
Introduction to programming
Lecture

Imre Varga
University of Debrecen, Faculty of Informatics

For internal use only!

11 February 2017

General information

Teacher:

Dr. Varga, Imre

University of Debrecen

Faculty of Informatics

Department of Informatics Systems and Networks

email: varga.imre@inf.unideb.hu

www: irh.inf.unideb.hu/user/vargai

room: IF13 (building of Faculty of Informatics)

2

General information

Requirements, conditions for practice:

Maximum number of absences is 3.

Late arrival (more than 20 minutes)

means absent from class

There will be two tests during the semester.

There is only one chance to retake!!!

Activity during class means plus score.

Readings:

Adrian Kingsley-Hughes: Beginning Programming, Wiley, 2005.

Metrowerks CodeWarrior: Principles of Programming

3

Topics

• What are the basics of Computer Science?

• How does a computer built up and work?

• What is software, application, program?

• How to describe problems and its solution?

• What is algorithmic thinking?

• How to describe algorithms?

• What does ‘program writing’ mean?

• Many more things…

4

Computer systems

Computer System

6

User

SoftwareHardware

root

programmer

display

…

Windows

Firefoxprocessor …

…

System Unit

Computer architecture (hardware)

CPU

ALU

CU

Registers

AU

Memory

I/O interface

Peripherals

HDDMonitorKeyboard Mouse CD/DVD Network …

Cache Bus system

7

RAM

ROM

System Unit

Central Processing Unit (CPU):

The brain of computers

Memory:

Contains data and instructions

Input-Output Interface:

Surface between computer

and outer world

Bus system:

Connects together

8

Central Processing Unit

Control Unit (CU): Says what to do, controls the parts

of the CPU

Arithmetic Logic Unit (ALU): Performs operations, does

calculations

Registers: Some tinny but very fast memory

Cache: Small, but fast memory

Addressing Unit (AU): Deals with memory addresses at

read/write operation

9

Memory

Random Access Memory (RAM):

Readable-writeable operative memory

Read Only Memory (ROM)

Not rewritable (eg. BIOS-ROM)

Memory hierarchy:

• Register

• Cache

• Memory

• Hard-disk drive (HDD)

10

In
cre

a
sin

g
 size

D
e

cre
a

sin
g

 sp
e

e
d

Bus system

Connects the CPU, the Memory and the I/O interfaces

Data bus:

Transports the data from/to CPU

Address bus:

Contains memory address of reading/writing

Control bus:

Carries control information

11

Input-Output Interfaces

It makes the system accessible to peripherals (world)

Connection to

• Input devices

• Output devices

• Storage devices

• Network devices

12

mouse

keyboard

monitor projector

printer network

USB drive

microphone

speaker

Peripherals

Input

• Keyboard

• Mouse

• Scanner

13

Output

• Monitor

• Printer

• Projector

Storage

• Winchester (HDD)

• CD/DVD/Blu-ray drive

• USB drive

• Memory Card

Network

• Ethernet

• Wi-Fi

Other

Software

14

User

Hardware

Software

Applications, user programs

Operating system

Office

application
Program

development

Database

management

User

interface

File

management

Other…
Memory

management

Device

drivers

Process

scheduler

Web

Browser

Operating system

Collection of software that manages hardware

resources and provides services for other programs

• User interface:

supports human interaction (shell, GUI)

• Program scheduler:

decides which program can run now, for how long

time, which will the next

• File management:

handles the files and directories of volume based on

a file system

15

Operating system

• Memory management:

provides ways to dynamically allocate portions of

memory to programs at their request

• Device drivers:

software developed to allow interaction with

hardware devices

• Security:

protect against illegal operation and access to data

• Others:

Networking, Interrupt management, Utilities, …

16

User applications

• File manager:

Windows Explorer, Midnight commander, …

• Office application:

Microsoft Word/Excel, OpenOffice Write/Calc, …

• Web browser:

Internet Explorer, Firefox, Chrome, …

• Database manager:

Microsoft Access, MySQL, DB2, …

• Graphical program:

Microsoft Paint, GIMP, Photoshop, …

17

User applications

• Media player:

Windows Media Player, Flash Player, QuickTime, …

• Computer game:

Minesweeper, Solitaire, NFS, CoD, FIFA, …

• Anti-virus program:

Virus Buster, NOD32, AVG, …

• Integrated Development Environment (IDE):

BorlandC, Netbeans, CodeBlocks, Dev-C++, …

• Other:

…

18

User

Human agent, who uses computer

• Root:

Superuser, system administrator, has high privilege

• „Simple” user:

computer is just a tool, not the purpose of work

• Programmer:

develops computer applications, writes programs

19

Problem solving

Pólya’s problem solving steps

21

Understanding the problem

Creating a plan

Executing the plan

Evaluating

Understanding the problem

• What is the task?

