- contact your nearest supplier for more details.

 The Official DIY Calculator Data Book C-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

clock

~read

addr [15:0]

data[7:0]

Data from memory
or input port to CPU

#2 #3#1

$??

d1 d2a d3a

d2b d3b

Figure C-2. Generic read cycle

The CPU uses the first rising edge on the clock (#1) to load its address latch with the contents
of one of the addressing logic registers (such as the program counter or stack pointer). After a
short delay (d1) caused by the internal logic gates and registers, this value appears on the
address bus coming out of the CPU.

The next rising edge on the clock (#2) causes the CPU to place the ~read control signal into its
active state (logic 0).(2) Once again, there is a short delay (d2a) between the rising edge of the
clock and the response on the ~read signal due to internal gate delays. Similarly, there is
another small delay (d2b) between the ~read signal going active and the selected memory
location or input port responding by placing some data onto the data bus (this data is shown as
$?? to represent two hexadecimal characters whose values are of no concern at the moment).

The last clock in the read cycle (#3) loads the current value on the data bus into the appropriate
register inside the CPU, and also causes the ~read signal to return to its inactive state (logic 1)
after a small delay (d3a).(2) The act of the ~read signal going inactive causes the selected
memory location or input port to cease driving a value onto the data bus, which therefore
returns to a high-impedance value after another small delay (d3b). Using the same clock edge
to load the data into the CPU and disable the device driving the data bus isn’t a problem,
because delays in the logic gates forming the system mean that the data is safely stored away
before the data bus returns to its high-impedance state.

In addition to loading the data into the CPU and deactivating the ~read signal, clock #3 also
loads a new value into the CPU’s address latch and this new value subsequently appears on the
address bus. This new address is the one that will be used by the following read or write cycle.

A generic write cycle
Now let’s consider a generic write cycle (Figure C-3). At the beginning of this cycle (just prior to
the rising clock edge we designate as #1), the address bus reflects some address associated
with the previous operation and the data bus is in its high-impedance state.

2See also the discussions on the CPU’s data bus later in this appendix.

C-4 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

clock

~write

addr [15:0]

data[7:0]

Data from CPU to
memory or output port

#1 #2 #3 #4

$??

d1 d2 d3 d5d4

Figure C-3. Generic write cycle

As before, the CPU uses the first rising edge on the clock (#1) to load its address latch with the
contents of one of the addressing logic registers. After a short delay (d1) caused by the internal
logic gates and registers, this value appears on the address bus coming out of the CPU.

Note: If this generic write cycle were to follow the generic read cycle we discussed in the
previous section, then clock #3 from the read cycle and clock #1 from the write cycle would be
one and the same thing. Similarly, if our generic read cycle were to follow this generic write
cycle, then clock #4 from the write cycle and clock #1 from the read cycle would actually be
the same clock.

The next rising edge on the clock (#2) causes the CPU to place the ~write control signal into
its active state (logic 0). At the same time, the CPU also starts to drive a data value out onto the
data bus(3) (once again, this data is shown as $?? to represent two hexadecimal characters
whose values are of no concern at the moment). As usual, there is a short delay (d2) between
the rising edge of the clock and the response on the ~write signal and the data bus due to
internal gate delays. (The ~write signal and the data bus are shown as having identical delays
for simplicity, but these delays are not directly related to each other in the real world.)

The period during which the ~write signal is in its active state gives the destination memory
location or output port the time to either start loading the data or to prepare to load the data.
The next rising edge on the clock (#3) causes the CPU to return the ~write signal to its
inactive state, and it is this rising transition on the ~write signal that ultimately loads the data
into the destination location.

As an aside, consider a 3-bit binary field transitioning from a value of 001 to 100. In an ideal
world, all of the bits would transition simultaneously, but in the real world the delay associated
with a 0 to 1 transition will be different to its 1 to 0 counterpart. Thus, our hypothetical 3-bit field
will actually exhibit a 001 > 000 > 100 sequence or a 001 > 101 > 100 sequence depending on
which transition is the faster.

3See also the discussions on the CPU’s data bus later in this appendix.

 The Official DIY Calculator Data Book C-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Similarly, if the value on the address bus were to change whilst the ~write signal is in
its active state, then the address bus could pass through a large number of intermediate
addresses, each of which could become corrupted. Also, if the value on the data bus were to
change while the ~write signal was active or at the same time as ~write returned to its
inactive state, then a bad value could be written into the target location. This explains why the
CPU continues to maintain the values on the address and data busses for some time after the
~write signal has gone inactive. Thus, it’s not until the falling edge of clock #3 that the CPU
returns the data bus to its high-impedance state,(4) and the address latch isn’t loaded with the
address for the next operation until clock #4.

The CPU’s data buffer
Way back in those mists of time that we fondly referred to as Chapter 2, we briefly introduced
the CPU’s data buffer, which is used to connect the CPU’s internal data bus to the main
system’s data bus (Figure C-4).

ACC

TMP
SR

T-BUF

T-BUF

ALU

T-BUF

T-BUF
IR

Decode

 a
nd

 E

xecute

Addressing

Logic
System

CPU

Address
latch

System
address bus

Data
buffer

System
data bus

Figure C-4. The CPU’s data buffer

Control signals from the CPU’s instruction decoder and executer logic dictate whether this bi-
directional data buffer will (a) allow data from the outside world to pass into the CPU, (b) allow
data from the CPU to pass to the outside world, or (c) completely disconnect the internal data
bus from the outside world (Figure C-5).

As this illustration shows, the data buffer basically consists of two tri-state buffer gates for each
bit in the data bus. If both sets of tri-state buffers are disabled, the CPU’s internal data bus is
completely isolated from the outside world. Enabling one set of buffers allows the CPU to
accept data from the main system’s data bus, while enabling the other set of buffers allows the
CPU to drive data onto the main system’s data bus.

4See the discussions on the address latch later in this appendix for more details on why the tri-state
buffers driving the data bus inside the CPU are disabled on falling clock edges.

C-6 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Control signals
from control logic

System

CPU

Data
buffer

System
data bus

CPU
data bus

tri-state
buffers

cpudata[7]

sysdata[7]

cpudata[6]

sysdata[6]Control from
control logic

To bits 5
through 0

Figure C-5. A close-up look at the CPU’s data buffer

For example, consider the case of the generic read cycle we discussed earlier. The clock edge
that causes the ~read signal to be driven to its active state also directs the data buffer to start
accepting data from the outside world. And the clock edge that causes the ~read signal to be
driven to its inactive state also directs the data buffer to stop accepting data from the outside
world.

Similarly, in the case of our generic write cycle, the clock edge that causes the ~write signal
to be driven to its active state also causes the data buffer to start driving data to the outside
world. And the clock edge following the one that causes the ~write signal to go inactive also
causes the data buffer to stop driving data to the outside world.

One point you may be pondering is: “Why do we bother having the data buffer at all?” After all,
as all of the devices driving the internal and external data busses can be individually enabled or
disabled, we could get the same functionality using eight pieces of wire. Ah ha! This is a very
good question that shows you’re paying attention. As it happens, we could theoretically manage
without the data buffer. In practice, however, we need this buffer to take weak signals from
inside the CPU and drive them powerfully out into the main system. Similarly, devices in the
outside world only have to drive the CPU’s data buffer, which then handles the task of driving all
of the blocks inside the CPU.

The CPU’s address latch
The address latch is used to store current address of interest and to drive this value out onto
the system’s address bus. As we discussed in Chapter 2, this address may be supplied directly
from one of the standard addressing registers – such as the program counter (PC) or stack
pointer (SP) – or it may be generated by adding the contents of one of the standard addressing
registers to the contents of the index register (Figure C-6).

 The Official DIY Calculator Data Book C-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

To tri-s
tate buffers

 (and internal data bus)

 Addresslatch

2:1 Mux
Adder & stu

ff 2:1 Mux

Address latch

From internal

data bus

System
address bus

Note that all of the control signals
have been omitted for simplicity

X Register

PC
TPCA
TPCB

SP
IV

6:1 Mux

CPU

Figure C-6. The CPU’s addressing logic

The adder block may also be used to increment (or decrement) the contents of the program
counter and the other addressing registers. This leads to an interesting question, which is “When
should this incrementing (or decrementing) take place?” For example, let’s consider the program
counter. One possibility would be to increment the program counter at the same time as we load
its current contents into the address latch (Figure C-7).

clock

Program
Counter

#1 #2 #3 #4

Address
Latch

addr [15:0]

#5 #6 #7 #8 #9 #10

PC PC + 1 PC + 2

PC -1 PC PC + 1

PC - 1 PC PC + 1

d2

d1

Figure C-7. Incrementing the program counter and

loading the address latch at the same time

If you glance back to Figure C-6, you can see that at the same time as the value coming out of
the program counter is being loaded into the address latch, we can also be incrementing it using
the adder block and feeding it back into the program counter via the 2:1 multiplexers driving the
addressing registers. The reason this works is because all of the logic blocks forming the loop
(program counter > adder > program counter) have internal delays (albeit small ones), which
means that the original value in the program counter can be safely stored in the address latch by
the time the new (incremented) value emerges from the program counter.

C-8 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Using this scheme, the value in the address latch would always be exactly one step behind the
value in the program counter. For example, if the program counter contained some value that
we might call PC, then the address latch would contain PC-1. In the case of Figure C-7, we’re
assuming that we load the address latch and increment the program counter on the #1, #4, #7,
and #10 clock edges, and so forth. Due to delays in the elements forming the circuit, the
outputs of the address latch and program counter would begin to respond after some delay
(d1), and the address bus would follow the address latch after another delay (d2). (The address
latch and the program counter are shown as having identical delays for simplicity, but in reality
these delays are not directly related to each other.)

As an alternative scheme, the CPU’s control logic could cause the program counter to be
incremented on the clock edge following the one that loads the address latch (Figure C-8).

clock

Program
Counter

#1 #2 #3 #4

Address
Latch

addr [15:0]

#5 #6 #7 #8 #9 #10

PC - 1 PC PC + 1 PC + 2

PC -1 PC PC + 1

PC - 1 PC PC + 1

d2

d3

d1

Figure C-8. Incrementing the program counter

after loading the address latch

In an ideal world, it would be nice if we could decide to use just one of the above schemes and
stick to it. In reality, however, we have to use both techniques depending on the type of operation
being performed (see also the discussions on Alternative schemes below).

One very important point is that the control signals for the 2:1 multiplexer feeding the inputs to the
addressing registers and the 6:1 multiplexer selecting between the outputs from the addressing
registers are modified on falling edges of the system clock. For a variety of reasons that will
become apparent if you decide to implement this CPU,(5) modifying these multiplexers on falling
clock edges reduces the number of clock cycles required to execute certain instructions. As a
related issue, the tri-state buffers connecting the ALU, status register, and addressing logic to the
CPU’s internal data bus are also disabled on falling clock edges (but they’re enabled on rising
clock edges).

Alternative schemes
It’s important to note that the timing schemes used by the DIY Calculator’s CPU are somewhat
conservative. This is because these schemes are designed to be “safe” and relatively easy to
understand and implement, but there are a variety of other techniques we might have used. For
example, the discussions in this appendix are based on the fact that the majority of the CPU’s
actions are instigated by the rising edge of the clock. But we could modify the CPU such that

5Or if you decide to model it using a hardware description language (HDL) such as VHDL or Verilog.

 The Official DIY Calculator Data Book C-9

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

rising clock edges only perform certain actions like loading the address latch, while actions such
as loading the program counter could be performed on falling clock edges.

Alternatively, instead of having a single clock, we could modify the CPU to use two or more
clocks (Figure C-9). In this case, we could use one clock to perform tasks like loading the
address latch, while the other clock could perform tasks like loading the program counter.

clock 1

clock 2

Figure C-9. One alternative CPU implementation
would be to use two (or more) clocks

In the previous section, we noted that we sometimes increment the program counter using the
same clock that loads the address latch, but on occasion we have to increment it on the following
clock. An example of this latter case occurs during the execution of instructions which require
data to be loaded from the CPU’s internal data bus into one of the addressing registers. In order
to understand this problem, cast your mind back to the architecture of our CPU’s addressing logic
(Figure C-10).

To tri-s
tate buffers

 (and internal data bus)

 Addresslatch

2:1 Mux
Adder & stu

ff 2:1 Mux

Address latch

From internal

data bus

System
address bus

Note that all of the control signals
have been omitted for simplicity

X Register

PC
TPCA
TPCB

SP
IV

6:1 Mux

CPU

Figure C-10. The CPU’s addressing logic

The CPU has only one set of 2:1 multiplexers selecting between the internal data bus and the
output from the adder block. The outputs from these multiplexers feed all of the addressing
registers, which therefore prevents us from loading two or more addressing registers with
different values at the same time. In turn, this means that we have to postpone incrementing
the program counter until the clock edge following the one that loads data into one of the other
addressing registers.

C-10 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

If we wished, we could modify our architecture so as to provide each of the addressing registers
with its own 2:1 multiplexer. This would allow one register to be loaded from the data bus while
another register was being loaded from the adder block, but it would also require more logic
gates and would increase the complexity of the CPU.

Similarly, Figure C-10 shows the 6:1 multiplexer that chooses between the six addressing
registers and feeds the outputs from the selected register to both the address latch and the
adder block. This is great if we wish to load the address latch from the same addressing
register that we wish to increment, but it doesn’t allow us to load the address latch with the
contents of one register (say the stack pointer) whilst incrementing another register (say the
program counter).

Once again, we could modify our architecture so as to provide one 6:1 multiplexer to feed the
address latch and another to drive the adder block. This would allow us to simultaneously
increment one addressing register and load the address latch with the contents of another
register. But once again, this would require more logic gates and would increase the
complexity of the CPU.

If fact, there are a whole slew of different possibilities. However, if you are attempting to model
the DIY Calcuator’s CPU in some hardware description language (HDL) such as VHDL or
Verilog, then we strongly recommend that you start off by making your model conform to the
specifications presented in this data book. Once you’ve got a working “base-level” model, you
can start experimenting with alternative schemes and comparing them to your original model.

Resetting the CPU
As was discussed in Chapter 2, when power is first applied to the system, the CPU undergoes
a process called power-on reset, which initializes it into a “known good” state. The CPU can
also be re-initialized at any time by driving its ~reset input to its active state (logic 0). In order
to illustrate a reset sequence, let’s first assume that the CPU is in the process of executing
some program (Figure C-11).

Due to the fact that a reset can occur at any time, we can’t be certain as to the values that will
be present on the CPU’s ~read, ~write, and IACK outputs when the ~reset input is driven
to its active state (logic 0). Thus, Figure C-11 initially employs question mark (‘?’) characters to
indicate that these signals are carrying good logic 0 or logic 1 values, it’s just that we don’t
happen to know what these values are when the reset commences.

Similarly, the “$????” and “$??” character strings that are initially associated with the data and
address busses are used to indicate that we aren’t sure of the current values on these busses.
(The ‘$’ characters mean that each ‘?’ character represents a hexadecimal digit, where each of
these digits equates to four binary bits. Thus, “$????” represents the 16 bits associated with the
address bus, while $?? “represents” the 8 bits associated with the data bus.)

As soon as the ~reset signal goes active, we lose all knowledge of the values on the signals
coming out of the CPU, at which point Figure C-11 shows these signals as entering undefined
states (represented by the ‘U’, “$UU”, and “$UUUU” character strings as detailed in the “Legend”
below). It’s only after the ~reset input has been maintained in its active state for 10 complete
clock cycles that the signals coming out of the CPU can be guaranteed to be in a well-known

 The Official DIY Calculator Data Book C-11

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

state.(6) Similarly, when power is first applied to the system (and once the clock signal is fully
established), the power-on-reset circuit must hold the ~reset input in its active state for ≥10 full
clock cycles. (If the ~reset input is active for less than 10 clock cycles, the subsequent actions
of the CPU are undefined.)

clock

~reset

~read

~write

addr [15:0]

data[7:0]

IACK ? U

? U

? U

$???? $UUUU

$?? $UU

10 clock cycles

$??

$0000

#1

$0001

Read first
opcode

#2

~reset goes
active

~reset goes
inactive

$ZZ

Figure C-11. Timing for reset-related actions

On the 10th clock cycle following the ~reset going active, we can guarantee that the CPU has
been re-initialized into a known-good state. Amongst other things, this means that the ~read,
~write, and IACK signals will all be placed in their inactive (logic 1) states. Also, by this stage in
the game we can guarantee that the data bus has been placed in its high-impedance $ZZ state.

