
Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 1

DIY Calculator: Workbench and Terminal

Introduction
The purpose of this paper is to document some new utilities that have been added to the DIY
Calculator. The first is a workbench that comprises a selection of simple switches and displays.
The second is a text terminal that comprises a virtual QWERTY (typewriter-style) keyboard and
a simple console display.

The Workbench
Using the Tools > Workbench #1 command results in the following interface appearing in the
DIY Calculator's main window:

The two banks of 8-bit switches are connected to two of the DIY Calculator’s input ports;
meanwhile, the 8-bit LED display and the three different flavors of 7-segment displays are
connected to four of the DIY Calculator’s output ports as follows:

 Port Type Port Address I/O Device
 Input $F000 8-bit Switch Bank #1
 Input $F001 8-bit Switch Bank #2

 Output $F020 8-Bit LED Display
 Output $F021 Single Un-decoded 7-Segment Display
 Output $F022 Single Decoded 7-Segment Display
 Output $F023 Dual Decoded 7-Segment Display.

A simple test program (written in the DIY Calculator’s assembly language) to read from the
upper bank of 8-bit switches and copy this value to the 8-bit LED display would be as follows:

 SW8BIT1: .EQU $F000 # Upper bank of 8-bit switches
 LED8BIT: .EQU $F020 # 8-bit LED Display

 .ORG $4000 # Set program origin
 LOOP: LDA [SW8BIT1] # Read from upper 8-bit switches
 STA [LED8BIT] # Write to 8-bit LED Display
 JMP [LOOP] # Do it all again
 .END

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 2

The test program above simply loops around loading the value currently on the 8-bit switches
into the CPU’s accumulator, and then copying this value back to the 8-bit LED display. If you
power-up the DIY Calculator (using the On/Off button on the calculator’s front panel) and
assemble, load, and run this program, then every time you click on one of the switches the
corresponding LED will change to reflect the state of that switch.

These input/output (I/O) devices can be used to create a wide variety of simple (but highly
instructive) demonstration programs. Also, they can be used in conjunction with the main DIY
Calculator panel; for example, you could create a program to read a button from the DIY
Calculator and present its value on one of the workbench’s displays. Alternatively, you could
create a program to read the state of one (or both) of the 8-bit switches on the workbench and
present this value to the DIY Calculator’s main display.

Furthermore, the workbench devices can be used in conjunction with the virtual QWERTY
(typewriter-style) keyboard and a simple console display introduced below. For example, you
could create a program to read a button from the QWERTY keyboard and present its value on
one of the workbench’s displays. Alternatively, you could create a program to read the state of
one (or both) of the 8-bit switches on the workbench and present this value to the console
display.

The QWERTY Keyboard
Using the Tools > Terminal command results in both a QWERTY keyboard and a simple
console display appearing in the DIY Calculator's main window. The QWERTY keyboard device
appears as follows:

If you compare this device to a real keyboard, you’ll observe that (in some respects) we have
more keys. This is because a real keyboard “doubles” up some of the keys by means of the
<Shift> key. For example, on a real keyboard, the number ‘4’ key will represent the number ‘4’ if
the <shift> key is not pressed and the dollar character “$” if the <Shift> key is pressed. We just
decided that it would be easier to split these keys out in the case of our virtual device.

This keyboard includes a virtual 8-bit latch. When the DIY Calculator is powered-up (by clicking
the On/Off button on the calculator’s front panel), this latch is automatically loaded with a default

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 3

value of $00 (all zeros). When a key on the keyboard is clicked, an associated code is loaded into
the latch. This code will remain in the latch until (a) another key is clicked, thereby overwriting the
first value, or (b) the DIY Calculator’s CPU accesses the value in the latch by reading from the
input port (at address $F008) that is connected to the keyboard. The act of reading from this port
automatically clears the latch to contain its default value of $00.