• What is the unknown (required result)?

• What is the relationship between the given

information and the unknown?

• Is the given information enough to solve the

problem?

22

Creating a plan

General techniques:

• Finding known similar problems (if exists)

• Reshaping the original problem to a similar known
problem

• Divide the problem to shorter solvable problems

• Generalizing a restricted problem

• Finding existing work that can help in the search for a
solution

23

Executing the plan

• Follow the steps of the plan

• Each element of the plan should be checked as it is

applied

• If a part of the plan is unsatisfactory, the plan should

be revised

24

Evaluating

The result should be examined

• Is it correct?

• Is it full?

• Is it valid?

• Has the problem been solved?

25

An example

Problem: What is the sum of

110010110 and 101110101 in binary notation?

1) Understanding: addition of numbers where each digit

can be just 0 or 1.

2) Plan: Similar method to addition of decimal numbers

just the number of possible digits is 2

3) Execute: Sum of digit pairs

taking into account the carry

4) Evaluating: check with subtraction or with conversion

Result: 1100001011

26

+ 0 1

0 0 1

1 1 0

Number systems

Binary systems

no yes

false true

absent present

close open

switched off switched on

insulator conductor

electric current flows no electric current

0 1
28

Why binary systems are so important?

• There are many binary systems in our environment.

• The computer is binary (digital).

Decimal number system

10 different symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

How do we count in decimal?

29

… … … … …

08 18 098 598 0998

09 19 099 599 0999

10 20 100 600 1000

11 21 101 601 1001

12 22 102 602 1002

… … … … …

00000 0 00111 7 01110 14

00001 1 01000 8 01111 15

00010 2 01001 9 10000 16

00011 3 01010 10 10001 17

00100 4 01011 11 10010 18

00101 5 01100 12 10011 19

00110 6 01101 13 10100 20

Binary number system

Only 2 different symbols: 0, 1

How do we count using binary?

30

Conversion from decimal to binary

conversion of 217: 217 2

217 = 2*108+1 108 1

108 = 2*54+0 54 0

54 = 2*27+0 27 0

27 = 2*13+1 13 1

13 = 2*6+1 6 1

6 = 2*3+0 3 0

3 = 2*1+1 1 1

1 = 2*0+1 0 1

31

21710 = 110110012

Conversion from binary to decimal

Decimal (10):

2495 = 2*1000+4*100+9*10 +5*1

2495 = 2*103 +4*102 +9*101+5*100

Binary (2):

10100112 = 1*26 +0*25 +1*24 +0*23+0*22+1*21 +1*20

10100112 = 1*64 +0*32 +1*16 +0*8 +0*4 +1*2 +1*1

10100112 = 64+16+2+1 = 8310

32

Binary arithmetic: addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1 0

33

1 1 0 0 1 0 1 1 0

+ 1 0 1 1 1 0 1 0 1

1 1 0 0 0 0 1 0 1 1

4 0 6

+ 3 7 3

7 7 9

Addition of digits:

result digitcarry

Example:

Real numbers in binary

• Fractional numbers from binary to decimal

1010.0112 = 1*23+0*22+1*21+0*20+0*2-1+1*2-2 +1*2-3

1010.0112 = 1*8+0*4+1*2+0*1+0*1/2+1*1/4+1*1/8

1010.0112 = 8 + 2 + 1/4 + 1/8 = 10.37510

• Fractional numbers from decimal to binary

10.37510

10.37510 = 1010.0112 34

10._ 10 2

10 = 5*2+0 5 0

5 = 2*2+1 2 1

2 = 1*2+0 1 0

1 = 0*2+1 0 1

_.375 2 375

0+0.750 = 0.375*2 0 750

1+0.500 = 0.750*2 1 500

1+0.000 = 0.500*2 1 000

Hexadecimal notation

• 16 different symbols

– 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• Conversion to/from binary

– Each hexadecimal digit is 4 binary digits (bits)

– 5E16 = 0101 11102 (= 9410)

• Conversion to/from decimal

– By powers of 16 or by double conversion (16 � 2�10)

• Why it is used in IT?