On or before the 10th clock cycle, the
address latch will be loaded with an
address of $0000 and the program counter
will be loaded with a value of $0001 (see
also the discussions on the address latch
earlier in this appendix).

Nothing further will occur after the 10th
clock cycle until the ~reset input is
returned to its inactive (logic 1) state. Following this event, the next rising clock edge (indicated
as #1 in Figure C-11) will drive the ~read signal to its active state, which will in turn start the

6The signals coming out of the CPU may become valid at any time during the reset operation, but they
cannot be guaranteed to be valid until after the 10th clock cycle.

Legend
 ? = Valid 0 or 1 on an individual signal
 $?? = Valid 0s and 1s on 8-bit data bus
 $???? = Valid 0s and 1s on 16-bit address bus
 $ZZ = High-impedance values on 8-bit data bus
 U = Undefined value on an individual signal
 $UU = Undefined values on 8-bit data bus
 $UUUU = Undefined values on 16-bit address bus

C-12 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

process of reading whatever opcode byte is to be found in address $0000 (the address
currently stored in the address latch).

The next clock (#2) causes this opcode to be loaded into the CPU’s instruction register (IR). This
clock also returns the ~read signal to its inactive state and loads the current contents of the
program counter (which are $0001) into the address latch, from whence this value will appear on
the address bus. The clock after this (not shown in Figure C-11) will begin to execute this first
opcode as discussed in the remainder of this appendix.

Hurray! {Fanfare of trumpets} The CPU is up and running! ... now read on ...

Implied mode instructions
Instructions using the implied addressing mode consist of only an opcode byte with no operand.
These instructions can be categorized into six distinct groups based on the way in which they
are executed:

 Implied Mode Instructions

Group 1 HALT
INCA DECA INCX DECX SHL SHR Group 2
ROLC RORC NOP SETIM CLRIM

Group 3 POPA POPSR
Group 4 PUSHA PUSHSR
Group 5 RTS
Group 6 RTI

Implied mode: Group 1
Just to ease our way into this, we’ll commence with the HALT instruction, which causes the CPU
to stop whatever it’s currently doing and wait for an interrupt to occur (Figure C-12).

Note that the vast majority of our timing diagrams from here on assume the same starting
conditions, which can be summarized as follows:

a) The address latch (and thus the address bus) is already loaded with some value from
the previous instruction. We’ve called this value PC to indicate that it originated in the
program counter.

b) The program counter itself has already been incremented such that it now contains a
value of PC+1 (but this fact is not shown in the timing diagrams).

 The Official DIY Calculator Data Book C-13

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2

PC+1

No further activity
until an interrupt or

reset occurs

#3 #4

Figure C-12. Timing for implied mode group 1 actions

 Actions for implied mode group 1 instructions

Address latch contains a value of PC. Initial
Program counter contains a value of PC + 1.

Clock #1 The ~read signal goes active.
The ~read signal goes inactive.
The new opcode is loaded into the instruction register.
The address latch is loaded with the current contents of the program counter (PC + 1).

Clock #2

The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The instruction is executed. In the case of the HALT instruction, this means executing

internal NOPs (“no operations”) until an interrupt occurs.
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

C-14 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Implied mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

PC+1

#1 #2 #3 #4

read next
opcode

Figure C-13. Timing for implied mode group 2 actions

 Actions for implied mode group 2 instructions
Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The instruction is executed and any appropriate status flags are updated.
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

 The Official DIY Calculator Data Book C-15

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Implied mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

PC+1

#1 #2 #3 #4

pop data
from stack

PC+1 SP+1

$??

read next
opcode

#5 #6

Figure C-14. Timing for implied mode group 3 actions

 Actions for implied mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).

As is happens we won’t need this value for a while, but the CPU doesn’t know this yet.
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by incrementing the stack pointer to contain

SP + 1 and also loading this value into the address latch (note #2).
Clock #4 The ~read signal goes active.
Clock #5 The ~read signal goes inactive.
 The data byte from the top of the stack is loaded into the appropriate register (either the

accumulator or the status register).
 The address latch is loaded with the current contents of the program counter (PC + 2)

minus 1; that is (PC + 2) – 1 = PC + 1.
Note #1: The program counter must be incremented to contain PC + 2 on clock #2, because the addressing logic is
tied up loading the stack pointer into the address latch on clock #3.
Note #2: The stack pointer always points to the first free location on the top of the stack, so in order to access the
last byte of data that was written to the stack we have to load the address latch with SP + 1.

C-16 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Implied mode: Group 4

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

PC+1

#1 #2 #3 #4

push data
to stack

PC+1 SP

read next
opcode

#5 #6 #7

$??

Figure C-15. Timing for implied mode group 4 actions

 Actions for implied mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).

As is happens we won’t need this value for a while, but the CPU doesn’t know this yet.
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by loading the contents of the stack pointer

(SP) into the address latch.
 The stack pointer is decremented to contain SP - 1 (note #2).
Clock #4 The ~write signal goes active.
 The CPU starts driving the contents of the appropriate register (either the accumulator or

the status register) onto the data bus.
Clock #5 The ~write signal goes inactive.
 The data being driven by the CPU is pushed (written) onto the stack.
 The CPU stops driving data on the falling edge of clock #5 and returns the data bus to its

high-impedance state.
Clock #6 The address latch is loaded with the current contents of the program counter (PC + 2)

minus 1; that is (PC + 2) – 1 = PC + 1.
Note #1: The program counter must be incremented to contain PC + 2 on clock #2, because the addressing logic is
tied up loading the stack pointer into the address latch on clock #3.
Note #2: The stack pointer may be decremented to contain SP – 1 on either clock #3, #4, or #5.

 The Official DIY Calculator Data Book C-17

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Implied mode: Group 5

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

pop MS addr
from stack

PC+1 SP+1

$ab

read next
opcode

#5 #6

$cd

SP+2 $???? $abcd

pop LS addr
from stack

#7 #8 #9

Figure C-16. Timing for implied mode group 5 actions

 Actions for implied mode group 5 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1). In

fact we don’t need this value, but the CPU doesn’t know this yet.
Clock #3 The execution of the instruction commences by loading the address latch with the current

value in the stack pointer (SP) plus one, leaving it containing SP + 1 (note #1).
 The stack pointer is incremented to contain SP + 1 (note #2).
Clock #4 The ~read signal goes active.
Clock #5 The ~read signal goes inactive.
 The data byte from the top of the stack (which we’ve shown as “$ab”) is loaded into the

most-significant byte of temporary register TPCA.
 The address latch is loaded with the current value in the stack pointer (SP + 1) plus one,

leaving it containing SP + 2.
Clock #6 The ~read signal goes active.
 The stack pointer is incremented to contain SP + 2 (note #3).

C-18 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #7 The ~read signal goes inactive.
 The data byte from the top of the stack (which we’ve shown as “$cd”) is loaded into the

least-significant byte of temporary register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #8 The address latch is loaded with the current contents of TPCA ($abcd)
 The program counter is loaded with $abcd + 1.

Note #1: The stack pointer always points to the first free location on the top of the stack, so in order to access the
last byte of data that was written to the stack we have to load the address latch with SP + 1.
Note #2: The stack pointer may be incremented to contain SP + 1 on either clock #3 or #4.
Note #3: The stack pointer must be incremented to contain SP + 2 on clock #6 (TPCA is loaded on #5).

Implied mode: Group 6

clock

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

pop MS addr
from stack

PC+1

read next
opcode

SP+3 $???? abcd

pop LS addr
from stack

pop SR
from stack

SP+1

$??

SP+2

$ab $cd

IACK

~read

~write

Figure C-17. Timing for implied mode group 6 actions

 Actions for implied mode group 6 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).

In fact we don’t need this value, but the CPU doesn’t know this yet.

 The Official DIY Calculator Data Book C-19

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #3 The execution of the instruction commences by loading the address latch with the current
value in the stack pointer (SP) plus one, leaving it containing SP + 1 (note #1).

 The stack pointer is incremented to contain SP + 1 (note #2).
Clock #4 The ~read signal goes active.
Clock #5 The ~read signal goes inactive.
 The data byte from the top of the stack is loaded into the status register.
 The address latch is loaded with the current value in the stack pointer (SP + 1) plus one,

leaving it containing SP + 2.
 The stack pointer is incremented to contain SP + 2 (note #3).
Clock #6 The ~read signal goes active.
Clock #7 The ~read signal goes inactive.
 The data byte from the top of the stack (which we’ve shown as $ab) is loaded into the

most-significant byte of temporary register TPCA.
 The address latch is loaded with the current value in the stack pointer (SP + 2) plus one,

leaving it containing SP + 3.
Clock #8 The ~read signal goes active.
 The stack pointer is incremented to contain SP + 3 (note #4).
Clock #9 The ~read signal goes inactive.
 The data byte from the top of the stack (which we’ve shown as $cd) is loaded into the

least-significant byte of temporary register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #10 The address latch is loaded with the current contents of TPCA ($abcd)
 The program counter is loaded with $abcd + 1.
 The IACK (interrupt acknowledge) output returns to its inactive (logic 1) state.

Note #1: The stack pointer always points to the first free location on the top of the stack, so in order to access the
last byte of data that was written to the stack we have to load the address latch with SP + 1.
Note #2: The stack pointer may be incremented to contain SP + 1 on either clock #3 or #4.
Note #3: The stack pointer may be incremented to contain SP + 2 on either clock #5 or #6.
Note #4: The stack pointer must be incremented to contain SP + 3 on clock #8 (TPCA is loaded on #7).

Immediate mode instructions
Instructions using the immediate addressing mode consist of an opcode byte followed by a
single operand byte. These instructions can be categorized into two groups as follows:

 Immediate mode instruction groups

Group 1 ADD ADDC SUB SUBC
 AND OR XOR CMPA
Group 2 LDA

C-20 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Immediate mode: Group 1

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(data)

PC+1

$??

read next
opcode

#5 #6

PC+2

Figure C-18. Timing for immediate mode group 1 actions

 Actions for immediate mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The operand byte is loaded into the temporary register feeding the “B” inputs to the ALU

(the ALU’s “A” inputs are driven by the accumulator. See Chapter 2 for more details).
 The address latch is loaded with the current contents of the program counter (PC + 2).
 The program counter is incremented to contain PC + 3 (note #2).
Clock #5 The instruction is executed and any appropriate status flags are updated.
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter may be incremented to contain PC + 3 on either clock #4 or #5.

 The Official DIY Calculator Data Book C-21

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Immediate mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(data)

PC+1

$??

read next
opcode

#5

PC+2

Figure C-19. Timing for immediate mode group 2 actions

 Actions for immediate mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The operand byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 2).
 The program counter is incremented to contain PC + 3
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

C-22 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Big immediate mode instructions
Instructions using the big immediate addressing mode consist of opcode byte followed by two
operand bytes. The two operand bytes represent a 16-bit data value to be loaded into one of
the 16-bit addressing registers: the interrupt vector (IV), stack pointer (SP), or index register
(X). Big immediate mode instructions all fall into the same group.

 Big immediate mode instruction groups

Group 1 BLDIV BLDSP BLDX

Big immediate mode: Group 1

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS data)

PC+1

$??

read next
opcode

#5

PC+3

read operand
(LS data)

PC+2

$??

#6 #7 #8

Figure C-20. Timing for big immediate mode group 1 actions

 Actions for big immediate mode group 1 instructions
Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.

 The Official DIY Calculator Data Book C-23

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #4 The ~read signal goes inactive.
 The first operand byte is loaded into the most-significant byte of the target addressing

register.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte is loaded into the least-significant byte of the target addressing

register.
 The address latch is loaded with the current contents of the program

counter (PC + 3).
Clock #7 The program counter is incremented to contain PC + 4 (note #3).

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of the target
addressing register is being loaded on clock #4).
Note #3: The program counter must be incremented to contain PC + 4 on clock #7 (the LS byte of the target
addressing register is being loaded on clock #6).

Absolute mode instructions
Instructions using the absolute addressing mode consist of opcode byte followed by two operand
bytes. The two operand bytes represent a 16-bit address that is used to point to a byte of data (or
a byte in which to store data). Absolute mode instructions can be categorized into six distinct
groups based on the way in which they are executed:

 Absolute mode instruction groups

Group 1 ADD ADDC SUB SUBC
 AND OR XOR CMPA
Group 2 LDA
Group 3 STA
Group 4 JMP
Group 5 JSR
Group 6 JC JNC JN JNN JO JNO
 JZ JNZ

C-24 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Absolute mode: Group 1

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
data

$????

$??

TPCA=$abcd

#8 #9 #10 #11

Figure C-21. Timing for absolute mode group 1 actions

 Actions for absolute mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant byte

of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re not

going to use this value.

 The Official DIY Calculator Data Book C-25

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The operand byte is loaded into the temporary register feeding the “B” inputs to the ALU

(the ALU’s “A” inputs are driven by the accumulator. See Chapter 2 for more details).
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).
Clock #10 The instruction is executed and any appropriate status flags are updated.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: The program counter may be incremented to contain PC + 4 on either clock #9 or #10. The program
counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used to load the LS byte of
TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address latch with the contents
of TPCA. We could use clock #8 to increment the program counter to contain PC + 4 if we wished; but, in this case,
clock #9 would now have to load the address latch with the contents of the program counter minus one (that is,
(PC + 4) - 1 = PC + 3). Phew!

Absolute mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
data

$????

$??

TPCA=$abcd

#8 #9 #10

Figure C-22. Timing for absolute mode group 2 actions

C-26 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for absolute mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program

counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The data byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: The program counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used
to load the LS byte of TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address
latch with the contents of TPCA. We could use clock #8 to increment the program counter to contain PC + 4 if we
wished, but in this case clock #9 would now have to load the address latch with the contents of the program counter
minus one (that is, (PC + 4) - 1 = PC + 3).

 The Official DIY Calculator Data Book C-27

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Absolute mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

write
data

$????

$??

TPCA=$abcd

#8 #9 #10 #11

Figure C-23. Timing for absolute mode group 3 actions

 Actions for absolute mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).

C-28 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #8 The ~write signal goes active.
 The CPU starts driving the contents of the accumulator onto the data bus.
Clock #9 The ~write signal goes inactive.
 The data byte from the accumulator is loaded into the targeted address.
 The CPU stops driving data on the falling edge of clock #9 and returns the data bus to its

high-impedance state.
Clock #10 The address latch is loaded with the current contents of the program

counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: The program counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used
to load the LS byte of TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address
latch with the contents of TPCA. We could use clocks #8 or #9 to increment the program counter to contain PC + 4 if
we wished, but in this case clock #10 would now have to load the address latch with the contents of the program
counter minus one (that is, (PC + 4) - 1 = PC + 3).

Absolute mode: Group 4

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#8

$abcd

Figure C-24. Timing for absolute mode group 4 actions

 The Official DIY Calculator Data Book C-29

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for absolute mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 The program counter is loaded with $abcd + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

Absolute mode: Group 5

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7 #8

$abcdSP SP-1

LS PC MS PC

push LS PC
on the stack

push MS PC
on the stack

#9 #10 #11 #12 #13 #14

Figure C-25. Timing for absolute mode group 5 actions

C-30 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for absolute mode group 5 instructions
Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
Clock #7 The stack pointer is decremented to contain SP -1, which is the new top of the stack

(note #2).
Clock #8 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #9 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top of the stack

(at SP).
 The CPU stops driving the data bus on the falling edge of clock #9.
Clock #10 The address latch is loaded with the current contents of the stack pointer (SP - 1), which

is pointing to the first free location on the top of the stack.
 The stack pointer is decremented to contain SP -2, which is the new top of the stack.
Clock #11 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the data

bus.
Clock #12 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #12.
Clock #13 The address latch is loaded with the current contents of TPCA ($abcd).
 The program counter is loaded with $abcd + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or clock #3.
Note #2: Ideally we would prefer to decrement the stack pointer to contain SP - 1 on clock #6, but this clock is being
used to load the LS byte of TPCA, so we have to use an extra clock (#7).

 The Official DIY Calculator Data Book C-31

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Absolute mode: Group 6
And so we arrive at the absolute addressing mode group 6 instructions, which correspond to
the conditional jumps (JZ, JNZ, and so forth). These instructions are quite interesting in that
they have two sets of timing diagrams depending on whether the test passes or fails. First let’s
consider the case where the test passes:

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#8

$abcd

Figure C-26. Timing for absolute mode group 6 actions (test passes)

 Actions for absolute mode (group 6) instructions (test passes)

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The control logic tests the relevant status flag at this point (in the case of a JZ instruction,

for example, the control logic will test the value of the zero status flag). If the test passes,
the execution of the instruction commences by ~read going active again.

Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.

C-32 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 The program counter is loaded with $abcd + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

In the cases where the tests pass, these conditional jump instructions are functionally identical
to the unconditional jump (group 4) instructions. Now consider the case where the test fails:

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #5

read next
opcode

PC+1 PC+3

#4

Figure C-27. Timing for absolute mode group 6 actions (test fails)

 Actions for absolute mode group 6 instructions (test fails)

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2.
Clock #3 The control logic tests the relevant status flag at this point. If the test fails, the

instruction’s execution commences by loading the address latch with the current
contents of the program counter plus one: (PC + 2) + 1 = PC + 3.

 The program counter is incremented to contain PC + 3 (note #1).
Clock #4 The program counter is incremented to contain PC + 4 (note #1).

 The Official DIY Calculator Data Book C-33

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Note #1: The adder block in the CPU’s addressing logic does provide the ability to add 2 to whatever value is being
presented to its main inputs. Thus, as an alternative to incrementing the program counter to contain PC + 3 on clock
#3 and then incrementing it again on clock #4, it would be possible to ignore the program counter on clock #3 and
then add 2 to it on clock #4.

Big absolute mode instructions
The big absolute addressing mode is very similar to the standard absolute mode, except that big
absolute instructions deal with three of our 16-bit addressing registers: the interrupt vector (IV),
stack pointer (SP), and index register (X). In this case, the two operand bytes represent a 16-bit
address that is used to point to the first byte in a pair of data bytes.

 Big absolute mode instruction groups

Group 1 BLDIV BLDSP BLDX
Group 2 BSTSP BSTX

Big absolute mode: Group 1

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
MS data

$????

$??

TPCA=$abcd

#8 #9 #10 #11

read
LS data

$??

$abcd+1

#12

Figure C-28. Timing for big absolute mode group 1 actions

 Actions for big absolute mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.

C-34 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 A value of 2 is added to the current contents of the program counter, which therefore now

contains PC + 4 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The first data byte is loaded into the most-significant byte of the targeted addressing

register.
 The address latch is loaded with the current contents of TPCA ($abcd + 1) (note #3).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The second data byte is loaded into the least-significant byte of the targeted addressing

register.
 The address latch is loaded with the current contents of the program counter minus one:

(PC + 4) - 1 = PC + 3 (note #4).
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be modified to contain PC + 4 on clock #5 (the MS byte of TPCA is being
loaded on clock #4). The reason for loading the program counter with a value of PC + 4 is that this is what we want it
to contain by the end of this instruction.
Note #3: As opposed to using clock #7 to increment the contents of TPCA, we could achieve exactly the same effect
by using clock #9 to load the address latch with TPCA + 1.
Note #4: As was discussed in note #2, we want the program counter to end up containing PC + 4, and the only clock
free to do this was clock #5. For example, we can’t use clock #11, because that’s already busy loading the LS byte
of the targeted addressing register. Thus, as the program counter already contains a value of PC + 4 by the time we
reach clock #11, we use this clock to load the address latch with the contents of the program counter minus one,
which results in the address latch containing PC + 3 (which is what we wanted in the first place).

 The Official DIY Calculator Data Book C-35

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Big absolute mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

write
MS data

$????

$??

TPCA=$abcd

#8 #9 #10 #11

write
LS data

#12

$abcd+1

#13 #14

$??

Figure C-29. Timing for big absolute mode group 2 actions

 Actions for big absolute mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 Address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program

counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).

C-36 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #8 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the selected addressing register out

onto the data bus.
Clock #9 The ~write signal goes inactive.
 The data is loaded into the targeted address ($abcd).
 The CPU stops driving the data bus on the falling edge of clock #9.
Clock #10 The address latch is loaded with the current contents of TPCA ($abcd + 1) (note #3).
Clock #11 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the selected addressing register out

onto the data bus.
Clock #12 The ~write signal goes inactive.
 The data is loaded into the targeted address ($abcd + 1).
 The CPU stops driving the data bus on the falling edge of clock #12.
Clock #13 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: As opposed to using clock #7 to increment the contents of TPCA, we could achieve exactly the same effect
by using clock #10 to load the address latch with TPCA + 1.

Indexed mode instructions
Instructions using the indexed addressing mode are very similar to their absolute counterparts, in
that they consist of opcode byte followed by two operand bytes, where these two operand bytes
represent a 16-bit address. However, this value is now added to the contents of the index register
(X), and it is this resulting address that is used to point to a byte of data (or a byte in which to store
data). Indexed mode instructions can be categorized into five distinct groups based on the way in
which they are executed:

 Indexed mode instruction groups

Group 1 ADD ADDC SUB SUBC
 AND OR XOR CMPA
Group 2 LDA
Group 3 STA
Group 4 JMP
Group 5 JSR

 The Official DIY Calculator Data Book C-37

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indexed mode: Group 1

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
data

$????

$??

$abcd + X

#8 #9 #10 #11

Figure C-30. Timing for indexed mode group 1 actions

 Actions for indexed mode group 1 instructions
Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.

C-38 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X). (This doesn’t affect the contents of either of these registers.)
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The operand byte is loaded into the temporary register feeding the “B” inputs to the ALU

(the ALU’s “A” inputs are driven by the accumulator. See Chapter 2 for more details).
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).
Clock #10 The instruction is executed and any appropriate status flags are updated.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of
TPCA is being loaded on clock #4).
Note #3: The program counter may be incremented to contain PC + 4 on either clock #9 or #10. The program
counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used to load the LS byte of
TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address latch with the contents
of TPCA+X. We could use clock #8 to increment the program counter to contain PC + 4 if we wished, but in this
case clock #9 would now have to load the address latch with the contents of the program counter minus one (that
is, (PC + 4) - 1 = PC + 3). Phew!

Indexed mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
data

$????

$??

$abcd + 1

#8 #9 #10

Figure C-31. Timing for indexed mode group 2 actions

 The Official DIY Calculator Data Book C-39

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for indexed mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X). (This doesn’t affect the contents of either of these registers.)
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The data byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: The program counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used
to load the LS byte of TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address
latch with the contents of TPCA+X. We could use clock #8 to increment the program counter to contain PC + 4 if we
wished, but in this case clock #9 would now have to load the address latch with the contents of the program counter
minus one (that is, (PC + 4) - 1 = PC + 3).

C-40 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indexed mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

write
data

$????

$??

$abcd + X

#8 #9 #10 #11

Figure C-32. Timing for indexed mode group 3 actions

 Actions for indexed mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X). (This doesn’t affect the contents of either of these registers.)
Clock #8 The ~write signal goes active.
 The CPU starts driving the contents of the accumulator onto the data bus.

 The Official DIY Calculator Data Book C-41

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #9 The ~write signal goes inactive.
 The data byte from the accumulator is loaded into the targeted address.
 The CPU stops driving the data bus on the falling edge of clock #9.
Clock #10 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4 (note #3).

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: The program counter can’t be incremented to contain PC + 4 on clock #6, because this clock is being used
to load the LS byte of TPCA. Similarly, we can’t use clock #7, because this clock is being used to load the address
latch with the contents of TPCA. We could use clocks #8 or #9 to increment the program counter to contain PC + 4 if
we wished, but in this case clock #10 would now have to load the address latch with the contents of the program
counter minus one (that is, (PC + 4) - 1 = PC + 3).

Indexed mode: Group 4
#8

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#9

$abcd + X

Figure C-33. Timing for indexed mode group 4 actions

 Actions for indexed mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).

C-42 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The program counter is loaded with the current contents of TPCA ($abcd) plus the

contents of the index register (X). (This doesn’t affect the contents of either register.)
Clock #8 The address latch is loaded with the current contents of the program

counter ($abcd + X).
 The program counter is incremented to contain ($abcd + X) + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

Indexed mode: Group 5

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7 #8

$abcd+XSP SP-1

LS PC MS PC

push LS PC
on the stack

push MS PC
on the stack

#9 #10 #11 #12 #13

$????

#14 #15

Figure C-34. Timing for indexed mode group 5 actions

 Actions for indexed mode group 5 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.

 The Official DIY Calculator Data Book C-43

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
Clock #7 The stack pointer is decremented to contain SP -1, which is the new top of the stack

(note #2).
Clock #8 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #9 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top of the

stack (at SP).
 The CPU stops driving the data bus on the falling edge of clock #9.
Clock #10 The address latch is loaded with the current contents of the stack pointer (SP - 1), which

is pointing to the first free location on the top of the stack.
 The stack pointer is decremented to contain SP -2, which is the new top of the stack.
Clock #11 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the

data bus.
Clock #12 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top

of the stack (at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #12.
Clock #13 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
 The program counter is loaded with the current contents of TPCA ($abcd) plus the

contents of the index register (X). (This doesn’t affect the contents of the TPCA or X
registers).

Clock #14 The address latch is loaded with the current contents of the program
counter ($abcd + X).

 The program counter is incremented to contain ($abcd + X) + 1.
Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or clock #3.
Note #2: Ideally we would prefer to decrement the stack pointer to contain SP - 1 on clock #6, but this clock is being
used to load the LS byte of TPCA, so we have to use an extra clock (#7).

C-44 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect mode instructions
As for an absolute mode instruction, an indirect instruction has two address operand bytes
following the opcode. However, these two bytes do not point to the target data themselves, but
instead they point to the first byte of another pair of address bytes, and it is this second address
that points to the data (or to a location in which to store data). Indirect mode instructions can be
categorized into four distinct groups based on the way in which they are executed:

 Indirect mode instruction groups

Group 1 LDA
Group 2 STA
Group 3 JMP
Group 4 JSR

Indirect mode: Group 1
#15#14#13#12#11

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
LS addr

$????

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $???? $efgh + X

read
data

$??

Figure C-35. Timing for indirect mode group 1 actions

 Actions for indirect mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).

 The Official DIY Calculator Data Book C-45

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant byte

of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re not

going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re not

going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
Clock #13 The ~read signal goes active.
Clock #14 The ~read signal goes inactive.
 The data byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

C-46 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $????

read next
opcode

PC+3

write
data

$??

$efgh + X

#13 #14 #15 #16

Figure C-36. Timing for indirect mode group 2 actions

 Actions for indirect mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).
Clock #8 The ~read signal goes active.

 The Official DIY Calculator Data Book C-47

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
Clock #13 The ~write signal goes active.
 The CPU starts driving the contents of the accumulator onto the data bus.
Clock #14 The ~write signal goes inactive.
 The data byte from the accumulator is loaded into the targeted address.
 The CPU stops driving the data bus on the falling edge of clock #14.
Clock #15 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

Indirect mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#8

$efgh + X

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $????

#14#13

Figure C-37. Timing for indirect mode group 3 actions

C-48 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for indirect mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #2).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
 The program counter is loaded with $efgh + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

 The Official DIY Calculator Data Book C-49

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect mode: Group 4
#20#19#18

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

read next
opcode

#13

$efgh + XSP SP-1

LS PC MS PC

push LS PC
on the stack

push MS PC
on the stack

#14 #15 #16 #17#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1$???? $????

Figure C-38. Timing for indirect mode group 4 actions

 Actions for indirect mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #2).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.

C-50 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
Clock #12 The stack pointer is decremented to contain SP -1, which is the new top of the stack

(note #3).
Clock #13 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #14 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top of the stack

(at SP).
 The CPU stops driving the data bus on the falling edge of clock #14.
Clock #15 The address latch is loaded with the current contents of the stack pointer (SP - 1), which

is pointing to the first free location on the top of the stack.
 The stack pointer is decremented to contain SP -2, which is the new top of the stack.
Clock #16 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the

data bus.
Clock #17 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #17.
Clock #18 The address latch is loaded with the current contents of TPCB ($efgh).
 The program counter is loaded with $efgh + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or clock #3.
Note #2: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.
Note #3: Ideally we would prefer to decrement the stack pointer to contain SP - 1 on clock #11, but this clock is
being used to load the LS byte of TPCB, so we have to use an extra clock (#12).

Pre-indexed indirect mode instructions
The pre-indexed indirect addressing mode is a combination of the indexed and indirect modes.
This form of addressing is so-named because the address stored in the operand bytes is first
added to the contents of the index register (X). The resulting address points to the first byte of
another pair of address bytes, and it is this new address that points to the data (or to a location
in which to store data). Pre-indexed indirect mode instructions can be categorized into four
distinct groups based on the way in which they are executed:

 Pre-indexed indirect mode instruction groups

Group 1 LDA
Group 2 STA
Group 3 JMP
Group 4 JSR

 The Official DIY Calculator Data Book C-51

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Pre-indexed indirect mode: Group 1
#15#14#13#12#11

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
LS addr

$????

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $???? $efgh + X

read
data

$??

read next
opcode

Figure C-39. Timing for pre-indexed indirect mode group 1 actions

 Actions for pre-indexed indirect mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X) to give ($abcd + X).
 The contents of TPCA ($abcd) are added to the contents of the index register (X), and

the result ($abcd + X) is stored back into TPCA.

C-52 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA (which are $abcd + X from

clock #7) plus 1, which equals $abcd + X + 1.
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
Clock #13 The ~read signal goes active.
Clock #14 The ~read signal goes inactive.
 The data byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

Pre-indexed indirect mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $???? PC+3

write
data

$??

$efgh + X

#13 #14 #15 #16

read next
opcode

Figure C-40. Timing for pre-indexed indirect mode group 2 actions

 The Official DIY Calculator Data Book C-53

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for pre-indexed indirect mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X) to give ($abcd + X).
 The contents of TPCA ($abcd) are added to the contents of the index register (X), and

the result ($abcd + X) is stored back into TPCA.
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA (which are $abcd + X from

clock #7) plus 1, which equals $abcd + X + 1.
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
Clock #13 The ~write signal goes active.
 The CPU starts driving the contents of the accumulator onto the data bus.
Clock #14 The ~write signal goes inactive.
 The data byte from the accumulator is loaded into the targeted address.
 The CPU stops driving the data bus on the falling edge of clock #14.
Clock #15 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

C-54 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).

Pre-indexed indirect mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#8

$efgh + X

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $????

#14#13

Figure C-41. Timing for pre-indexed indirect mode group 3 actions

 Actions for pre-indexed indirect mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.

 The Official DIY Calculator Data Book C-55

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents
of the index register (X) to give ($abcd + X).

 The contents of TPCA ($abcd) are added to the contents of the index register (X), and
the result ($abcd + X) is stored back into TPCA.

Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA (which are $abcd + X from

clock #7) plus 1, which equals $abcd + X + 1.
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh).
 The program counter is loaded with $efgh + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.

Pre-indexed indirect mode: Group 4
#20#19#18

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

read next
opcode

#13

$efgh + XSP SP-1

LS PC MS PC

push LS PC
on the stack

push MS PC
on the stack

#14 #15 #16 #17#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1$???? $????

Figure C-42. Timing for pre-indexed indirect mode group 4 actions

C-56 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for pre-indexed indirect mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd) plus the contents

of the index register (X) to give ($abcd + X).
 The contents of TPCA ($abcd) are added to the contents of the index register (X), and

the result ($abcd + X) is stored back into TPCA.
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA (which are $abcd + X from

clock #7) plus 1, which equals $abcd + X + 1.
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
Clock #12 The stack pointer is decremented to contain SP -1, which is the new top of the stack

(note #2).
Clock #13 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #14 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top

of the stack (at SP).
 The CPU stops driving the data bus on the falling edge of clock #14.

 The Official DIY Calculator Data Book C-57

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #15 The address latch is loaded with the current contents of the stack pointer (SP - 1), which
is pointing to the first free location on the top of the stack.

 The stack pointer is decremented to contain SP -2, which is the new top of the stack.
Clock #16 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the

data bus.
Clock #17 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #17.
Clock #18 The address latch is loaded with the current contents of TPCB ($efgh).
 The program counter is loaded with $efgh + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or clock #3.
Note #2: Ideally we would prefer to decrement the stack pointer to contain SP - 1 on clock #11, but this clock is
being used to load the LS byte of TPCB, so we have to use an extra clock (#12).