Observe the small two-digit hexadecimal display toward the upper-right of the keyboard. This
displays the code associated with the last key to be pressed. Assuming that the <Caps> key is
in its active state as discussed below, then clicking one of the alpha keys ‘A’, ‘B’, C’, and so
forth will cause this display to show values of $41, $42, $43, respectively, where these values
are the ASCII codes for uppercase ‘A’, ‘B’, and ‘C’ characters. Just as a reminder, the ASCII
table is shown below:

Now, observe the <Caps> key on the keyboard. We may refer to this as a “modifier” key. When
this is in its active state (which is indicated by red annotation text as shown in the illustration on
the previous page), clicking one of the alpha keys (‘A’, ‘B’, ‘C’, …) will cause the keyboard’s
latch to be loaded with the appropriate ASCII code for the uppercase version of these letters
(‘A’, ‘B’, ‘C’,…).

Clicking the <Caps> key will cause it to toggle into its inactive state (which is indicated by black
annotation text). When the <Caps> key is in its inactive state, clicking one of the alpha keys (‘A’,
‘B’, ‘C’, …) will cause the keyboard’s latch to be loaded with the appropriate ASCII code for the
lowercase version of these letters (‘a’, ‘b’, ‘c’,…).

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 4

On a real keyboard, the <Caps> (or <Caps Lock>) key, which stands for “Capitals”, is a “sticky”
key, which means that once it’s been pressed (or clicked in our virtual world), it will remain in
that state until it’s pressed (or clicked) again.

The <Shift>, <Ctrl> (“Control”), and <Alt> (“Alternate”) keys also act as modifier keys. On a real
keyboard these would not be sticky, which means that you would have to continue to hold them
while you pressed another key. However, we can’t emulate this on our virtual keyboard, so
we’ve caused these keys to act like sticky keys.

In the case of our virtual system, the <Shift> key performs the same actions as the <Caps> key;
that is, it only affects the case of the alpha characters (in the real world it would affect other
characters/keys as well).

Compared to the <Shift> and <Caps> keys, the actions of the <Ctrl> and <Alt> keys are not
quite so well defined, in that they tend to behave differently on different systems. In the case of
our virtual QWERTY keyboard, we’ve chosen to follow a reasonably intuitive scheme. First,
we’ve decided that the <Ctrl> key will only modify the codes associated with the alpha keys. For
example, if we were to click the <Ctrl> key to make it active and then click the ‘A’ key, the
keyboard’s latch and display would both be loaded with a value of $01; clicking the ‘B’ key
would load a value of $02, and so forth. (Note that identical codes are generated for both
uppercase and lowercase versions of each letter.)

Last but not least, in the case of our virtual keyboard, if the <Alt> key is in its active state, then it
will modify the codes associated with all of the other keys (and modifier key combinations) by
simply adding the value $80 (128 in decimal) to whatever codes they would have generated had
the <Alt> key been inactive. For example, assuming that the <Alt>, <Ctrl>, <Shift>, and <Caps>
keys are all inactive, clicking on the ‘A’ key will cause the keyboard’s latch and display to be
loaded with a value of $61, which is the ASCII code for a lowercase ‘a’. If the <Alt> key were
now placed in its active state, clicking the ‘A’ key would result in the keyboard’s latch and
display being loaded with a value of $E1, which is the sum of $61 and $80.

Similarly, if the <Alt> key was inactive and the <Ctrl> key was active, clicking the ‘A’ key would
cause the keyboard’s latch and display to be loaded with $01. If the <Alt> key was now placed
in its active state (and the <Ctrl> key remained active), clicking the ‘A’ key would result in the
keyboard’s latch and display being loaded with a value of $81, which is the sum of $01 and $80.