– Close relation to binary

– Short (2 hexadecimal digit is 1 byte)

35

Software Life Cycle

Software Life Cycle

37

Problem definition

Solution design

Solution refinement

Testing strategy development

Program coding and testing

Documentation completion

Program maintenance

1: Problem definition

• Similar to Pólya’s first step

• The description of the problem must be precise

• User and programmer must work together

• It leads to complete specifications of the problem,

the input data and the desired output

38

2: Solution design

• Definition of the outline of solution

• Division of the original problem into a number of

subproblems

• Subproblems are smaller and easier to solve

• Their solution will be the components of our solution

• „Divide and conquer”

• Finally the problem will be converted to a plan of

well-known steps

39

3: Solution refinement

• Previous step is in very high-level: no indication given

how subtasks are to be accomplished

• Refinement is necessary by adding more details

• Avoid any misunderstandings

• A precise method consists of a sequence of well

defined steps called an algorithm

• Representation: pseudocode, flowchart, etc.

40

4: Testing strategy development

• It is necessary to try the algorithm with several

different combinations of input data to make sure

that it will give correct results in all cases

• These different combinations of input data are called

test case

• It covers not only normal input values, but also

extreme input values to test the limits

• Complete test cases can be used to check the

algorithm

41

5: Program coding and testing

• Description of algorithm in previous level cannot be

executed directly by computer

• Translation needed to a programming language

• After coding program must be tested using our

testing strategy

• If an error has been discovered, appropriate revision

must be made, and than the test rerun until the

program gives correct solution under all

circumstances

• Process of coding and testing called implementation

42

6: Documentation completion

• Documentation begins with the first step of

development and continues throughout the whole

lifetime of the program

• It contains:

– Explanations of all steps

– Design decisions that were made

– Occurred problems

– Program list

– User instructions

– etc.

43

7: Program maintenance

• The program can’t wear out

• Sometimes the program may fail

• The reason of a program fail is that it was never

tested for this circumstance

• Elimination of newly detected error is necessary

• Sometimes the users need new features to the

program

• Update of documentations is needed

44

Solution design

by Break-Out Diagrams

Break-Out Diagrams

• Useful way to make the problem solving manageable

• Tree-like (hierarchical) skeleton of problems

• For viewing problems in levels

• Styles:

– Vertical

– Horizontal

46

Problem

Subproblem1 Subproblem3Subproblem2

Subsubproblem2.1 Subsubproblem2.2

Problem Subproblem2

Subproblem1

Subproblem3
Subsubproblem2.1

Subsubproblem2.1

Time BOD

47

Human life

Childhood Adulthood

Work years RetirementSchool yearsLittle childhood

High schoolElementary school

Space BOD

48

City areas

Private areas Public areas

Outdoors IndoorsCompaniesHomes

ParksStreetsHousesFlats

Action BOD

49

Getting diploma

Application Doing studies

Taking exams Final examGetting information

Finishing

Wirting thesis

LearningVisiting courses

Data BOD

50

Postal address

Country City

Street name House numberCity namePostal code

DoorFloor

‘in city’ datas

‘in house’ datas

Properties of BODs

• Consistent

Each break-out must be the same kind.

• Orderly

All blocks at the same level must be separate or

independent.

• Refined

Each box of a given level must be break-out of a box

at the previous level.

• Cohesive

All of the items within a breakout box must fit

together.
51

Mistakes and corrections

52

Incorrect BOD

Correct BOD

Learning

English
Learning

grammar (!)

Learning

words (!)

Learning verbs

Learning nouns

Learning

English
Learning

grammar

Learning

words
Learning other

words

Learning verbs

Learning nouns

…

…

…

…
…

…

…
…

Mistakes and corrections

53

Evening

Workday

AM

PM

Pre-Tea-Time

Tea-Time

Pre-coffee

Coffee break

Post-coffee

Lunch (!)