Indirect post-indexed mode instructions
As for the pre-indexed indirect instructions we discussed in the previous section, indirect post-
indexed addressing is a combination of the indexed and indirect modes. In this case, however, the
address stored in the operand bytes points to the first byte of another pair of address bytes. This
second address is then added to the contents of the index register (X), and the resulting address
points to the data (or to a location in which to store data). Indirect post-indexed mode instructions
can be categorized into four distinct groups based on the way in which they are executed:

 Indirect post-indexed mode instruction groups

Group 1 LDA
Group 2 STA
Group 3 JMP
Group 4 JSR

C-58 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Indirect post-indexed mode: Group 1
#15#14#13#12#11

clock

~read

~write

addr[15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

PC+3

read operand
(LS addr)

PC+2

$cd

#6 #7

read
LS addr

$????

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $???? $efgh + X

read
data

$??

read next
opcode

Figure C-43. Timing for indirect post-indexed mode group 1 actions

 Actions for indirect post-indexed mode group 1 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).
Clock #8 The ~read signal goes active.

 The Official DIY Calculator Data Book C-59

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh) plus the contents

of the index register (X).
Clock #13 The ~read signal goes active.
Clock #14 The ~read signal goes inactive.
 The data byte is loaded into the accumulator and any appropriate status flags are

updated.
 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).
Note #3: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

Indirect post-indexed mode: Group 2

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $???? PC+3

write
data

$??

$efgh + X

#13 #14 #15 #16

read next
opcode

Figure C-44. Timing for indirect post-indexed mode group 2 actions

C-60 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for indirect post-indexed mode group 2 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
 The program counter is incremented to contain PC + 3 (note #2).
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #3).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The address latch is loaded with the current contents of TPCB ($efgh) plus the contents

of the index register (X).
Clock #13 The ~write signal goes active.
 The CPU starts driving the contents of the accumulator onto the data bus.
Clock #14 The ~write signal goes inactive.
 The data byte from the accumulator is loaded into the targeted address.
 The CPU stops driving the data bus on the falling edge of clock #14.
Clock #15 The address latch is loaded with the current contents of the program counter (PC + 3).
 The program counter is incremented to contain PC + 4.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: The program counter must be incremented to contain PC + 3 on clock #5 (the MS byte of TPCA is being
loaded on clock #4).

 The Official DIY Calculator Data Book C-61

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Note #3: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

Indirect post-indexed mode: Group 3

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

read next
opcode

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

$????

#8

$efgh + X

#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1 $????

#14#13

Figure C-45. Timing for indirect post-indexed mode group 3 actions

 Actions for indirect post-indexed mode group 3 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.

C-62 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (see note #2).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #12 The program counter is loaded with the current contents of TPCB ($efgh) plus the

contents of the index register (X). (This doesn’t affect the contents of the TPCB or X
registers.)

Clock #13 The address latch is loaded with the current contents of the program counter ($efgh + X).
 The program counter is incremented to contain ($efgh + X) + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or #3.
Note #2: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.

Indirect post-indexed mode: Group 4
#20#19#18

clock

~read

~write

addr [15:0]

data[7:0]

PC

$??

read opcode
(instruction)

#1 #2 #3 #4

read operand
(MS addr)

PC+1

$ab

#5

read operand
(LS addr)

PC+2

$cd

#6 #7

read next
opcode

#13

$efgh + XSP SP-1

LS PC MS PC

push LS PC
on the stack

push MS PC
on the stack

#14 #15 #16 #17#12#11

read
LS addr

$gh

TPCA=$abcd

#8 #9 #10

$ef

read
MS addr

$abcd + 1$???? $????

Figure C-46. Timing for indirect post-indexed mode group 4 actions

 The Official DIY Calculator Data Book C-63

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Actions for indirect post-indexed mode group 4 instructions

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
Clock #1 The ~read signal goes active.
Clock #2 The ~read signal goes inactive.
 The new opcode is loaded into the instruction register.
 The address latch is loaded with the current contents of the program counter (PC + 1).
 The program counter is incremented to contain PC + 2 (note #1).
Clock #3 The execution of the instruction commences by ~read going active again.
Clock #4 The ~read signal goes inactive.
 The first operand byte (which we’ve shown as $ab) is loaded into the most-significant

byte of temporary addressing register TPCA.
 The address latch is loaded with the current contents of the program counter (PC + 2).
Clock #5 The ~read signal goes active.
Clock #6 The ~read signal goes inactive.
 The second operand byte (which we’ve shown as $cd) is loaded into the least-significant

byte of temporary addressing register TPCA.
 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
Clock #7 The address latch is loaded with the current contents of TPCA ($abcd).
 TPCA is incremented to contain $abcd + 1 (note #2).
Clock #8 The ~read signal goes active.
Clock #9 The ~read signal goes inactive.
 The most-significant indirect address byte (which we’ve shown as $ef) is loaded into the

most-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of TPCA ($abcd+1).
Clock #10 The ~read signal goes active.
Clock #11 The ~read signal goes inactive.
 The least-significant indirect address byte (which we’ve shown as $gh) is loaded into the

least-significant byte of temporary addressing register TPCB.
 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
Clock #12 The stack pointer is decremented to contain SP -1, which is the new top of the stack

(note #3).
Clock #13 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #14 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top

of the stack (at SP).
 The CPU stops driving the data bus on the falling edge of clock #14.
Clock #15 The address latch is loaded with the current contents of the stack pointer (SP - 1), which

is pointing to the first free location on the top of the stack.
 The stack pointer is decremented to contain SP -2, which is the new top of the stack.

C-64 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock #16 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the

data bus.
Clock #17 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #17.
Clock #18 It doesn’t really matter what’s loaded into the address latch at this point because we’re

not going to use this value.
 The program counter is loaded with the current contents of TPCB ($efgh) plus the

contents of the index register (X). (This doesn’t affect the contents of the TPCB or X
registers.)

Clock #19 The address latch is loaded with the current contents of the program counter ($efgh + X).
 The program counter is incremented to contain ($efgh + X) + 1.

Note #1: The program counter may be incremented to contain PC + 2 on either clock #2 or clock #3.
Note #2: As opposed to incrementing TPCA on clock #7 and then loading this new value into the address latch on
clock #9, we could leave TPCA alone on clock #7 and simply load the address latch with TPCA+1 on clock #9.
Note #3: Ideally we would prefer to decrement the stack pointer to contain SP - 1 on clock #11, but this clock is
being used to load the LS byte of TPCB, so we have to use an extra clock (#12).

 The Official DIY Calculator Data Book C-65

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Interrupts
In fact there isn’t really an interrupt instruction per se. However, in the same way as a JSR
instruction jumps to a subroutine, we might consider an interrupt as being equivalent to an
imaginary JIR (“jump to interrupt”) instruction.

clock

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

~read

~write

addr [15:0]

data[7:0]

$???? SP IVSP - 1 SP - 2

LS PC SR

push LS PC
on the stack

push SR
on the stack

LS PC

push MS PC
on the stack

PC

?

$??

?

IACK

IRQ The IRQ doesn't have to stay active once it's been stored in the interrupt latch

Previous instruction

#A #B #C #D

read next
opcode

Figure C-47. Timing for interrupt actions

An interrupt is requested by a falling edge on the CPU’s IRQ input. Remember that the CPU will
only respond if its interrupt mask (I) flag in the status register is set to logic 1 (the interrupt mask
flag is cleared to a logic 0 on a reset or power-on reset). Also, using a SETIM (“set interrupt
mask”) instruction to load the interrupt mask with a logic 1 will also clear the CPU’s interrupt latch.
This means that the CPU will only respond to interrupts that occur after the SETIM instruction is
executed. Last but not least, before an interrupt can be handled appropriately, the stack pointer
must contain a valid address and a BLDIV (“big load interrupt vector”) instruction must have been
used to load the CPU’s interrupt vector with the address of an interrupt service routine.

An interrupt can occur at any time. For example, in the figure above we’re assuming that the
interrupt occurs sometime between clocks #B and #C. The falling edge on the IRQ signal will
be stored in the interrupt latch, and the CPU will continue to execute whatever instruction it’s
currently working on. When the CPU has finished its current instruction, it first looks to see if
the interrupt status flag is enabled (logic 1). If this flag is enabled, the CPU next looks at the
interrupt latch to see if an interrupt has occurred, and only then will the CPU begin to process
the interrupt request (see also Chapter 3). (Note that if the last instruction was a HALT, the CPU
will start to service the interrupt on the first rising clock edge after the IRQ goes active.)

For the purposes of these discussions, we’ll assume that when an interrupt occurs, the interrupt
mask bit has been loaded with a logic 1, the stack pointer contains a value of SP, and the
interrupt vector contains a value of IV. Also, when the interrupt occurs, we’re assuming that the

C-66 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

address latch contains a value we’ll call PC (which is pointing to the next opcode to be
executed), while the program counter will contain a value of PC + 1. This means that when we
come to store the return address on the top of the stack, we’ll actually have to store the current
value in the program counter minus one; that is (PC + 1) - 1 = PC Good Grief!

 Actions for an interrupt

Initial Address latch contains a value of PC.
 Program counter contains a value of PC + 1.
 Stack pointer contains a value of SP.
 Interrupt vector contains a value of IV.
Clock #1 The address latch is loaded with the current contents of the stack pointer (SP), which is

pointing to the first free location on the top of the stack.
 The stack pointer is decremented to contain SP – 1; this will be the new top of the stack.
Clock #2 The ~write signal goes active.
 The CPU starts driving the least-significant byte of the program counter out onto the

data bus.
Clock #3 The ~write signal goes inactive.
 The least-significant byte from the program counter is stored on the top of the stack

(at SP).
 The CPU stops driving the data bus on the falling edge of clock #3.
Clock #4 The address latch is loaded with the current contents of the stack pointer (SP - 1), which

is pointing to the first free location on the top of the stack.
Clock #5 The stack pointer is decremented to contain SP – 2; this will be the new top of the stack.
Clock #6 The ~write signal goes active.
 The CPU starts driving the most-significant byte of the program counter out onto the

data bus.
Clock #7 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 1).
 The CPU stops driving the data bus on the falling edge of clock #7.
Clock #8 The address latch is loaded with the current contents of the stack pointer (SP - 2), which

is pointing to the first free location on the top of the stack.
Clock #9 The stack pointer is decremented to contain SP – 3; this will be the new top of the stack.
Clock #10 The ~write signal goes active.
 The CPU starts driving the contents of the status register (SR) out onto the data bus.
Clock #11 The ~write signal goes inactive.
 The most-significant byte from the program counter is stored on the top of the stack

(at SP - 2).
 The CPU stops driving the data bus on the falling edge of clock #11.
Clock #12 The address latch is loaded with the current contents of the interrupt vector (IV).
 The program counter is loaded with IV + 1.

 The Official DIY Calculator Data Book C-67

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Clock cycle summary

BSTSP

BSTX

CLRIM

CMPA

DECA

DECX

HALT

INCA

INCX

JC

JMP

JN

JNC

JNN

JNO

JNZ

ADD

ADDC

AND

BLDIV

BLDSP

BLDX

$A9 13

$09 3

$60 5 $61 10 $62 10

$81 3

$83 3

$01 3

$80 3

$82 3

$E1 *7

$C1 *7 $C2 8 $C3 12 $C4 12 $C5 13

$D9 *7

$E6 *7

$DE *7

$EE *7

$D6 *7

imp

$10 5 $11 10 $12 10

$18 5 $19 10 $1A 10

$30 5 $31 10 $32 10

$F0 7 $F1 11

$50 7 $51 11

$A0 7 $A1 11

$59 13

op # op # op # op # op # op # op #

imm abs abs-x ind x-ind ind-x

* The conditional jump instructions (JC, JNC, JN, JNN, ...) require 7 clock cycles if the test passes, but only 4

clock cycles if the test fails.

Table C-1. Clock cycle summary (continued on next page)

Legend Addressing Modes
op = Opcode
$ = Hexadecimal value
= Number of clocks required to execute the instruction

= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

C-68 Appendix C: Signal Descriptions and Timing Diagrams

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

POPA

POPSR

PUSHA

PUSHSR

ROLC

RORC

RTI

RTS

SETIM

SHL

SHR

STA

SUB

SUBC

XOR

JO

JSR

JZ

LDA

NOP

OR

$B1 5

$B2 6

$B3 6

$78 3

$79 3

$C7 10

$CF 8

$08 3

$70 3

$71 3

$99 10 $9A 10 $9B 15 $9C 15 $9D 15

$20 5 $21 10 $22 10

$28 5 $29 10 $2A 10

$40 5 $41 10 $42 10

imp

$E9 *7

$C9 13 $CA 14 $CB 18 $CC 18 $CD 19

$D1 *7

$90 4 $91 9 $92 9 $93 14 $94 14 $95 14

$00 3

$38 5 $39 10 $3A 10

$B0 5

op # op # op # op # op # op # op #

imm abs abs-x ind x-ind ind-x

* The conditional jump instructions (JC, JNC, JN, JNN, ...) require 7 clock cycles if the test passes, but only 4

clock cycles if the test fails.

Table C-1. Clock cycle summary (continued from previous page)

Legend Addressing Modes
op = Opcode
$ = Hexadecimal value
= Number of clocks required to execute the instruction

= Implied
= Immediate
= Absolute
= Indexed
= Indirect
= Pre-indexed indirect
= Indirect post-indexed

imp
imm
abs
abs-x
ind
x-ind
ind-x

Appendix D
Assembly Language Overview

D-2 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

A positive plethora of programming languages
One way in which we can feed programs and data to a computer is as a series of numerical
values; for example:

$90 $10 $99 $F0 $31 $A0 $00 $00
$92 $40 $15 $D1 $00 $00 $99 $F0

This style of representation is known as machine language or machine code, because this is
the form that is directly understood and executed by the machine (computer). Sad to relate,
machine code is a pain, and working at this level is only slightly more fun than banging your
head against a wall.

Apart from anything else, working with machine code is time-consuming and prone to error.
Humans tend to find it difficult to conceptualize things purely in terms of numbers; we much
prefer to describe things using symbolic representations consisting of words and symbols.
Thus, we would ideally prefer to describe our programs at a high level of abstraction (along the
lines of “First do this, then do that, then do....”) and then translate them into machine code for
the computer to work with (Figure D-1).

CPU

First do this
then do that
then do this
then do that

....
and so on

Higher-level code
(Source code)

01010110
10100011
11001111
01100001
10000011
10101110

Machine code
(Object code)

Translate

Figure D-1. It’s preferable to work at a higher level than machine code

1GLs: There are literally thousands of different general-purpose and special-purpose
computer programming languages. As we previously noted, at the bottom of the pile (in terms
of abstraction) we have machine code. Each type of computer (CPU) has its own machine
code, and these languages are collectively referred to as first generation languages, or 1GLs
for short (Figure D-2).

Low-levelLowest of
the low

Highest of
the high

Reasonably
high level

Very
high-level

Machine code Assembly
languages

Wide spectrum
of languages

Natural
Language

Computer languages

Incredibly
high-level

1GL 2GL 3GL 4GL 5GL

See notes See notes

Figure D-2. Varying levels of language abstraction

 The Official DIY Calculator Data Book D-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Natural languages: The highest level of abstraction we might consider here would be a
natural language, such as written English. Unfortunately, the present state of our technology
does not allow us to use a natural language for programming purposes, because such
languages contain numerous ambiguities and logical inadequacies. For this reason we use
symbolic languages, which are similar in concept to natural languages, but which are highly
formalized with regard to their syntax and semantics. In this context, the term “syntax” refers to
the grammar of the language, such as the ordering of the words and symbols in relation to
each other, while the term “semantics” refers to the underlying meaning of the words and
symbols and the relationships between the things they denote -- phew!

2GLs: One step up the evolutionary ladder from machine code is assembly language (the
focus of this appendix). In this case, mnemonics are assigned to the various instructions and
the programmer can also declare and use labels to make things easier to understand. For
example, a typical assembly language instruction might look like the following:

STORE: STA [MAINDISP]

Most assembly languages are designed to support only one computer or a family of related
computers. A special program called an assembler is used to translate the assembly source
code into its corresponding machine code. In some respects, assembly languages – which are
referred to as second generation languages (2GLs) – may be considered only a small
improvement over machine codes, but in other respects we may regard them as being a
quantum leap.

3GLs: The vast majority of today’s programming languages are classed as third generation
languages (3GLs). These medium to high-level languages are designed to be relatively easy for
a human to understand (although they still require a lot of programming knowledge) and to be
portable across multiple computers. A representative statement from this class of language
might look like the following:

for i = 1 to 10 print (i);

Some examples of this general class of language are Ada, Algol, BASIC, C, C++, COBOL,
Forth, FORTRAN, Java, Lisp, Pascal, Perl, and Prolog (to name but a few). Depending on the
language, a special program called a compiler or an interpreter is used to translate the source
code into corresponding machine code.

