
The programming language of

DIY DIY CalculatorCalculator

Summarized by Imre Varga

C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

Programming languages

5GL

4GL SELECT name FROM people WHERE age=20

high level

2
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

3GL if (x==0) printf(”zero\n”);

2GL SAVE: STA [$410A, X]

1GL 10010110 11101000 10101101 10000111

low level

Source code

statement_1

statement_2

statement_3

statement_4

Source file

Label Operation Operand Comment

SHOW: STA [$F031] #DISPLAY
statement_4

statement_5

…

C. Maxfield, A. Brown: A definitive guide to

HOW COMUTERS DO MATH
3

Label Name (identifier) closed by colon (:)

Operation Instruction mnemonic

Operand Data (1 byte) or address (2 byte)

Comment After hash (#) character

Instructions

• Directives

• Load, store

• Bit operation

• ‘Aritmetik-like’• ‘Aritmetik-like’

• Control transfer

• Other instructions

C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO

MATH

4

Instructions to the assembler

.EQU Declare constant value label.

.ORG Determine the origin of program in the memory.

.BYTE Reserve 1 byte memory location.

.2BYTE Reserve 2 byte memory location.

D
ir

e
ct

iv
e

s

5
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

.2BYTE Reserve 2 byte memory location.

.4BYTE Reserve 4 byte memory location.

.END Marks the end of source.

D
ir

e
ct

iv
e

s

Load & store

LDA Load data in memory into the accumulator.

STA Store data in the accumulator into memory.

BLDX Load data in memory into the index register.

BSTX Store data in the index register into memory.,
st

o
re

6
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

BSTX Store data in the index register into memory.

BLDSP Load data in memory into the stack pointer.

BSTSP Store data in the stack pointer into memory.

BLDIV Load data in memory into the interrupt vector.

Lo
a

d
,

Bit operations

AND AND data in memory to the accumulator.

OR OR data in memory to the accumulator.

XOR XOR data in memory to the accumulator.

Lo
g

ic
a

l

7
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

SHL Shift the accumulator left 1 bit (arithmetic shift).

SHR Shift the accumulator right 1 bit (arithmetic shift).

ROLC Rotate the accumulator left 1 bit (through carry flag).

RORC Rotate the accumulator right 1 bit (through carry flag).

Sh
if

t,

ro
ta

te

‘Aritmetic-like’

INCA Increment the accumulator.

DECA Decrement the accumulator.

INCX Increment the index register.

DECX Decrement the index register.In
cr

e
m

e
n

t,

d
e

cr
e

m
e

n
t

8
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

DECX Decrement the index register.

ADD Add data in memory to the accumulator.

ADDC Like an ADD, but include contents of the carry flag.

SUB Subtract data in memory from the accumulator.

SUBC Like a SUB, but include contents of the carry flag.A
ri

tm
e

ti
c

Control transfer

JMP Jump to a new memory location.

JSR Jump to a subroutine.

JZ Jump if the result was zero.

JNZ Jump if the result wasn’t zero.

JN Jump if the result was negative.

Ju
m

p

9
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

JN Jump if the result was negative.

JNN Jump if the result wasn’t negative.

JC Jump if the result generated a carry.

JNC Jump if the result didn’t generate a carry.

JO Jump if the result generated an overflow.

JNO Jump if the result didn’t generate an overflow.

Ju
m

p
R

e
tu

rn RTS Return from a subroutine.

RTI Return from an interrupt.

Other instructions

NOP No-operation, CPU doesn’t do anything.

HALT Generate internal NOPs until an interrupt occurs.

SETIM Set the interrupt mask flag in the status register.

CLRIM Clear the interrupt mask flag in the status register.

C
o

n
tr

o
l

10
C. Maxfield, A. Brown:

A definitive guide to HOW COMUTERS DO MATH

CLRIM Clear the interrupt mask flag in the status register.

CMPA Compare data in memory to the accumulator.

C
o

m
p

a
ri

so
n

PUSHA Push the accumulator onto the stack.

POPA Pop the accumulator from the stack.

PUSHSR Push the status register onto the stack.

POPSR Pop the status register from the stack.

St
a

ck

Example

Task:

• Clear the main display of the front panel!

Solution idea:

• Sending a special value (clearcode) to the LCD display.

C. Maxfield, A. Brown: A definitive guide to

HOW COMUTERS DO MATH
11

LCD display after power on before run LCD display after the program running

Questions

• What is the clearcode?

$10

• What is the address of the LCD display?

$F031

• Where is the clearcode? Where do it have to be?

in the accumulator (ACC)in the accumulator (ACC)

• How do it get there?

with LDA (LoaD Accumulator) instruction

• How to send value?

with STA (Store Accumulator) instruction

• How does the run finish?

with control transfer (JMP instruction) to ROM

• Do I need other things to determine?

yes (place of first byre of program in RAM, source end)

C. Maxfield, A. Brown: A definitive guide to

HOW COMUTERS DO MATH
12

Example

.ORG $4000 #first byte of RAM

Source code:

#Clear the main display of the front panel

C. Maxfield, A. Brown: A definitive guide to

HOW COMUTERS DO MATH
13

LDA

STA

JMP

.END

$10

[$F031]

[$0000]

#load clearcode to ACC

#store ACC to LCD

#control jump to ROM

#end of source

Assembly vs Machine code

.ORG $4000

LDA $10

$90 $4000

$10 $4001

$99 $4002

Assembly Machine code

STA [$F031]

JMP [$0000]

.END

C. Maxfield, A. Brown: A definitive guide to

HOW COMUTERS DO MATH
14

$F0 $4003

$31 $4004

$C1 $4005

$00 $4006

$00 $4007
Memory map
1001000000010000100110011111000000110001110000010000000000000000