Diner time

Snack time

Incorrect BOD Correct BOD

Evening

Workday

AM

PM
Pre-Tea-Time

Tea-Time

Pre-coffee

Coffee break

Post-coffee

Lunch

Diner time

Snack time

Soup

Main course

Mistakes and corrections

54

Incorrect BOD

Correct BOD

Go to work

Morning

routine

Get out of bed

Eat
Eat cereal

Wake up (!)

Shower

Read news (!)

Drink coffee

Go to work

Morning

routine

Wake up

Breakfast

Eat

Get out of bed

Shower

Read news
Eat cereal

Drink coffee

Solution refinement

Algorithms

Algorithm

Plan for performing a sequence of well-understood

actions to achieve the result.

Precise definition of the actions to be performed to

accomplish each task of solution design.

Some properties:

• precise, unambiguous

• specified for all possible cases

• finite sequence of actions

• achieves the result

• efficiency, elegance, easy to use, …

56

Representation of algorithms

• Algebraic

• Data-flow diagram

• Flowchart

• Graphs or plots

• Hierarchical

• Pseudocode

• Stuctogram

• Tabular

• Verbal

57

Example

Function y=sign(x)

• What is it?

• What does it mean?

• What is the result?

• How is it work?

• How can we determine its value?

• If x is -4, what is the value of y?

• …

58

y=sign(x)

Verbal representation:

1. If input value x is 0, set the result to y=0.

2. Otherwise if x>0, let the value of this function +1.

3. Else if x less then 0, give the function -1.

59

+1

y=sign(x)

Graph representation:

60

x

y

-1

0

y=sign(x)

‘Algebraic-like’ representation:

x∈ℜ
y∈{-1, 0, +1}

∀x, x>0 ⇒ y=+1

∀x, x<0 ⇒ y=-1

x=0 ⇒y=0

61

y=sign(x)

Structogram representation:

62

y=0

y=-1y=+1

x=0
yes no

yes no

x>0

y=sign(x)

Flowchart representation:

63

x=0

y=0

y=+1 y=-1

x>0

true

true

false

false

Start

End

y=sign(x)

Pseudocode representation:

if x=0 then
y=0

else
if x>0 then

y=+1
else

y=-1
endif

endif

64

Flowchart

• Starting/finish point

• Atomic instruction

• Input/output

• Condition

• Inserting other algorithm

• We can go along arrows.

65

x<y
yes no

x=1

Start End

In: y Out: y

f(x) = xN

Base structures of algorithms

Sequence Selection Iteration

66

Start

Task 1

Task 2

Task 3

Stop

Start

condition
true false

Task A Task B

Stop

Start

condition

true

false

Task Stop

by flowcharts

Modifying algorithms

Algorithms often go through many changes to be better.

• Generalizing:

making them apply to more cases

• Extending:

to include new cases

• Foolproofing:

making an algorithm more reliable, failsafe or robust

• Embedding:

re-using that algorithm within another algorithm

67

Generalizing algorithms

68

Original: Generalized:

gross=net*(100%+25%)

Start

End

Input: net

Output: gross

gross=net*(100%+VAT)

Start

End

Input: net, VAT

Output: gross

Extending algorithms

69

Original: Extended:

salary=hours*rate

Start

End

In: hours, rate

Out: salary

Boss?
yes no

salary=hours*ratesalary=profit/2

Start

End

Out: salary

In: profit In: hours, rate

Foolproofing algorithms

70

Original: Foolproofed:

age<18
yes no

Start

End

In: age

Out: child Out: adult

age<18
yes no

age<0
yes no

Start

End

Out: adultOut: child

Out: error

In: age

Embedding algorithms

71

Original:

y=abs(x)

Embedded:

y=sign(x)

x<0

y=-x

true false

y=+x

Start

End

Not foolproofed!

x<0

y=-x

true false

y=+x

Start

End

In: x

Out: x/y

Alternative algorithms

There are often many ways to achieve the same thing.

Algorithms can be different in structure, but they can be

equivalent in behavior.

It means: for identical input data, they will produce

identical results.

Sometimes there is serious reason to prefer one

algorithm over the other, while sometimes there isn’t.

In some cases, one algorithm may be considerably

smaller, faster, simpler, or more reliable than another.