4GLs: A fourth-generation language (4GL) is designed to be closer to natural language than a
third-generation language. These languages are intended to reduce the time, cost, and effort
associated with programming. A good example would be a language that is designed to
interface with databases so as to ease the task of locating and extracting data. A statement
from such a language might look somewhat like the following:

Find customers whose current purchases exceed $1000

5GLs: This is where things start to get a little “fluffy” around the edges. Some folks regard fifth-
generation languages (5GLs) as comprising visual or graphical programming environments that
are used to generate 3GL or 4GL source code (this code will subsequently be translated into
machine code using appropriate 3GL or 4GL compilers or interpreters). However, other pundits

D-4 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

regard 5GLs as being textual languages that are closer to natural language than 4GLs. In this
latter scenario, these languages, which are often associated with artificial intelligence (AI)
research, are designed to make the computer determine the solution to a problem (as opposed
to 3GLs and 4GLS which are designed to create focused programs to address specific
problems). To put this another way, programmers using a fifth-generation language need only
worry about what problems need to be solved, what constraints need to be specified, and what
conditions need to be met without concerning themselves as to the nitty-gritty algorithms
actually required to solve the problems.

The DIY Calculator’s Assembly language
As we previously noted, assembly language is much easier to understand and work with than
machine code. As with any language (natural or computer), however, it’s necessary to
understand the vocabulary and the linguistic rules. Thus, the remainder of this appendix is
devoted to introducing the DIY Calculator’s assembly language (where any particularly pertinent
points will be proffered with a pointing finger character).(1)

Statements
Just as one of the fundamental building blocks of a natural language is a group of words in the
form of a sentence, the equivalent construct in a computer language is called a statement. For
the purposes of the DIY Calculator’s assembly language, we may regard a statement as
encompassing a single thought or idea. An assembly source file is composed of a series of
these statements, each of which typically consists of four fields (Figure D-3).

��
��
��

 Source file

Label Operation Operand Comment

Statement

Figure D-3. Statements typically consist of four fields

 Many computer languages (including some assembly languages) allow statements to span

multiple lines, in which case they would be terminated by a special character such as a
semicolon. In the case of our simple language, however, a statement may only occupy a single
line and is terminated by a carriage return <cr> character (which equates to the key marked
“Enter” or “Return” on your keyboard).

 The majority of the early assembly languages had extremely restrictive rules, such as specifying
the columns in which each field must commence. By comparison, our syntax is relatively free-
format – you can use as many whitespace (<tab> and <space>) characters and be as messy
as you wish. Having said this, we strongly recommend that you keep your source code as neat
and tidy as possible. You can follow the style we use in our examples or feel free to develop your

1A formal syntax definition of the DIY Calculator’s assembly language is provided in Appendix E.

 The Official DIY Calculator Data Book D-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

own; but whatever you do, try to be as consistent as possible – you’ll find that consistency pays
dividends in the long run when you return to blow the dust off a neglected source code file some
time in the future.

 Many early assemblers allowed source files to be created using only uppercase characters. In
the case of our language you may use uppercase, lowercase, or a mixture of both. However,
for the purposes of its machinations, our assembler internally converts everything to uppercase,
which means that it will consider labels such as fred, Fred, FrEd and FRED to be identical.

Comments and blank lines
Generally speaking it’s a good idea to liberally sprinkle your assembly source with comments,
and to distinguish logically distinct portions of your program with blank lines. Hopefully, this will
mean that when you return to your source code in the future, you will actually have a clue as to
what’s going on. Some authorities hold that it isn’t possible to have too many comments, but if
you’re too extravagant it can be difficult to locate your program amongst the commentary.
Ultimately it’s a matter of personal choice — it’s up to you to find a style you like and stick to it
(Figure D-4).

This is a program wot wos wrote on 3rd day of Grunge in
the year of the lesser-spotted Mugwump (if we're lucky
it will flash our 6-bit LED display).

LEDS: .EQU $F032 # $F032 is the address of the output
port driving the 6-bit LED display

 .ORG $4000 # Start of program is address $4000
 LDA $03 # Initialize the ACC

Figure D-4. Comments and blank lines

 A comment can occur anywhere on a source line and commences with a hash ‘#’ character

(this character is also often referred to as a number sign, pound sign, or a sharp). The hash
character may be followed by any printable text characters (including spaces, tabs, and other
hashes). A comment is terminated by a carriage return <cr> character (once again, this
equates to the key marked “Enter” or “Return” on your keyboard).

Label names
Our assembly language supports two kinds of labels, which are referred to as constant and
address labels. We will examine the differences in the way these labels are used in a little while;
for the moment we need only note that they have identical naming conventions (Figure D-5).

LEDS: .EQU $F032 # "LEDS" is a constant label
.ORG $4000 # Start of program is address $4000

 LDA $03 # Initialize the ACC
LOOP: STA [LEDS] # "LOOP" is an address label

Figure D-5. Label names

D-6 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Both types of label can consist of a mixture of alphabetic, numeric, and underscore ‘_’
characters, but the first character must be either an alpha or an underscore (not a number).

 When a label is declared, it is terminated with a colon ‘:’ character, but this character doesn’t
form part of the label’s name, and is not used thereafter.

 The maximum length of a label name is eight characters. This includes any underscores, but
excludes the colon ‘:’ character used to terminate the label.

 Labels can include both uppercase and lowercase characters, but the assembler internally
converts everything to uppercase, so it will consider labels such as fred, Fred, FrEd and
FRED to be identical.

 RET_ADDR: # Legal and useful, because just by reading it
 # you get the picture "return address"

 BIG_BOY: # Legal, but not very indicative of its function

 _LOOP1: # Legal, but we recommend that you don't start
 # your labels with underscore characters

 1ST_LOOP: # Illegal, can't start with a numeric character

LOOP_FIVE: # Illegal, can't have more than 8 characters

 LDA: # Illegal, this is one of our reserved words

Figure D-6. Legal and illegal label names

 In this last example, note that labels cannot be the same as any of our reserved words. These

include directive mnemonics, instruction mnemonics, and also the special reserved word “X” (a
complete list of reserved words is provided in Appendix E).

The .ORG and .END directives
In addition to standard instructions, our assembly language supports special instructions to
direct the assembler to do certain things. These special instructions may be referred to as
pseudo-instructions or directives (because they direct the assembler). Every program must
contain at least two directives: the .ORG and the .END (Figure D-7).

Any declaration statements come here (before the .ORG)

 .ORG $4000 # Start of program is address $4000

The statemants forming the body of the program go here

 .END # Tells the assembler to stop here

Anything appearing after the .END will be ignored

Figure D-7. The .ORG and .END directives

 The Official DIY Calculator Data Book D-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 The .ORG directive instructs the assembler as to the origin of the program; that is, the memory
location into which it should place the program’s first byte. Thus, this directive must have an
operand in the form of a number (as shown here) or a constant label from a declaration
statement (as described below).

 The .END directive simply informs the assembler that it’s reached the end of the program; thus,
this directive does not require any operand.

 Neither the .ORG or .END directives are allowed to have labels associated with them.

The .EQU directive
Another directive is the .EQU, which stands for “equates to.” This directive appears in declaration
statements, which are used to declare constant values for later use (Figure D-8).

Translate
(Assemble)FRED: .EQU $3020

BERT: .EQU $1034
JOHN: .EQU FRED + BERT
 .ORG $4000

 LDA [JOHN]

$4000 $91
$4001 $40
$4002 $54

LDA

Figure D-8: The .EQU directive

 If declaration statements are used, they must appear before the .ORG directive at the beginning

of the program.

 Each .EQU directive must have a label assigned to it. These constant labels may be used
in the body of the program instead of literal (numerical) values. When the assembler is
assembling the program, it will automatically substitute any constant labels in the body
of the program with their numerical equivalents. For example, the assembler will automatically
substitute JOHN in the LDA instruction in the above example for the numerical value $4054.

 With regard to the previous point, note that constant labels are used only by the assembler, and
they don't appear in (or occupy any space in) the resulting machine code. Also note that
constant labels can be used to represent addresses, data, or both (this will be discussed in
more detail a little later).

 The assignment to an .EQU statement may be presented in the form of an expression, as
is illustrated by the assignment to JOHN in the above example (expressions are introduced in
more detail below). However, it is important to note that forward-referencing is not allowed; that
is, JOHN is allowed to reference FRED and BERT, because they’ve already been declared, but
BERT isn’t allowed to reference JOHN, while FRED isn’t allowed to reference either BERT or JOHN.

The .BYTE, .2BYTE, and .4BYTE directives
The .BYTE, .2BYTE, and .4BYTE directives are used in reserve statements to set aside
(reserve) memory locations for later use. Not surprisingly, the .BYTE directive reserves a single
byte, the .2BYTE directive reserves two bytes, and the .4BYTE directive reserves well,
we’ll leave that as an exercise for the reader (Figure D-9)

D-8 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

 .ORG $4000
TMPA: .4BYTE
TMPB: .2BYTE
TMPC: .BYTE

 LDA $03
 STA [TMPC]

$4000 $XX
$4001 $XX
$4002 $XX
$4003 $XX
$4004 $XX
$4005 $XX
$4006 $XX
$4007 $90
$4008 $03
$4009 $99
$400A $40
$400B $06

TMPA

TMPB

TMPC

LDA

STA

Figure D-9. The .BYTE, .2BYTE, and .4BYTE directives

 If reserve statements are used, they must appear in the body of the program; that is, between

the .ORG and .END directives. Purely for the purposes of this example, we’ve shown the reserve
statements as appearing immediately after the .ORG directive. However, although this is perfectly
legal, it means that we can’t run the program from address $4000, but instead have to remember
to run from address $4007. Thus, in a real program, it would be more common to find reserve
statements hanging around toward the end of the program instead of the beginning.

 Each reserve statement may have an optional label assigned to it. These address labels may
be used in the body of the program instead of literal (numerical) values. When the assembler is
assembling the program, it will automatically substitute numerical equivalents for any address
labels in the body of the program. For example, the assembler will automatically substitute
TMPC in the STA instruction for the address $4006, which is the location the assembler decided
to reserve for this byte.

 If a label is used with a .2BYTE or a .4BYTE directive, then the address the assembler
associates with that label will correspond to the first byte of that field. Thus, in the case of this
example, the assembler associates the labels TMPA, TMPB, and TMPC with addresses $4000,
$4004, and $4006, respectively.

 With regard to the previous points, labels are optional with these directives, because we may
not always require the ability to individually reference every location set aside by a reserve
statement. This is due to the fact that we can reference one location as an offset from another
location (Figure D-10).

Translate
(Assemble)

 .ORG $4000
TMP: .2BYTE
 .BYTE
 LDA $03

STA [TMP + 2]

$4000 $XX
$4001 $XX
$4002 $XX
$4003 $90
$4004 $03
$4005 $99
$4006 $40
$4007 $02

.2BYTE (TMP)

.BYTE

LDA

STA

Figure D-10. Referencing one location as an offset from another location

 The Official DIY Calculator Data Book D-9

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

In the example shown in Figure D-10, we first reserve a 2-byte field using a .2BYTE directive
with a label of TMP, and we immediately follow this by reserving a 1-byte field using a .BYTE
directive without a label. From our previous discussions, we know that the assembler will
associate the label TMP with the address of the first location in the 2-byte field (which happens
to be address $4000). Thus, even though the 1-byte field doesn’t have a label of its own, we
can still reference it using “TMP+2”.

When writing a program, it is often necessary to reserve a number of consecutive memory
locations. As an alternative to painstakingly reserving locations individually, the .BYTE,
.2BYTE, and .4BYTE directives support an optional operand in the form “*n”, where ‘n’ is any
expression that resolves into a positive integer. For example, let’s suppose that we wish to
reserve three 1-byte fields and two 2-byte fields (Figure D-11).

Translate
(Assemble)

FRED: .EQU $03
 .ORG $4000
TMPA: .BYTE *FRED
TMPB: .2BYTE *$02
 LDA $42

$4000 $XX
$4001 $XX
$4002 $XX
$4003 $XX
$4004 $XX
$4005 $XX
$4006 $XX
$4007 $90
$4008 $42

LDA

Three 1-byte
fields

Two 2-byte
fields

Figure D-11. Reserving multiple locations

Purely for the purpose of these discussions, we start by assigning the numerical value $03 to
the constant label FRED. Thus, when the assembler comes to consider the reserve statement
associated with the address label TMPA, it will replace the “*FRED” with “*$03” and reserve
three 1-byte fields. Similarly, when the assembler comes to consider the reserve statement
associated with TMPB, it will understand that we’re instructing it to reserve two 2-byte fields (it’s
just that we’re being a bit more explicit in this case).

As usual, the labels will be associated with the first byte in their corresponding groups; thus, the
assembler will associate TMPA with address $4000 and TMPB with address $4003. Also,
although we’ve not illustrated this point here, note that the ‘n’ in “*n” can be a full-blown
expression. For example, assuming that we’re still using FRED from the previous example, the
statement “.BYTE *(FRED + 5)” would reserve eight bytes of memory (expressions are
discussed in more detail later in this appendix).

All of the machine code resulting from the reserve statement examples we’ve considered thus
far has been shown as containing $XX values, which indicate that we have not defined the
contents of these locations. As it happens, our assembler will automatically cause these
undefined locations to contain zero values, but that’s beside the point. In fact the DIY
Calculator’s assembler allows us to associate values with these locations as a comma-
separated list (Figure D-12).

D-10 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

 .ORG $4000
TMPA: .BYTE $42, $23, $7
TMPB: .2BYTE $1046, $12
 LDA $77

$4000 $42
$4001 $23
$4002 $07
$4003 $10
$4004 $46
$4005 $00
$4006 $12
$4007 $90
$4008 $42

LDA

Three 1-byte
fields

Two 2-byte
fields

Figure D-12. Assigning values in reserve statements

Once again, the labels will be associated with the first byte in their corresponding groups; thus,
the assembler will associate TMPA with address $4000 and TMPB with address $4003. Observe
that, as we promised, the assembler accepts the values in the comma separated lists and
inserts them into the appropriate locations. Note that the assembler will automatically zero-fill
numbers to the requisite size, so the $7 in this example is automatically coerced to $07
because it’s being assigned to a 1-byte field, while the $12 is automatically coerced to $0012
because it’s being assigned to a 2-byte field (we’ll return to consider this aspect of things in
more detail in a little while).

Also note that any numbers assigned to multi-byte fields associated with .2BYTE and .4BYTE
directives will be stored with their most-significant byte first. This style of storage is referred to
as big-endian because we’re storing the numbers “big-end-first”. (Some computers store multi-
byte values using a little-endian technique, in which the least-significant byte is stored first.
These terms were derived from the part of the tale in Gulliver’s Travels (written by Jonathan
Swift in 1726) whereby two countries go to war over which end of a hard-boiled egg should be
eaten first – the big end or the little end!) Finally, although we’ve not illustrated this point here,
each of the values in these comma-separated lists could be a full-blown expression
(expressions are discussed in more detail later in this appendix).

Literals (binary, decimal, and hexadecimal values)
Thus far, all of our examples have employed hexadecimal numbers, because this is the base
we’ve used predominantly throughout this book. However, it is sometimes more appropriate to
use numbers with other bases to better clarify the intent of the program. For this reason, the
DIY Calculator’s assembly language supports binary, decimal, and hexadecimal values
(Figure D-13).

Translate
(Assemble)

 .ORG $4000
TMPA: .BYTE $9D
TMPB: .BYTE %10011101
TMPC: .BYTE 157
TMPD: .BYTE -99
 LDA $42

$4000 $9D
$4001 $9D
$4002 $9D
$4003 $9D
$4004 $90
$4005 $42

LDA

TMPA
TMPB
TMPC
TMPD

Figure D-13. Binary, decimal, and hexadecimal values

 The Official DIY Calculator Data Book D-11

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Binary values are prefixed with a ‘%’ character; hexadecimal values are prefixed with a
‘$’ character; decimal values have no prefix at all.

 Space characters are not permitted between ‘%’ or ‘$’ characters and their respective numbers.
Also, decimal values are not permitted to contain commas or any other characters, so 32565 is
legal, but 32,565 is not.