As was noted above, the keyboard is plugged into the input port at address $F008. Also, from
our discussions on the workbench earlier in this paper, we know that the workbench’s 8-bit LED
display is driven by the output port at address $F020. And we also know the DIY Calculator’s
main display is driven by the output port at address $F031:

 Port Type Port Address I/O Device
 Input $F008 Qwerty Keyboard

 Output $F020 Workbench’s 8-bit LED display
 Output $F031 Main DIY Calculator Display

A simple test program (written in the DIY Calculator’s assembly language) to read from the
QWERTY keyboard and to write to the workbench’s 8-bit LED display would be as follows:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 5

 QWERTY: .EQU $F008 # Input port connected to QWERTY keyboard
 LED8BIT: .EQU $F020 # 8-bit LED Display on workbench

 .ORG $4000 # Set program origin
 LOOP: LDA [QWERTY] # Read from QWERTY Keyboard
 JZ [LOOP] # Jump if the value is zero
 STA [LED8BIT] # Write to 8-bit LED Display
 JMP [LOOP] # Do it all again
 .END

This test program simply loops around loading the value currently stored in the QWERTY
keyboard’s latch into the CPU’s accumulator. It then uses a JZ (“jump if zero”) instruction to
check to see if this value is $00 (all zeros), in which case it knows that no key has been
pressed, so it jumps back to read a new value from the keyboard. When a key is pressed, its
non-zero value causes the JZ instruction to fail, in which case the program copies the value in
the accumulator to the output port driving the 8-bit LEDs on the workbench.

Assume that we’ve used the Tools > Terminal and Tools > Workbench #1 commands to
launch these new utilities. Also assume that we’ve powered-up the DIY Calculator (using the
On/Off button on the calculator’s front panel) and assembled, loaded, and run the above
program. In this case, clicking the ’G’ button on the keyboard will cause the binary pattern
01000111 (that’s $47, which is the ASCII code for ‘G’) to appear on the LEDs as shown below:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 6

Another simple test program to read from the QWERTY keyboard and write to the DIY
Calculator’s main display would be as follows:

 CLRCODE: .EQU $10 # Code to clear the main display
 QWERTY: .EQU $F008 # Input port connected to QWERTY keyboard
 MAINDISP: .EQU $F031 # Output port driving the main display

 .ORG $4000 # Set program origin
 LDA CLRCODE # Load accumulator with clear code
 STA [MAINDISP] # Use this code to clear the main display
 LOOP: LDA [QWERTY] # Read from QWERTY Keyboard
 JZ [LOOP] # Jump if the value is zero
 STA [MAINDISP] # Write this character to the main display
 JMP [LOOP] # Do it all again
 .END

This program first clears the main display. Next, it loops around loading the value currently
stored in the QWERTY keyboard’s latch into the CPU’s accumulator. As before, we use a JZ
(“jump if zero”) instruction to check to see if this value is $00 (all zeros), in which case we know
that no key has been pressed, so we jump back to read a new value from the keyboard. When a
key is pressed, its non-zero value causes the JZ instruction to fail, in which case the program
copies the value in the accumulator to the output port driving DIY Calculator’s main display.

Assume that we’ve used the Tools > Terminal command to launch the QWERTY keyboard.
Also assume that we’ve powered-up the DIY Calculator (using the On/Off button on the
calculator’s front panel) and assembled, loaded, and run the above program. In this case,
clicking a sequence of characters such as ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ will cause the corresponding
characters to appear on the DIY Calculator’s main display as shown on the following page.

Finally, observe the <Bspace> (“Backspace”), <Enter>, <Le> (“Left”), <Ri> (“Right”), <Up>
(“Up”), and <Do> (“Down”) keys on the QWERTY keyboard. These keys generate some non-
standard codes as follows:

 Key Code Description
 <Bspace> $04 Backspace
 <Enter> $05 Enter / New Line
 <Up> $07 Up arrow / cursor up
 <Do> $08 Down arrow / cursor down
 <Ri> $09 Right arrow / cursor right
 <Le> $0A Left arrow / cursor left

We will return to consider these keys and codes as part of the console discussions later in this
document.