72

Alternative algorithms

73

y=sign(x)

x=0

y=0

y=+1 y=-1

x>0

true

true

false

false

Start

End

In: x

Out: y

x<0

y=-x

true false

Start

End

Out: x/y

In: x

X<>0
false true

Out: x

y=x

Properties of algorithms

• Complete:

all of actions must be exactly defined

• Unambiguous:

there is only one possible way of interpreting actions

• Deterministic:

if the instructions are followed, it is certain that the

desired result will always be achieved

• Finite:

the instructions must terminate after a limited

number of steps

74

Wrong algorithms

How to get to the 5th floor from 2nd by elevator?

1. Call the lift.

2. Get in.

3. Push ‘5’ button.

4. Wait.

5. If the door opens, get out.

Problems (not complete):

• If the list goes downward…

• If the lift stops on 3rd floor for somebody…

75

Wrong algorithms

How to make fried chicken?

1. Put the chicken into the oven.

2. Set the temperature.

3. Wait until it is done.

4. Serve it.

Problems (ambiguity):

• What is the optimal temperature (50°C or 200°C)?

• Is the chicken frozen or alive?

• When is it done?

76

Wrong algorithms

How to be a millionaire?

1. Buy a lottery .

2. Choose numbers .

3. Wait for prize or be sad .

Problems (stochastic, not deterministic):

• In most of the cases we won’t be a millionaire.

• Not always works.

77

Wrong algorithms

How to use a bus?

1. Wait for the bus.

2. Get on the bus.

3. Buy a ticket.

4. Sit down.

5. Get out of the bus.

Problems (infinite):

• If we are not in a bus stop, bus won’t stop.

• If we are in a building, bus will never arrive.

78

Pseudocode

Possible instructions / keywords:

• input …

• output …

• if … then … else … endif

• while … do … enddo

• exit

• break

• function, procedure, return, call

79

Base structures of algorithms

Sequence:

statement1

statement2

statement3

…

80

Selection:

if condition then

statement1

else

statement2

endif

…

Iteration:

while condition do

statement1

enddo

…

by pseudocode

Pseudocode example

Approximation of the value of π
Greater R leads to

more precise value

81

input R
i=0
x=0
while x<=R do

y=0
while y<=R do

if x*x+y*y<=R*R then
i=i+1

endif
y=y+1

enddo
x=x+1

enddo
output 4*i/(R*R)

(x , y)

R

x

y

Conversion

input T

while T<>20 do

if T>20 then

T=T-1

else

T=T+1

endif

enddo

output ”ready”
82

T<>20

T=T-1 T=T+1

T>20

false

true

true

false

Start

End

in: T

out: „ready”

Subroutines

Separate unit of algorithms

Tool of recycling and abstraction

• Recycling: not necessary to type the same code-part

at different points of the code. We can teach some

activity and then use as a basic instruction. An

example of embedding.

• Abstraction: not just only one activity, but a set of

similar activities, specified by parameters. Realization

of generalization.

83

Subroutines

Two sort of subroutines

• Function: a set of instructions in order to determine

a value somewhere in the code

E.g. What is the cosine of 45°?
x=cos(45)

• Procedure: a set of activities to do something at a

given point of the code (no return value)

E.g. Print your name.
output „Imre”

84

Procedure example

Definition of procedure to print the * character N-times

procedure STARS (N)

while N>0 do

output „*”

N=N-1

enddo

end procedure

85

name of procedure (formal) parameter

Instructions, activity to do

Procedure example

Calling the previous procedure within a code

output „How many stars you need?”

input S

call STARS (S)

output „I hope, you like it.”

86

(actual) parameter

call of procedure (execution of its instructions)

Procedure example

An other procedure to tell the sign of a number
procedure SIGN (x)

if x>0 then
output „Positive”

else
output „Not positive”

endif
end procedure

output „Give a number”
input N
call SIGN (N)

87

d
e

fin
itio

n
 o

f p
ro

ce
d

u
re

m
a

in
 u

n
it

execution starts here

Function example

Definition of a function to determine the
maximum of two values

function MAX(A, B)

if A>B then

R=A

else

R=B

endif

return R

end function
88

name of function (formal) parameters

Instructions to determine the desired value

Instruction to give back the results

Function example

Calling the previous function within a code

output „Give two numbers”

input a, b

c = MAX (a,b)

output „The maximum: ”, c

89

(actual) parameters

call of function (determination of a value)

The returned value is stored in variable c.