The example shown in Figure D-13 commences by reserving four 1-byte fields called TMPA,
TMPB, TMPC, and TMPD, and assigning them values in hexadecimal, binary, decimal, and
decimal (again), respectively. You will note that all of these values actually result in identical bit-
patterns when they are translated into machine code (which is, of course, why we selected
them in the first place). Note especially the negative value assigned to TMPD, where the unary
minus operator instructs the assembler to take the twos complement of 99, resulting in the
same value as all of the other 1-byte fields.

The reason why we emphasized “1-byte fields” in the preceding paragraph is that the assembler
actually represents every number as a 4-byte field internally, and it only considers them as being
1-byte or 2-byte fields when it comes to assign them to reserve statements or to use them as
operands for instructions (Figure D-14).

Translate
(Assemble)

BERT: .EQU $2E
FRED: .EQU $A563
 .ORG $4000
 LDA BERT
 LDA FRED & $FF
 LDA FRED

$4000 $90
$4001 $2E
$4002 $90
$4003 $63
$4004 $90
$4005 $!!

FAIL!!

2nd LDA

1st LDA

Figure D-14. The assembler checks the size of the target destination

In this case, the first LDA instruction passes the assembler’s scrutiny without any problems,
because the constant BERT being loaded into the accumulator was only assigned an 8-bit
value, which has no trouble fitting into the CPU’s 8-bit accumulator. The second LDA instruction
is more interesting, because FRED was originally assigned a 16-bit value. However, this is an
example of an expression using the logical AND operator ‘&’, in which the $FF is used as a
mask to extract FRED’s least-significant byte (this is discussed in more detail below). Finally,
the third LDA would cause the assembler to issue an error message, because it can’t squeeze
the un-masked 16-bit value assigned to FRED into the CPU’s 8-bit accumulator.

The concept of expressions will be introduced shortly, but as we’ve opened this can of worms
here, it behooves us to explain why the second LDA in the above example passed muster.
Remember that the assembler internally regards every number as a 4-byte field, and it’s only
when it comes to assign a value to a target destination that it checks to see whether the value
will fit. Also, don’t forget that we’re the ones who are defining what our assembly language
looks like, and we’ve decided that our language should support simple expressions. So in the
case of the second LDA instruction, we’ve decided that when our assembler sees an expression
like “FRED & $FF”, it will perform a logical AND operation between the two values (Figure D-15).

D-12 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

00000000 00000000 10100101 01100011

00000000 00000000 00000000 11111111

FRED = $A563 (so 4-byte value = $0000A563)

$FF (so 4-byte value = $000000FF)

&

00000000 00000000 00000000 01100011

Result = $00000063

Figure D-15: Pictorial representation of the assembler performing

an internal logical AND function on two 4-byte values

First, the 2-byte value assigned to FRED is zero-filled by the assembler to boost it up to its 4-byte
value of $0000A563, while the $FF value is zero-filled to its 4-byte value of $000000FF. The
logical AND operator (‘&’ in our assembly language) is a bit-wise operator (it performs its actions
on a bit-by-bit basis) that functions in a similar manner to the logical AND in the DIY Calculator’s
instruction set. To put this another way, the least-significant bit of the first number is AND-ed
with the least-significant bit of the second number to give the least-significant bit of the result,
and so on for all of the other bits.

Now, the way in which an AND works is that its output is only logic 1 if both of its the inputs are
logic 1, so the three most-significant bytes of the result are forced to zero by the six 0’s in the
$000000FF value. The outcome of all of this is that only the least-significant eight bits of the
result contain a value, which will therefore fit into our 8-bit accumulator.

Expressions
Ah, so finally we arrive at the topic of expressions, which can be exceptionally useful as long as
we quickly establish who’s in charge us (hopefully) or the expressions (if we turn our backs
on them). The trick is to look them straight in the eye and show no fear! First of all, we have
decided that our assembly language should support the following selection of binary operators:

 Arithmetic: + Add Logical: & AND
 – Subtract | OR
 * Multiply ^ Exclusive-OR
 / Divide

 We call these “binary operators,” because each of them requires two operands to work with; for
example, in the case of the expression “6 + 3” we see two operands (numbers), one on either
side of the operator.

 The operands in expressions can be a mixture of numbers (binary, decimal, and hexadecimal)
and labels; for example, assuming that BERT has been declared as a label, the expression
“BERT & %11001100” is perfectly acceptable.

 Our language only supports integer expressions, which are expressions involving whole
numbers. Thus, “BERT * 3” is legal, while “BERT * 3.5” is not.

 The Official DIY Calculator Data Book D-13

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

 Any remainder from a division operation will be automatically discarded by the assembler
without any error messages being issued. Similarly, the assembler will not report any errors if
the actions from addition, subtraction, and multiplication operations overflow or underflow the
4-byte fields it uses internally to store the results. Having said this, the assembler will make its
feelings known in no uncertain terms should you try to divide anything by zero.

 As long as they fit on a single line of source code, expressions can be of arbitrary length and
employ any mixture of arithmetic and logical operators. For example, the following is a legal
expression (assuming that BERT, JOHN, and HARRY are labels that have been declared
elsewhere in the program):

 BERT ^ 2 * JOHN & $A5 / HARRY

 With regard to the previous point, all of our binary operators have equal precedence, and
expressions are evaluated from left to right. What does this mean? Well, consider the following
example:
 At school we’re taught that: 6 * 3 + 5 * 4 = 38
 But, in our assembly language: 6 * 3 + 5 * 4 = 92

Eeeek! How can this be? Well, at school we are taught that multiplication and division have a
higher precedence (are more powerful) than addition or subtraction. This means that we usually
evaluate expressions by first performing any multiplications and divisions and then performing
any additions and subtractions. Thus, in the first portion of the above example, we’d multiply 6
by 3 to get 18, multiply 5 by 4 to get 20, then add the 18 and 20 to generate the final result of 38.

Had we so wished, we could easily have decided to make our language (and therefore our
assembler) work in just this way. However, we decided that you need to broaden your horizons,
because it’s common for simple programs (like our assembler) to treat all of the binary operators
as having equal precedence (being equally powerful) and, as we already noted, to evaluate
expressions from left to right. This means that in the case of our language, we would solve this
expression by multiplying 6 by 3 to get 18, then adding 5 to get 23, and then multiplying by 4 to
generate a final result of 92.
Although this may seem to be a pain, it’s really just another way of looking at the world and you’ll
soon learn to get used to it – let’s face it, what other choice do you have? Actually, there are
options open to you, because you can use parenthesis to force your expressions to evaluate in
any order you like; for example, if you were to write your expression as “(6 * 3) + (5 * 4)”, then
the assembler will evaluate the contents of any parenthesis before moving on to the rest of the
expression.
Note that it’s possible to nest parenthesis within each other, but that each ‘(‘ must have a
corresponding ‘)’. For example, in addition to being legal, “(((6 * 3) + 5) * 4)” would force the
assembler to evaluate the expression in exactly the same order as if the parenthesis weren’t
there at all (from left to right), while “(6 * (3 + (5 * 4)))” would force the assembler to evaluate the
expression in reverse order (from right to left).

Generally speaking you’ll find that most of the expressions you create will be short, sweet,
and to the point; but even simple expressions can be incredibly useful. Expressions can be
employed in a variety of roles, including assignments to .EQU statements, modifying data
values, and calculating addresses. Consider an example involving expressions in .EQU
statements (Figure D-16).

D-14 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

JOE: .EQU 5
SAM: .EQU 2
BEN: .EQU JOE * SAM
TED: .EQU BEN - 7
 .ORG $4000
 .BYTE TED
 .BYTE *TED
 LDA BEN
 JMP [BEN]

$4000 $03
$4001 $XX
$4002 $XX
$4003 $XX
$4004 $90
$4005 $0A
$4006 $C1
$4007 $00
$4008 $0A

LDA

2nd .BYTE

1st .BYTE

JMP

Figure D-16. Using expressions in .EQU statements

 Remember that our language does not support forward-referencing in .EQU statements, which

means that BEN can reference JOE and SAM because they’ve already been declared; TED can
reference BEN because that’s already been declared; but BEN could not reference TED, SAM could
not reference BEN or TED, and JOE could not reference SAM, BEN, or TED.

It shouldn’t take you too long to work out that the value assigned to BEN is 10 (or $A in hexa-
decimal), while the value assigned to TED is 3 (or $3 in hexadecimal). As we see, we directly
assign the value represented by TED to our first .BYTE statement, so the assembler will store
$03 in address $4000 (note that the assembler adds a leading zero to pad the value to 8 bits).
In the second .BYTE statement we use TED in a different role, because the construct “*TED”
instructs the assembler to set aside a number of bytes equal to TED, which appear at addresses
$4001 through $4003. Note that the assembler would actually load these bytes with default $00
values, but we’ve shown them as containing $XXs to indicate that we didn’t explicitly assign
these values.

Next we use BEN as the data to be loaded into the accumulator from the LDA instruction in its
immediate addressing mode. The $90 at address $4004 is the opcode for the LDA, while the
$0A at address $4005 is the value that was in BEN. As usual, the assembler adds a leading
zero to pad this data value to eight bits. Finally, we use BEN as the target address for a JMP
instruction in its absolute addressing mode. The $C1 at address $4006 is the opcode for the
JMP, while the $000A stored in addresses $4007 and $4008 is the value that was in BEN. In
this case, the assembler automatically adds three leading zeros to pad the address value to
sixteen bits.

The above example used the results from a previously-calculated expression in the role of a
data value and an address. In fact, we can also use expressions directly in data and address
fields in the body of the program (Figure D-17).

 Unlike the expressions in .EQU statements, expressions in instructions can make forward
references to future address labels, such as the “JMP [YOW – 2]” statement in the example
shown in Figure D-17.

Remember that this is an artificial test case whose sole purpose is to illustrate some simple
concepts, so don’t spend an inordinate amount of time trying to wring some hidden meaning
from it, or saying “I wonder why they did it that way; wouldn’t it have been simpler to?”
Yes it would and no we didn’t!

 The Official DIY Calculator Data Book D-15

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

WOW: .EQU 7
 .ORG $4000
POW: .2BYTE $AC69
 LDA [POW + 1]
 JMP [YOW - 2]
 SUB WOW * 3
YOW: ADD WOW ^ $A

$4000 $AC
$4001 $69
$4002 $91
$4003 $40
$4004 $01
$4005 $C1
$4006 $40
$4007 $08
$4008 $20
$4009 $15
$400A $10
$400B $0D

JMP

LDA

.2BYTE
(POW)

ADD
(YOW)

SUB

Figure D-17. Expressions in instruction statements

The first thing we do in this program is to declare a 2-byte field called POW, and load it with the
number $AC69 (the value that appears in addresses $4000 and $4001). As we know, our
assembler will consider POW to be associated with $4000, which is the address of the first byte
in this 2-byte field. Thus, the statement “LDA [POW + 1]” (which is an LDA using its absolute
addressing mode) is understood by the assembler to mean “LDA [$4000 + 1]”, or “LDA
[$4001]”. This means “Load the accumulator with the contents of address $4001”, so when
we run the program (starting with the first real instruction at address $4002, of course), the
accumulator will be loaded with $69.

Now glance at the end of this program segment, where we associate the label YOW with an
ADD instruction. Our assembler will consider YOW to be associated with $400A, which is the
address of the first byte in this 2-byte instruction. Thus, the “JMP [YOW – 2]” statement is
understood by the assembler to mean “JMP [$400A – 2]”, or “JMP [$4008]”. By some
strange quirk of fate, this happens to be the address of the first byte in the SUB instruction.
(This means that our program would do exactly the same things (functionally speaking) if we
chopped the JMP statement right out of it!)(2)

At the bottom of this program snippet are the SUB and ADD instructions. Both are using their
immediate addressing modes and both employ expressions to calculate their data values. The
“SUB WOW * 3” statement is understood by the assembler to mean “SUB 7 * 3”, or “SUB 21”
(“subtract 21 from the current contents of the accumulator”). The $20 at address $4008 is the
opcode for this instruction, while the $15 at address $4009 is the hexadecimal equivalent of 21.
Similarly, the “ADD WOW ^ $A” statement is understood by the assembler to mean “ADD 7 ^ $A”
(where ‘^’ is the exclusive OR operator), which boils down to “ADD $0D” (“add $0D to the current
contents of the accumulator”). Thus, the $10 at address $400A is the opcode for this
instruction, while the $0D at address $400B is the value to be added.

In common with many other assembly languages, our language includes a special symbol in its
syntax that allows you (well, the assembler, really) to access the value that the program counter
would contain at any particular point in the code. The symbol we decided to use is the ‘@’
character, and an example of its use is illustrated in Figure D-18.

2Note the cunning use of nested parenthesis in this sentence. Our English teachers might not approve, but
did they ever?

D-16 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

 .ORG $4000
HAT: .2BYTE $AC69
 LDA [@ - 2]
 JMP [@ + 5]
 SUB $15
MAT: ADD $0D

$4000 $AC
$4001 $69
$4002 $91
$4003 $40
$4004 $00
$4005 $C1
$4006 $40
$4007 $0A
$4008 $20
$4009 $15
$400A $10
$400B $0D

JMP

LDA

.2BYTE
(HAT)

ADD
(MAT)

SUB

Figure D-18. Using the ‘@’ symbol

When the assembler sees the ‘@’ character, it substitutes it with the address of the first byte (the
opcode byte) in that instruction. Thus, as the first byte of the LDA instruction occurs at address
$4002, the assembler will understand the statement “LDA [@ – 2]” to mean “LDA [$4002 – 2]”
or “LDA [$4000]”. Similarly, as the first byte of the JMP instruction occurs at address $4005, the
assembler will understand “JMP [@ + 5]” to mean “LDA [$4005 + 5]” or “LDA [$400A]”. Note,
however, that the ‘@’ symbol can only be used in expressions in the body of the program, but it
has no meaning in declaration (.EQU) statements.

Last but not least, it would be extremely remiss of us if we failed to mention that the DIY
Calculator’s assembly language supports two unary operators: the unary minus ‘–’ and the
unary negation ‘!’. (The exclamation mark we used to represent the unary negation is often
referred to as a bang, ping, or shriek). The reason these are referred to as “unary operators” is
that they only require a single operand upon which to work their magic (Figure D-19).

Translate
(Assemble)

 .ORG $4000
 LDA 53
 ADD -53

SUB !53

$4000 $90
$4001 $35
$4002 $10
$4003 $CB
$4004 $20
$4005 $CA

LDA

ADD

SUB

Figure D-19. The unary operators ‘–’ and ‘!’

 The unary operators are associated with the value immediately to their right, where said value

can be a numeric literal (in binary, decimal, or hexadecimal) or a label. Note that space
characters are not allowed between a unary operator and its associated value.

 Both of the unary operators have a higher precedence than the binary operators. This means
that in expressions containing a mixture of unary and binary operators, the effects of the unary
operators will be evaluated first. For example, in the expression “TOM + !BERT”, the unary
negation will be applied to BERT and the result will be added to TOM. Similarly, in the
expression “!TOM + BERT”, the unary negation will be applied to TOM and the result will be

 The Official DIY Calculator Data Book D-17

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

added to BERT. We can, of course, use parenthesis to force the issue, so if we wanted to add
TOM to BERT and then negate the result, we could do so using “!(TOM + BERT)”.

By some weird and wonderful coincidence, the $35 shown in address $4001 in Figure D-19 is
the hexadecimal equivalent of 53 in decimal, which is the data value associated with the LDA
instruction. In the case of the ADD instruction, the unary minus ‘–’ takes the two’s complement
of 53, resulting in the $CB value at address $4001. By comparison, in the case of the SUB, the
unary negation takes the one’s complement of 53, resulting in the $CA value at address
$4003.(3) This leads to an interesting point, which is related to the fact that the assembler
stores all of its values in 4-byte fields. Consider how the assembler views these three values
as it’s manipulating them (Figure D-20).

00000000 00000000 00000000 00110101

11111111 11111111 11111111 11001011

11111111 11111111 11111111 11001010

= $00000035 (= 53 in decimal)

= $FFFFFFCB (= -53 in decimal)

= $FFFFFFCA (= !53 in decimal)

Bit 0Bit 7Bit 15

Figure D-20. How the assembler views the effects of the unary operators.

We know that the ADD and SUB instructions shown in Figure D-19 expect 8-bit data values for
their immediate addressing modes. We also know that the assembler will issue an error
message if a number is too big to fit into its target destination. However, although both of the
values resulting from the unary operations in this example leave the three most-significant bytes
of the assembler’s 4-byte fields packed to bursting with 1s, we seem to be implying that the
assembler will let them slip past without so much as raising a metaphorical eyebrow. Strange
things are afoot indeed.