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 7

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 8

The Console Device
As was previously notes, in addition to the QWERTY keyboard, using the Tools > Terminal
command also results in a simple console device appearing in the DIY Calculator's main
window. Assuming that the DIY Calculator is powered down, the console will initially have a
black background:

When the DIY Calculator is powered up (by means of its On/Off button), the console also
powers up, which is reflected by its screen changing to white:

The console is driven by the DIY Calculator’s output port at address $F028. The easiest way to
understand how this works is to consider the simple test program shown below:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 9

 QWERTY: .EQU $F008 # Input port connected to QWERTY keyboard
 CONSOLE: .EQU $F028 # Output port driving console device

 .ORG $4000 # Set program origin
 LOOP: LDA [QWERTY] # Read from QWERTY Keyboard
 JZ [LOOP] # Jump if the value is zero
 STA [CONSOLE] # Write character to console device
 JMP [LOOP] # Do it all again
 .END

This is exactly the same program we’ve used earlier in this paper, except that this time we’re
reading from the QWERTY keyboard and writing to the output port driving the console device.
Assume that we’ve used the Tools > Terminal command to launch the QWERTY keyboard and
console. Also assume that we’ve powered-up the DIY Calculator (using the On/Off button on the
calculator’s front panel) and assembled, loaded, and run the above program. In this case,
clicking a sequence of characters such as ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ will cause the corresponding
characters to appear on the console:

In addition to the standard ASCII codes (as noted earlier in this document), the console also
understands some special control codes as follows:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 10

 Code Description
 $00 Null code, doesn’t do anything
 $01 Reserved for future use (doesn’t do anything at the moment)
 $02 Clear the screen
 $03 Place the cursor in its home position (row 0, column 0)
 $04 Backspace
 $05 New Line
 $06 Beep the bell
 $07 Up (move the cursor up one row)
 $08 Down (move the cursor down one row)
 $09 Right (move the cursor right one column)
 $0A Left (move the cursor left one column)

It’s very important to understand that the console and QWERTY keyboard are two completely
separate devices. That is, it’s possible to drive the console using a program that in no way
interacts with the QWERTY keyboard.

Having said this, it will very often be the case that the console and QWERTY keyboard will be
used in conjunction with each other. This is why, as we previously noted, some of the keys on
the QWERTY keyboard generate special codes as follows:

 Key Code Description
 <Bspace> $04 Backspace
 <Enter> $05 Enter / New Line
 <Up> $07 Up arrow / cursor up
 <Do> $08 Down arrow / cursor down
 <Ri> $09 Right arrow / cursor right
 <Le> $0A Left arrow / cursor left

Observe how these codes map onto those of the console. In order to gain a good understanding
as to how all of this hangs together, we first need to note that the console comprises an array of
16 rows of characters (numbered from 0 at the top to 15 at the bottom) and 32 columns of
characters (numbered from 0 at the left to 31 at the right). Now, consider the following actions
and their responses (this assumes that the program described above is running):

First, click the <Ctrl> key on the QWERTY keyboard to make it active (red annotation text) and
then click the ‘B’ key. From our earlier discussions on the keyboard, we know that the code
associated with the combination of the <Ctrl> and ‘B’ keys is $02. When our program writes this
code to the console, the console will understand this as an instruction to clear the screen.

Now, click the ‘C’ key. Once again, from our earlier discussions on the keyboard, we know that
the code associated with the combination of the <Ctrl> and ‘C’ keys is $03. When our program
writes this code to the console, the console will understand it to be an instruction to place the
cursor in its home position, which is in the top left-hand corner of the screen at row = 0 and
column = 0 as shown in the image at the top of the next page.

Observe that the cursor appears to be a solid black rectangle in this picture. In fact, the pixels
(picture elements) forming the cursor are each the XOR of the pixels forming the character in
that position. As all of the characters currently forming the screen are blank space characters
(each with an ASCII code of $20) whose pixels are all white, the XOR of these pixels results in a
rectangle that is all black. However, this won’t always be the case as we shall soon discover.