Function example

An other function to calculate the absolute value
function ABS (x)

if x<0 then
x=-1*x

endif
return x

end procedure

output „Give a number”
input N
A = abs (N)
output „the absolute value is”, A

90

d
e

fin
itio

n
 o

f fu
n

ctio
n

m

a
in

 u
n

it

execution starts here

…

…

call proc

…

…

Recursion

• When a subroutine calls itself

91

…

call proc

…
…

…

…

…

call proc

…

main unit

a replica of

subroutine
a replica of

subroutine
a replica of

subroutine

execution time order

Recursion example

procedure CONVERT (N , B)

if N<>0 then

call CONVERT ([N/B] , B)

output a%b

endif

output NEWLINE

end procedure

call CONVERT (16 , 8)

call CONVERT (19 , 2)
92

• Try to execute the algorithm.

• What is the output?

• How long is the call chain?

• Where the reverse order of

digits is coded?

integer part of the quotient

Testing strategy development

Example of testing strategy

• Solving second degree equation

• General form: ax2 + bx + c = 0

• Input parameters: a, b, c

• Solution:

Does it work for all input?

• What is the output

if a=1, b=2 and c=1?

• What is the output

if a=1, b=2 and c=2?
94

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x2 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

Example of testing strategy

95

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

Does it work for all input?

• What is the output

if a=0, b=2 and c=6?

Example of testing strategy

96

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

a=0false true

x = -c/b

out: x

Does it work for all input?

• What is the output

if a=0, b=0 and c=1?

Example of testing strategy

97

It works for all input.

d = b2-4ac

x1 = (-b+d1/2)/2a

Start

End

x1 = (-b-d1/2)/2a

in: a, b, c

out: x1, x2

d>0true false

d=0true false

x = -b/2a

out: x out: no solution

a=0false true

x = -c/b

out: x

b=0true false

Example of testing strategy
input a, b, c
if a=0 then

if b=0 then
output error

else
x=-c/b
output x

endif
else

d=b*b-4*a*c
if d>0 then

x1=(-b+sqrt(d))/(2*a)
x2=(-b-sqrt(d))/(2*a)
output x1, x2

else
if d=0 then

x=-b/(2*a)
output x

else
output error

endif
endif

endif

98

Good solution in pseudocode:

It works for all input.

To reach this state we have had

to test the algorithm with

more different input

combinations the so called

test cases and then we have

had to modify the algorithm.

We have used testing strategy.

The used testing strategy

99

a b c reason OK

3 7 2 general case (not zero, d>0) �

0 2 3 a is zero (first degree) �

2 0 5 b is zero (x2=-c/a) �

1 2 0 c is zero (x[ax+b]=0) �

0 0 1 more zeros (not equation) �

3 1 9 d<0 (no solution) �

2 4 2 d=0 (only one solution) �

-2 -3 -9 negative inputs �

2.3 4.2 0.83 not integer values �

0.00001 1000000 1 extreme small/large values �

test cases

Program coding

Creating source code

in real programming language

Programming levels

101

5GL

4GL SELECT name FROM people WHERE age=20

3GL if (x==0) printf(”zero\n”);

2GL SAVE: STA [$410A, X]

1GL 10010110 11101000 10101101 10000111

tim
e

H
ig

h
-l

e
ve

l

p
ro

g
ra

m
m

in
g

la
n

g
u

a
g

e
s

Lo
w

-l
e

ve
l

p
ro

g
ra

m
m

in
g

la
n

g
u

a
g

e
s

machine

code

assembly

Languages paradigms

102

Programming

Imperative

Procedural
Object-

oriented

Declarative

Functional Logical Dataflow

Other

• R

• LISP

• Haskell

• Prolog• Java

• C++

• Smalltalk

• C

• Pascal

• Fortran

• Labview

• Verilog

Syntax and semantics

Syntax: Formal rules of the program text.

Semantics: Does it describe the desired algorithm?

Example (absolute value):

input a

if a>0 then

a=-1*a

enidf

output a

103

Syntax error

Semantic error

Syntax of programing languages

REAL FUNCTION FAKT(I)
FAKT=1
IF (I .EQ. 0 .OR. I .EQ. 1) RETURN
DO 20 K=2,I

20 FAKT=FAKT*K
RETURN
END

104

FUNCTION FAKT(I:INTEGER):REAL;
BEGIN

IF I=0 THEN FAKT:=1
ELSE FAKT:=FAKT(I-1)*I;

END;

long fakt(long n){
if (n<=1) return 1;
else return n*fakt(n-1);
}

Fortran:

Pascal:

C:

Units and elements of the code

• Character set

• Lexical units

• Syntactic units

• Instructions

• Program units

• Compiling units

• Program

105

C
o

m
p

le
xity in

cre
a

se

We use different

characters, symbols,

special keywords,

expressions, and rules

in each language.