As it happens, there’s a reasonably simple explanation for all of this (thank goodness). Like the
heroes who paved the way before us, we decided that we wish to be able to assign negative
numbers as data values in our language, but we also recognized that this might cause the
assembler to “throw a wobbly.” In order to solve this conundrum, we created the assembler in
such a way that we might imagine it using the following reasoning:

“Hmmm, I’m supposed to assign this value to an 8-bit field, but the three most-
significant bytes of my internal 4-byte field contain non-zero values, which suggests
that these numbers are too big. Perhaps I ought to issue a warning message?

But just a moment, let’s look at this from another point of view. If the most-significant
bit of the least significant byte (bit 7) is a logic 1, and if all of the bits in the three
most significant bytes are also logic 1s, then I’d be justified in assuming that this is a
negative number, in which case I can just use the least-significant byte, ignore the
three most-significant bytes, and a nod’s as good as a wink to a blind fruit bat.”

3The concepts of ones, twos, nines, and tens complements are discussed in excruciating detail in our
book How Computers Do Math.

D-18 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

And, in fact, this is just what our assembler does. Of course this means that things can mess up
sometimes, but this would be a classic case of “Let the programmer beware!”

Last but not least, if the assembler is trying to assign one of these values to a 16-bit field, it
essentially follows the same procedure, except that in this case it looks to see if bit 15 is a logic
1 and if all of the bits in the two most-significant bytes are logic 1s.

Instructions and addressing modes
Cease that nervous twitching and sit up straight, because this is the last section in the language
specification and it’s quite possibly the easiest one of all. As we discussed in Appendix A, the
DIY Calculator’s CPU supports a variety of addressing modes. Thus, our assembly language
requires some way of distinguishing which mode we’re trying to use, especially since some
instructions can employ more than one mode.

The implied addressing mode: The simplest mode of all is the implied addressing mode, in
which the instruction only requires a single byte for the opcode and there are no operand bytes.
For example, consider a SHL (“shift left”), which instructs the CPU to shift the contents of the
accumulator left by one bit (Figure D-21).

Translate
(Assemble)

 .ORG $4000
 LDA $35
 SHL

$4000 $90
$4001 $35
$4002 $70

LDA

SHL

Figure D-21. The implied addressing mode

Note that the only reason we included an LDA instruction in this example is that we need
something to be the accumulator before we can do anything with it. The point we’re trying to
make here is that instructions like SHL that use the implied addressing mode don’t have an
operand in the source (assembly) code and they occupy only a single byte in the object
(machine) code.

 Instructions that support the implied addressing mode are CLRIM, DECA, DECX, HALT, INCA,
INCX, NOP, POPA, POPSR, PUSHA, PUSHSR, ROLC, RORC, RTI, RTS, SETIM, SHL, and SHR.

The immediate addressing mode: In the case of the immediate addressing mode, the data
to be used is directly associated with the instruction. Such instructions occupy two bytes: one
for the opcode and one for the data (Figure D-22).

Translate
(Assemble) .ORG $4000

 LDA $35
$4000 $90
$4001 $35

LDA
(immediate)

Figure D-22. The immediate addressing mode

 Instructions that support the immediate addressing mode are ADD, ADDC, AND, CMPA, LDA, OR,
SUB, SUBC, and XOR.

 The Official DIY Calculator Data Book D-19

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

The “big immediate” addressing mode: This mode is very similar to the standard
immediate mode, in that the data to be used is directly associated with the instruction. We
decided to distinguish between these modes because, unlike the LDA which loads an 8-bit
accumulator, certain instructions are used to load 16-bit registers, such as the stack pointer
(SP), the index register (X), and the interrupt vector (IV). Thus, these instructions occupy
three bytes, one for the opcode and two for the data (Figure D-23).

Translate
(Assemble) .ORG $4000

 BLDX $A7F3
$4000 $A0
$4001 $A7
$4002 $F3

BLDX
(immediate)

Figure D-23. The “big immediate” addressing mode

 All of the “big” instructions (those that involve 16-bit registers) are distinguished by the fact that

the first letter in their mnemonics is ‘B’ for “Big” (how subtle can you get?). Instructions that
support the “big immediate” addressing mode are BLDSP, BLDX, and BLDIV.

The absolute addressing mode: Unlike the immediate addressing mode, in which the
instruction’s operand represents a data value, the operand for an absolute instruction is a
2-byte address. Thus, these instructions occupy three bytes, one for the opcode and two for
the address (Figure D-24).

Translate
(Assemble) .ORG $4000

 LDA [$4ED2]
$4000 $91
$4001 $4E
$4002 $D2

LDA
(absolute)

Figure D-24. The absolute addressing mode

 The absolute mode is distinguished from the immediate mode in the assembly source file by

enclosing the operand in square brackets ‘[‘ and ‘]’. We decided to use square brackets
because they visually imply a memory location. Thus, “LDA [$4ED2]” means “Load the
accumulator with the data value that will be found in the memory location at address $4ED2.”

 “Big” absolute instructions (such as BLDX) use the same format as do standard absolute
instructions (such as LDA). In the case of the “big” instructions, however, the assembler – and
the CPU – understands that the 2-byte address operand actually points to the first byte of data
in a 2-byte field.

 Instructions that support the absolute (and “big” absolute) addressing mode are ADD, ADDC,
AND, BLDSP, BLDX, BLDIV, BSTSP, BSTX, CMPA, JC, JNC, JN, JNN, JO, JNO, JZ, JNZ, JMP,
JSR, LDA, OR, STA, SUB, SUBC, and XOR.

The indexed addressing mode: The indexed addressing mode is very similar to the
absolute mode, not the least that these instructions also occupy three bytes, one for the opcode
and two for the address (Figure D-25).

D-20 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Translate
(Assemble)

 .ORG $4000
 BLDX $0001

LDA [$4ED2,X]

$4000 $A0
$4001 $00
$4002 $01
$4003 $92
$4004 $4E
$4005 $D2

BLDX
(immediate)

LDA
(indexed)

Figure D-25. The indexed addressing mode

 The indexed mode is distinguished from the absolute mode in the assembly source file by

including the special keyword “X” in the square brackets; where the “X” – which is separated
from the address by a comma – is a shorthand mnemonic for “indeX register.” As you may
recall, we previously noted that you couldn’t use “X” as the name for a label because it was one
of our reserved words now you know “Y” (“why” – get it? – come on, work with us on this).

Observe that the target address ($4ED2) in the machine code associated with the LDA using
the absolute addressing mode in Figure D-24 is identical to the target address associated with
the LDA using the indexed addressing mode in Figure D-25.

However, when the CPU sees the $91 opcode in Figure D-24, it understands that this version of
the LDA instruction is using the absolute addressing mode, which means the following two
bytes contain the absolute address of the data to be loaded. By comparison when the CPU
sees the $92 opcode in Figure D-25, it understands that – after reading the 2-byte address in
the following two bytes – it has to internally add the current contents of the index register to this
address, and to then use this modified address to point to the target location containing the
data (or into which it should write the data in the case of a store instruction).

Thus, the CPU understands “LDA [$4ED2,X]” to mean “Load the accumulator with the data
value that will be found in the memory location generated by adding the current contents of the
index register to address $4ED2.”

 Instructions that support the indexed addressing mode are ADD, ADDC, AND, CMPA, JMP, JSR,
LDA, OR, STA, SUB, SUBC, and XOR.

The indirect addressing mode: When we play with the indirect addressing mode, we’re
really starting to cook on a hot stove (Figure D-26).

Translate
(Assemble) .ORG $4000

 LDA [[$4ED2]]
$4000 $93
$4001 $4E
$4002 $D2

LDA
(indirect)

Figure D-26. The indirect addressing mode

 The whole point of an instruction using the indirect mode is that its operand is not an address

that points to the data, but rather an address that’s pointing to a second address, where this
second address is the one that points to the data. Purely for aesthetic reasons, we decided to
describe this in our source file using pairs of square brackets (“[[“ and “]]”), which we
understand to mean “an address pointed to by an address.” Thus, “LDA [[$4ED2]]” means

 The Official DIY Calculator Data Book D-21

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

“Load the accumulator with the data value that will be found in the memory location that’s
pointed to by a 2-byte address whose first byte is at address $4ED2” (try saying that ten times
quickly without taking a breath).

 Instructions that can support the indirect addressing mode are JMP, JSR, LDA, and STA. Note
that there’s no reason why other instructions such as ADD, SUB, AND, and OR should not be
equipped with an indirect addressing mode (other than the fact that when we were designing the
DIY Calculator’s CPU, we made the decision to not implement this mode for these instructions).

The pre-indexed indirect addressing mode: (Don’t worry, we’re almost done). As its
name might suggest, the pre-indexed indirect addressing mode is a combination of the indexed
and indirect addressing modes that we’ve already seen (Figure D-27).

Translate
(Assemble)

 .ORG $4000
 BLDX $0001

LDA [[$4ED2,X]]

$4000 $A0
$4001 $00
$4002 $01
$4003 $94
$4004 $4E
$4005 $D2

BLDX
(immediate)

LDA
(pre-indexed

indirect)

Figure D-27. The pre-indexed indirect addressing mode

 In this case, the CPU first adds the current contents of the index register to the address it finds

in the operand bytes, and it uses this generated address to point to a second address that
actually points to the data. Thus, “LDA [[$4ED2,X]]” means “Load the accumulator with the
data value that will be found in the memory location that’s pointed to by a 2-byte address,
whose first byte is at the address generated by adding the current contents of the index register
to address $4ED2”.

 Instructions that support the pre-indexed indirect addressing mode are: JMP, JSR, LDA, and STA.

The indirect post-indexed addressing mode: Settle down and cease your whimpering
and whining ... this is the very last one. Once again, as its name might suggest, the indirect
post-indexed addressing mode is a combination of the indirect and indexed addressing modes
that we’ve already seen (Figure D-28).

Translate
(Assemble)

 .ORG $4000
 BLDX $0001

LDA [[$4ED2],X]

$4000 $A0
$4001 $00
$4002 $01
$4003 $95
$4004 $4E
$4005 $D2

BLDX
(immediate)

LDA
(indirect

post-indexed)

Figure D-28. The indirect post-indexed addressing mode

 The pre-indexed indirect mode and this indirect post-indexed mode are distinguished in the

assembly source file by the positioning of the “X” keyword. In the post-indexed case, the CPU
uses the address it finds in the instruction’s operand bytes to point to a second address, it
internally adds the current contents of the index register to this second address, and it uses the

D-22 Appendix D: Assembly Language Overview

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

result to point to the data. Thus, “LDA [[$4ED2],X]” means “Load the accumulator with the data
value that will be found in the memory location that’s pointed to by a 2-byte address, where this
address is determined by adding the current contents of the index register to the address whose
first byte is located at address $4ED2”.

 Instructions that support the indirect post-indexed addressing mode are JMP, JSR, LDA, and STA.

These last two modes are fairly esoteric and you might not find much use for them in the
average program. In fact, you can actually write any program using just the implied, immediate,
and absolute addressing modes (or just the implied and absolute modes at a pinch) – the other
modes are simply there to make our lives easier and our programs smaller and faster. On the
other hand, should you become enamored of creating your own programs, you might be
pleasantly surprised to discover just how frisky the more sophisticated modes can be.

Appendix E
Assembly Language
In Backus-Naur Form

E-2 Appendix E: Assembly Language Backus-Naur Form

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Backus-Naur Notation
Introduced by John Backus and Peter Naur in the late 1950s and early 1960s, Backus-Naur
Form (BNF) is a technique for recursively defining the grammar – the words, symbols, and
tokens – associated with a computer language. BNF allows us to represent a language using a
combination of syntactic entities and meta-syntactic symbols, where the meta-syntactic symbols
are used to define how the syntactic entities can be combined. An individual syntactic definition
is composed of a name in italic font, followed by the definition symbol ‘≡‘ (meaning “is defined
as”), followed by the definition itself; for example:

alpha_char ≡ ‘A’ through ‘Z’ and ‘a’ through ‘z’
num_char ≡ ‘0’ through ‘9’
alphanum_char ≡ alpha_char | num_char

These statements define three syntactic entities: alpha_char, num_char, and alphanum_char.
The approach we employ is bottom-up, with fundamental items being defined in advance of any
constructs that use them. Note that syntactic entities are only ever defined once, but they may be
used multiple times in the definitions of subsequent entities. Also note the use of the | (“vertical
bar”) symbol in the third example. This is one of the meta-syntactic symbols, which are used to
define how syntactic entities can be combined. The meta-syntactic symbols are as follows:

| Indicates alternative choices; for example:

 alphanum_char ≡ alpha_char | num_char

 This means that an alphanum_char can be either an alpha_char or a num_char.

{ ... } Indicates part of a definition that can be repeated zero or many times; for example:

 dec_literal ≡ num_char{num_char}
 The first part of this definition means that a dec_literal (“decimal literal”, which

basically means a number) must consist at least one num_char, while the second
part enclosed by the {} symbols means that it may also contain zero or more
additional instances of num_char.

(...) Indicates part of a definition that contains options separated by the | symbol; only
one of the options can be selected; also one of the options must be selected; for
example:

 address_label ≡ (_ | alpha_char){label_char}
 The first part of this definition enclosed by the () symbols means that an

address_label must commence with either an underscore character or an
alpha_char, while the second part enclosed by the {} symbols means that
it may also contain zero or more instances of label_char.

[...] Indicates part of a definition that is optional; for example:

 implied_instruction ≡ [address_label:] implied_mnemonic [comment]
 This means that an implied_instruction consists of an optional address_label;

followed by a mandatory implied_mnemonic; followed by an optional comment.

 The Official DIY Calculator Data Book E-3

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Note that you’ve got to be careful with some of the definitions, because in addition to being meta-
syntactic, symbols such as |, [], and () are also part of the assembly language itself; for example:

absolute_instruction ≡
 [address_label:] immediate_mnemonic [integer_expression] [comment]

Here we see that the [] characters used to delimit the integer_expression are part of the syntax
of our assembly language, and are therefore presented in 11-point italic font. This distinguishes
them from their meta-syntactic cousins [], which are presented in 14-point normal font.

Formal syntax summary
The remainder of this appendix is devoted to a syntactic summary of the DIY Calculator’s
assembly language described in the Backus-Naur representation introduced above. In an ideal
world, our Backus-Naur description would fully and completely define our language without
requiring any augmentation; but in practice we discover that a few well-placed notes tend to
ease the way considerably, and these notes are indicated by pointing finger characters ().

Names
alpha_char ≡ ‘A’ through ‘Z’ and ‘a’ through ‘z’

num_char ≡ ‘0’ through ‘9’

alphanum_char ≡ alpha_char | num_char

label_char ≡ alphanum_char | _

constant_label ≡ (_ | alpha_char){label_char}

address_label ≡ (_ | alpha_char){label_char}

any_label ≡ constant_label | address_label

 Both types of labels (address_labels and constant_labels) must commence with either an
underscore ‘_’ character or an alpha character.

 Although this syntax doesn’t impose a limit on the length of labels, the DIY Calculator’s current
assembler implementation restricts these entities to a maximum of eight characters including
any underscores. Also, labels are not allowed to be one of the language’s keywords (which are
listed at the end of this appendix).

 Although the syntactic entity alpha_char includes both uppercase and lowercase characters, the
DIY Calculator’s assembler internally converts all characters to uppercase for the purposes of
its machinations. For example, fred, Fred, FrEd, and FRED will be considered to be identical.

E-4 Appendix E: Assembly Language Backus-Naur Form

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Text, comments, and blank lines
horizontal_whitespace ≡ <tab> | <space>

vertical_whitespace ≡ <cr> | <lf> | <ff> {Carriage return, Line feed, Form feed}

blank_line ≡ {horizontal_whitespace} vertical_whitespace

extra_char ≡ ` | ‘ | “ | ~ | ! | @ | # | $ | % | ^ | & | * | (|) | - | _ | = | + | \ | / | | | [|] |
 { | } | ; | : | . | , | < | > | ?

text_char ≡ alphanum_char | extra_char | horizontal_whitespace

comment ≡ #{text_char} vertical_whitespace

 The horizontal_whitespace characters <tab> and <space> are equivalent to the keyboard keys
of the same name, and they equate to the ASCII codes $09 and $20, respectively.