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 11

Now, click the <Ctrl> key to make it inactive (block annotation text). Next, click the ‘H’ key, then
click the <Caps> key to make it inactive, then click the ‘e’, ‘l’, ‘l’, and ‘o’ keys. Observe that every
time you write an ASCII character to the console, that character appears at the current cursor
position and the cursor itself moves one place to the right:

If we were to keep on entering text, then when the cursor eventually reached the right-hand-side
of the screen, it would automatically wrap around to the next line. Alternatively, if we were to
now click the <Enter> key on the keyboard, this has an associated code of $05, and when our
program sends this to the console, it will understand this to be a “New Line” code; that is, an
instruction to move the cursor to the beginning of the next line as shown in the following image:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 12

Note that, if the cursor were to be on the console’s bottom row when a “New Line” code was
sent to the console, this will cause the contents of the screen to move up by one row (the top
row conceptually “falls off the end”) and the cursor to appear in the bottom left-hand corner of
the screen (row = 15, column = 0).

Now, suppose that we click the <Caps> key followed by the ‘W’, ‘O’, ‘R’, ‘L’, and ‘D’ keys, which
would result in the console appearing as follows:

Arrgggh! We really intended for only the ‘W’ to be in uppercase and for the remaining characters
to be in lowercase. Well, “No Worries,” as they say “Down Under” in Australia and New Zealand.
Clicking the <Bspace> (“Backspace”) key on the keyboard generates a code of $04, which the
console understands as an instruction to move the cursor one place to the left and to then

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 13

delete the character underneath the cursor and replace that character with a space. So if we
click this key four times, the console will end up looking as follows:

Now, click the <Caps> key to make it inactive, and then click the ‘o’, ‘r’, ‘l’, and ‘d’ keys, which
will leave the console looking as follows:

Now, just for giggles and grins, click the (“left”) button on the keyboard three times. Each
click generates a code of $0A, which the console understands to be an instruction to move the
cursor one place to the left. This will leave the cursor over the ‘r’ character as shown in the
following image:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 14

As we previously discussed, each of the pixels forming the cursor are actually the inverse
(XORs) of the corresponding pixels forming the character at that position. This results in any
white pixels turning black and vice versa. Use the <up> (“Up”), <Do> (“Down”), <Le> (“Left”),
and <Ri> (“Right”) cursor control keys on the keyboard to move the cursor around the console.
Observe that the cursor will automatically stop when it reaches one of the edges.

The console can be used for a variety of tasks. For example, we could use it in conjunction with
the workbench (e.g. read the 8-bit switches and write their value to the console) and the main
calculator front panel (e.g. display a list of the actions being performed by a calculator program).
A more advanced application would be to use the keyboard and console as the I/O devices for a
BASIC interpreter. This interpreter, which would be written in the DIY Calculator’s assembly
language, would allow us to create and run programs looking something like the following:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 15

Some ideas pertaining to the creation of a BASIC interpreter are presented on the “More Tools”
page of the DIY Calculator website (www.DIYCalculator.com). When such an interpreter is
eventually created, it could be used to implement a wide variety of tasks, including a calculator
program to run on the DIY Calculator.

Last but certainly not least, as discussed in our book How Computers Do Math (ISBN:
0471732788), ASCII is a 7-bit code, which uses only the values $00 through $7F. But the DIY
calculator has an 8-bit wide memory and data bus, which means that we’ve still got codes $80
through $FF to play with.

Many of the early computers employed these spare codes to implement simple “chunky graphic”
characters. For your delectation and delight, the DIY Calculator’s console can accept and
display our interpretation of these characters as follows:

And, just in case you are interested, each of the characters displayed by the console is formed
from a 10 x 15 array of pixels. The pixel patterns for both the ASCII and chunky graphics
characters are as follows:

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 16

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 17

Rev 1.0 Copyright © 2005-2006 Clive “Max” Maxfield and Alvin Brown. All rights reserved. 18

Note that the remaining codes $D8 through $FF have identical patterns to those shown for
codes $D4 through $D7 above. We used this distinctive pattern to distinguish these characters
from spaces in order to make them easy to spot should they appear unexpectedly (due to some
programming error) on your console display.

	DIY Calculator: Workbench and Terminal
	Introduction
	The Workbench
	The QWERTY Keyboard
	The Console Device