Interpreter and Compiler

• Processors understand only machine codes

– High-level source codes need some conversion

• Language implementations use different techniques

– Compiler

E.g.: Pascal, C, C++, Labview

– Interpreter

E.g.: PHP, JavaScript, Python

– Combined (bytecode to virtual machine)

E.g.: Java, C#

106

Compiler

• A software that creates a so-called object-code from

the source code

• Compiler makes lexical-, syntactic- and semantic

analysis, code generation

– Source codes have to be syntactically correct

• A co-called linker creates executable from object

codes, and the loader load it to RAM to run

• Compilation once, execution later several times

– Compilation and execution is separate

• Execution is fast

107

Interpreter

• Direct execution

– Analysis and generation at run time

• No object code

• Interpretation of instructions one by one

– Single instruction as input

• Syntactically incorrect code can be executed

– Errors may hidden

• Interpreter is needed for any execution

– Interpretation and execution belong together

• Execution is often slow
108

Integrated Development Environment

• A (graphical) program to make the software
development easy and quick, provides tools/help to
the programmer

• IDE contains:
– Language-sensitive editor
– Compiler/interpreter, linker, loader
– Debugger
– Version control tool
– Project management
– Simulator

• Examples: Code::Blocks, Dev-C++, NetBeans, Eclipse,
MS Visual Studio, Jbuilder, MPLAB, etc.

109

Data representation, Datatypes

• Every data is stored in the memory in binary

• Different datatypes are used

– with different representation

– with different data-domain

– with different operations

• Most often applied data types:

– integer (5) 00000000000000000000000000000101

– float (5.0) 01000000101000000000000000000000

– char (’5’) 00110101

110

Fixed-point representation

How the computer stores (signed) integer numbers?

Steps:

• Store the sign of the given value and convert the
absolute value of the integer into binary

• Add leading zeros (if needed) to reach given amount
of digits (bits)

• If the sign is -1 (so if the value was negative) then

– Change every bit to the opposite

– Add 1 to the result in binary

• The fixed-point representation of the integer is ready

111

Fixed-point representation

112

S=-1
yes no

S=sign(N)

Start

End
In: N

Out: result

N=abs(N)

Convert N

to binary

Extend by

leading zeros
Change to

opposite bits

Add 1

to the result

+195

11000011

00000000 00000000 00000000 11000011

-195

+195

11000011

00000000 00000000 00000000 11000011

11111111 11111111 11111111 00111100

11111111 11111111 11111111 00111101

Examples

0

00000000

00000000 00000000 00000000 00000000

MSB = sign bit

Fixed-point representation

Representation

length

Minimum

value

Maximum

value

U
n

si
g

n
e

d 1 byte 0 255

2 byte 0 65 535

4 byte 0 4 294 967 295

S
ig

n
e

d

1 byte -128 127

2 byte -32 768 32 767

4 byte -2 147 483 648 2 147 483 647

113

Floating point representation

Standardized (IEEE 754) technique to store real

(fractional, not just integer) numbers in computers

Steps by an example on 4 bytes:

• -19.562510 decimal real

• -10011.10012 binary real

• -1.00111001*24

• (-1) 1 * (1+.00111001) * 2131-127 (-1)S * (1+M) * 2K-127

114

1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

First byte Second byte Third byte Fourth byte

normal form:
Significand * RadixExponent

Floating point representation

115

Representation length 4 bytes

(single)

8 bytes

(double)

Sign bit 1 1

Exponent bits 8 11

Significand bits 23 52

Exponent Bias 127 1023

Minimum absolute value 1.175*10-38 2.225*10-308

Maximum absolute value 3.403*10+38 1.798*10+308

Accuracy (!) ~7.2 digits ~15.9 digits

Floating point representation

Not all real numbers in the range can be presented

E.g.: 1.0000000000; 1.0000001192; 1.0000002384; 1.0000003576

Rounding is applied (0.7 � 0.69999998807907…)