 The vertical_whitespace characters <cr>, <lf>, and <ff> (“carriage return”, “line feed”, and “form
feed”) equate to the ASCII codes $0D, $0A, and $0C, respectively. Note that <cr> may be
called “return” or “enter” on your keyboard, while the other vertical_whitespace characters
typically don’t have keyboard equivalents.

 Comments can commence anywhere on an input line. A comment starts with a ‘#’ character
followed by any text_chars, and is terminated by any vertical_whitespace character.

Literals
bin_num_char ≡ ‘0’ through ‘1’

hex_num_char ≡ ‘0’ through ‘9’ and ‘A’ through ‘F’ (or ‘a’ through ‘f’)

dec_literal ≡ num_char{num_char}

bin_literal ≡ %bin_num_char{bin_num_char}

hex_literal ≡ $hex_ num_char{hex_num_char}
integer_ref ≡ dec_literal | bin_literal | hex_literal | any_label

 An integer_ref is either a dec_literal (decimal literal), bin_literal (binary literal), hex_literal

(hexadecimal literal), or a label that’s been assigned to such a literal or which equates to an
address.

 Decimal literals are formed from one or more decimal digits with no spaces or commas between
them (e.g. 32565 and not 32,565). Binary literals are formed from one or more binary digits,
which must be prefixed by a ‘%’ character (e.g. %00110101). Hexadecimal literals are formed
from one or more hexadecimal digits, which must be prefixed by a ‘$’ character (e.g. $E0A2).
Note that no whitespace characters are permitted between the ‘%’ and ‘$’ characters and their
associated arguments.

 All integer_refs are automatically padded with zeros to occupy four bytes within the assembler.
An integer_ref (or the result of an expression using integer_refs) can be used as a data value,
an address value, or both. In these cases the assembler will issue a warning if the value is too
large for its intended purpose (this point is discussed in more detail in Appendix D).

 The Official DIY Calculator Data Book E-5

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Expressions
arithmetic_operator ≡ + | – | * | / {Add, Subtract, Multiply, Divide}

logical_operator ≡ & | | | ^ {AND, OR, Exclusive-OR}

unary_ operator ≡ – | ! {Unary minus, Unary NOT)

any_operator ≡ arithmetic_operator | logical_operator

integer_primary
 ≡ integer_ref | integer_expression | @ | unary_operator integer_primary

integer_expression ≡ [(] integer_primary {any_operator integer_primary} [)]

 Note that integer_primaries are self-referential, in that they may be generated as a combination
of a unary_operator (– or !) and another integer_primary. Also note that integer_primaries and
integer_expressions are recursively defined in that they each refer to the other.

 The unary minus operator (which would appear in the form –integer_primary) generates the
two’s complement of the integer_primary with which it is associated. The unary NOT operator
(which would appear in the form !integer_primary) generates the one’s complement of the
integer_primary with which it is associated (that is, it inverts all of the bits in the integer_primary).
Note that no space characters are allowed between a unary_operator and its integer_primary.

 Expressions in declaration_statements (see the directive statements section below) may not
employ forward-referencing, but may employ only literals (binary, decimal, hexadecimal) and
previously declared constant_labels. By comparison, expressions in reserve_statements or
instruction_statements may use any type of label, including forward-references to
address_labels (these points are discussed in more detail in Appendix D).

 The DIY Calculator’s assembler supports only a simple expression syntax, in which the binary
operators +, –, *, /, &, |, and ^ all have equal precedence (the unary operators ! and – have a
higher precedence than the binary operators). By default, expressions are evaluated from left to
right, so you have to use parenthesis () to force particular ordering of any sub-expression
evaluations.

 Although not apparent from the syntax above, parenthesis must be balanced. That is, any open
bracket ‘(‘ must have a matching close bracket ‘)’.

 The results from any integer divisions will be truncated without warning (e.g., 8 / 3 will return 2);
however, any attempt to divide by zero will cause the assembler to flag an error.

 The ‘@’ character directs the assembler to substitute whatever value the program counter will
contain at this point in the program. For example, consider the statement “JMP [@ + 6]”, in which
the “[@ + 6]” will be translated into the address of the JMP instruction’s opcode plus 6.

E-6 Appendix E: Assembly Language Backus-Naur Form

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

Instruction mnemonics
implied_mnemonic ≡ CLRIM | SETIM | INCA | DECA | INCX | DECX | HALT |
 NOP | PUSHA | POPA | PUSHSR | POPSR | SHL |
 SHR | ROLC | RORC | RTI | RTS

immediate_mnemonic ≡ ADD | ADDC | SUB | SUBC | AND | OR | XOR | CMPA | LDA

big_immediate_mnemonic ≡ BLDIV | BLDSP | BLDX

absolute_mnemonic ≡ ADD | ADDC | SUB | SUBC | AND | OR | XOR | CMPA |LDA |
 STA | BLDIV | BLDSP | BLDX | BSTSP |BSTX | JC | JNC | JN |
 JNN | JO | JNO | JZ | JNZ | JMP | JSR

indexed_mnemonic ≡ ADD | ADDC | SUB | SUBC | AND | OR | XOR | CMPA |
 LDA | STA | JMP | JSR

indirect_mnemonic ≡ LDA | STA | JMP | JSR

preindexed_indirect_mnemonic ≡ LDA | STA | JMP | JSR

indirect_postindexed_mnemonic ≡ LDA | STA | JMP | JSR

 We distinguish between immediate_mnemonics and big_immediate_mnemonics, because
the former only require a single byte of data while the latter require two bytes of data. Thus,
differentiating between these two groups allows our assembler to perform additional error
checking.

Instruction statements
instruction_statement ≡ implied_instruction | immediate_instruction |
 big_immediate_instruction | absolute_instruction |
 indexed_instruction | indirect_instruction |
 pre-indexed_indirect_instruction |
 indirect_post-indexed_instruction

implied_instruction ≡ [address_label:] implied_mnemonic [comment]
immediate_instruction ≡ [address_label:] immediate_mnemonic
 integer_expression [comment]
big_immediate_instruction ≡ [address_label:] big_immediate_mnemonic
 integer_expression [comment]
absolute_instruction ≡ [address_label:] immediate_mnemonic
 [integer_expression] [comment]
indexed_instruction ≡ [address_label:] indexed_mnemonic
 [integer_expression , X] [comment]

 The Official DIY Calculator Data Book E-7

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

indirect_instruction ≡ [address_label:] indirect_mnemonic
 [[integer_expression]] [comment]
pre-indexed-indirect_instruction ≡ [address_label:] preindexed_indirect_mnemonic
 [[integer_expression , X]] [comment]
indirect-post-indexed_instruction ≡ [address_label:] indirect_postindexed_mnemonic
 [[integer_expression] , X] [comment]

 In the absence of a comment, any instruction can have trailing horizontal_whitespace characters.

Also, every instruction is terminated by a vertical_whitespace character.

 An integer_expression in an instruction_statement may employ forward-referencing. That is, these
expressions may employ both constant_labels and address_labels (and, of course, literal values).

 The ‘X’ character in the indexed, pre-indexed-indirect, and indirect-post-indexed instruction
statements is a special keyword that is understood by the assembler to refer to the index
register, thereby causing the assembler to select the appropriate opcode for that instruction
(see also the “Reserved words” section at the end of this appendix).

Directive statements
origin_statement ≡ .ORG integer_ref [comment]
end_statement ≡ .END [comment]
declaration_statement ≡ constant_label: .EQU integer_expression [comment]
reserve_statement ≡ [address_label:] (.BYTE | .2BYTE | .4BYTE)
 [*integer_expression | integer_expression
 {, integer_expression}] [comment]

 An integer_expression in a declaration_statement may not employ any forward-referencing, but
may only employ previously declared integer_refs. To put this another way, these expressions
may only employ literal values or previously declared constant_labels.

 A .BYTE statement without an associated operand will reserve a single byte of memory for the
program’s future use. By comparison, a .BYTE *n will reserve ‘n’ bytes, where ‘n’ can either be
a literal value (for example, .BYTE *10, which will reserve ten bytes), or an integer expression
(for example, .BYTE *(FRED + 3), which, assuming FRED equals 7, will also reserve ten bytes).

 By default, any locations set aside by reserve_statements will be initialized by the assembler to
contain zero values. Alternatively, they may be explicitly initialized as part of the statement; for
example, the statement .BYTE 2, 32, 14, 42 will cause the assembler to reserve four bytes and
initialize these bytes with the values 2, 32, 14, and 42, respectively. Additionally, any of the
values in this comma-separated list could be full-blown integer_expressions.

 The .2BYTE and .4BYTE versions of reserve_statements work in a similar way to their .BYTE
counterpart, except that (not surprisingly) they reserve two and four bytes, respectively. For
example, the statement .2BYTE $A42 will reserve a single 2-byte field and initialize that field to
contain $0A42 (the assembler will automatically zero-extend the value to fit the 2-byte field).
Note that our assembly language is based on a “big-endian” approach, in that multi-byte
numbers are stored with their most-significant byte in the lowest address.

E-8 Appendix E: Assembly Language Backus-Naur Form

© 2005 Clive “Max” Maxfield and Alvin Brown. All rights reserved.

File structure
declaration_section ≡ {declaration_statement | blank_line | comment}
body_statement ≡ reserve_statement | instruction_statement

body_section ≡ origin_statement {body_statement | blank_line | comment} end_statement

assembly_source_file ≡ declaration_section body_section [{comment | blank_line}]

Reserved words
Although all of the reserved words are shown below in uppercase, they are in fact case-insensitive.
Our assembler internally converts all characters to uppercase for the purposes of its machinations,
and will therefore consider reserved words such as add, Add, and ADD to be identical.

Directive keywords
.ORG .END .EQU .BYTE .2BYTE .4BYTE

Instruction keywords
ADD ADDC AND BLDSP BLDX BLDIV BSTSP BSTX CLRIM
CMPA DECA DECX HALT INCA INCX JC JNC JN
JNN JO JNO JZ JNZ JMP JSR LDA NOP
POPA POPSR PUSHA PUSHSR ROLC RORC RTI RTS SETIM
SHL SHR STA SUB SUBC XOR

Special keywords
The only special keyword is ‘X’, which is used when an instruction is employing one of the
indexed addressing modes. There is no theoretical reason why a label could not be named ‘X’,
or indeed any of the instruction keywords. In practice, however, prohibiting such label names
reduces confusion on the part of both the user and the assembler.

	The Official DIY Calculator Data Book
	Contents
	Chapter 1: The Virtual Microcomputer Powering the DIY Calculator
	Microprocessors and microcomputers
	Logic 0 and Logic 1
	Bits, Bytes, and Nybbles
	The DIY Calculator’s CPU
	The data bus
	The address bus
	The control bus

	kB, KB, kb, Kb, etc.
	The memory (RAM and ROM)
	Memory address decoding
	The memory map

	Input ports
	Output ports

	Chapter 2: The DIY Calculator's CPU
	Rampaging around the CPU
	The accumulator (ACC) and status register (SR)
	The CPU exposed
	The arithmetic-logic unit (ALU)
	The “core” ALU
	Extending the core ALU to perform subtractions and suchlike
	An alternative complementor block implementation
	Extending the core ALU to perform shifts and rotates

	Connecting the accumulator and data bus to the ALU
	Connecting the status register to the ALU and data bus
	Adding the instruction register (IR) and control logic
	Adding the addressing logic
	The addressing logic’s registers

	Chapter 3: The DIY Calculator's Interrupt Structure
	Interrupts and interrupt handling
	An example interrupt sequence
	The main body of the test program
	The interrupt service routine
	Testing our example interrupt service routine

	A few final points to ponder
	The interrupt acknowledge output
	Nested interrupts
	The HALT instruction

	Appendix A: Addressing Modes and Instruction Set
	Addressing modes
	Implied addressing (imp)
	Standard immediate addressing (imm)
	Big immediate addressing (imm)
	Standard absolute addressing (abs)
	Big absolute addressing (abs)
	Indexed addressing (abs-x)
	Indirect addressing (ind)
	Pre-indexed indirect addressing (x-ind)
	Indirect post-indexed addressing (ind-x)

	Instruction set summary
	Opcode summary

	Instructions in detail
	ADD (Add without carry)
	ADDC (Add with carry)
	AND (Logical operation)
	BLDIV (“Big” load the interrupt vector)
	BLDSP (“Big” load the stack pointer)
	BLDX (“Big” load the index register)
	BSTSP (“Big” store the stack pointer)
	BSTX (“Big” store the index register)
	CLRIM (Clear the interrupt mask)
	CMPA (Compare accumulator to byte in memory)
	DECA (Decrement the contents of the accumulator)
	DECX (Decrement the contents of the index register)
	HALT (Halt the CPU)
	INCA (Increment the contents of the accumulator)
	INCX (Increment the contents of the index register)
	JC (Jump if carry)
	JMP (Jump unconditionally)
	JN (Jump if negative)
	JNC (Jump if not carry)
	JNN (Jump if not negative)
	JNO (Jump if not overflow)
	JNZ (Jump if not zero)
	JO (Jump if overflow)
	JSR (Jump to a subroutine)
	JZ (Jump if zero)
	LDA (Load the accumulator)
	NOP (No operation)
	OR (Logical operation)
	POPA (Pop the accumulator off the top of the stack)
	POPSR (Pop the status register off the top of the stack)
	PUSHA (Push the accumulator onto the top of the stack)
	PUSHSR (Push the status register onto the stack)
	ROLC (Rotate accumulator left through the carry flag)
	RORC (Rotate accumulator right through the carry flag)
	RTI (Return from an interrupt)
	RTS (Return from a subroutine)
	SETIM (Set the interrupt mask)
	SHL (Shift accumulator left)
	SHR (Shift accumulator right)
	STA (Store the accumulator)
	SUB (Subtract without carry)
	SUBC (Subtract with carry)
	XOR (Logical operation)

	Appendix B: Chip Packaging and Pin Descriptions
	Chip packaging and pin descriptions
	VCC and GND (power supply pins)
	clock (input)
	~reset (input, active-low)
	~read and ~write (outputs, active-low)
	IRQ (input, active-low)
	IACK (output, active low)
	data[7:0] (bidirectional inputs/outputs)
	addr[15:0] (outputs)

	Appendix C: Signal Descriptions and Timing Diagrams
	The CPU’s single-phase clock
	A generic read cycle
	A generic write cycle
	The CPU’s data buffer
	The CPU’s address latch
	Alternative schemes
	Resetting the CPU
	Implied mode instructions
	Implied mode: Group 1
	Implied mode: Group 2
	Implied mode: Group 3
	Implied mode: Group 4
	Implied mode: Group 5
	Implied mode: Group 6

	Immediate mode instructions
	Immediate mode: Group 1
	Immediate mode: Group 2

	Big immediate mode instructions
	Big immediate mode: Group 1

	Absolute mode instructions
	Absolute mode: Group 1
	Absolute mode: Group 2
	Absolute mode: Group 3
	Absolute mode: Group 4
	Absolute mode: Group 5
	Absolute mode: Group 6

	Big absolute mode instructions
	Big absolute mode: Group 1
	Big absolute mode: Group 2

	Indexed mode instructions
	Indexed mode: Group 1
	Indexed mode: Group 2
	Indexed mode: Group 3
	Indexed mode: Group 4
	Indexed mode: Group 5

	Indirect mode instructions
	Indirect mode: Group 1
	Indirect mode: Group 2
	Indirect mode: Group 3
	Indirect mode: Group 4

	Pre-indexed indirect mode instructions
	Pre-indexed indirect mode: Group 1
	Pre-indexed indirect mode: Group 2
	Pre-indexed indirect mode: Group 3
	Pre-indexed indirect mode: Group 4

	Indirect post-indexed mode instructions
	Indirect post-indexed mode: Group 1
	Indirect post-indexed mode: Group 2
	Indirect post-indexed mode: Group 3
	Indirect post-indexed mode: Group 4

	Interrupts
	Clock cycle summary

	Appendix D: Assembly Language Overview
	A positive plethora of programming languages
	The DIY Calculator’s Assembly language
	Statements
	Comments and blank lines
	Label names
	The .ORG and .END directives
	The .EQU directive
	The .BYTE, .2BYTE, and .4BYTE directives
	Literals (binary, decimal, and hexadecimal values)
	Expressions
	Instructions and addressing modes

	Appendix E: Assembly Language In Backus-Naur Form
	Backus-Naur Notation
	Formal syntax summary