Special values:

• +0.0 (e.g. 1.0-1.0)

• -0.0 (equal to +0.0; e.g. -1.0*0.0)

• +Inf (+∞, e.g. 1.0/0.0)

• -Inf (-∞, e.g. -1.0/0.0)

• NaN (Not a Number, e.g. +Inf*0.0)

116

Keywords, identifier, comments

• Keyword

Sequence of characters with special meaning

E.g.: if, else, while, do, for, return

• Identifier

Sequence of characters to give name to the

programmer’s own tools/objects

E.g.: i, Count, var2, abs_val

• Comment

Text in the code not for the compiler but for the

programmer (reader human) as remark

117

Side_A = 5*cos(60)

Constants

• Constants (literals) means fix value in the source
code that cannot be altered by the program at
runtime

• It has type and value

– The value is defined by itself

– The type is defined by the form

• Special: Named constant is a fix value with identifier

• Examples
- 12.34, 5, .5, 5., 0x1F, ’F’, ”F”, ”apple”

while x>100 do

118

X = A + 23

Variables

• A memory location with identifier to store a value

• Most important tool in procedural languages

• Its components

– Name (identifier)

– Value (bit series in the RAM)

– Attributes (type)

– Address (RAM location)

• Example (in C language)
int A = 10;
float Jump1 = 11.5;

119

Operators

• Represents simple operations on data

• Can be unary, binary or ternary

• General groups of operators

– Arithmetic (E.g.: +, -, *, /, %)

– Comparison (E.g.: >, <, ==, >=, <=, !=)

– Logical (E.g.: &&, ||, !)

– Bitwise (E.g.: &, |, ^, ~, <<, >>)

– Assignment (E.g.: =, +=, *=)

– Other (E.g.: *, &, ? :, ., ->)

120

X = A + 23

Expressions

• Operators & Operands & Parentheses

• Operand can be: constant, variable, function call

• An expression has type and value (evaluation)

• Form can be

– Infix (preference/strength is necessary)

E.g.: 4 + 3 * 2

– Prefix

E.g.: + * 3 2 4

– Postfix

E.g.: 4 3 2 * +

121

Instructions

Unit of programs, that can be grouped as

• Declaration

• Assignment

• Conditional statement

– 2 branch

– More branch

• Iteration

– Conditional loop

– Counted loop

• Other
122

not executable

executable

Declaration, Assignment

Declaration

• Associate identifier and type

• (Sometimes) initialization of variable

• int i = 0;

• float Weight;

Assignment

• Giving value to a variable

• i = 6;

• Weight = 80.3 * i;

123

Conditional statement

Choosing from 2 execution branch

• Two separate instruction block

• Skip or execute an instruction block

• if(N<0.0) S=1;
else S=0;

Selecting from several execution branch

• switch (i){
case 1: X=1; break;
case 2: X=10; break;
default: X=100;
}

124

Iteration

Repetition of instructions, activities several times

From operational point of view limiting cases

• Empty loop (the body/core never executed)

• Infinite loop (never stops, semantic error)

Types of iterations

• Conditional loop

– Pre-condition

– Post-condition

• Counted loop

• Other (Infinite, Combined)

125

Pre-conditional loop

The head contains a condition

Semantics

1. Evaluation of condition

2. If it is true, body is executed and evaluate again (1.)

Else loop ends, go to next instruction behind the loop

It can be empty loop

if condition is false initially

126

Body must change the condition

while (x<2){
i=i+1;
x=x -2;
}

Post-conditional loop

The end contains the condition

Semantics

1. Execute the body once

2. Evaluation of condition

3. If it is true (false), execute again the body (go Step 1.)

Else loop ends, go to next instruction behind the loop

It cannot be empty loop

body is executed at least once

127

do{
i=i+1;
x=x -2;
}

while (x<2);

C programming language

Developed: Dennis Ritchie, Bell Labs, 1972

Standards: ANSI C (1989), ISO C99 (1999), ISOC11 (2011)

One of the most popular and widely used language

Procedural (Imperative) paradigm

Close relation to hardware architectures

Purely compiled

Platform-independent

Efficient (fast programs)

C influenced: C++, Java, PHP, Python, …

128

C programming language

Some main moment (strongly reduced):

• Comment: /* something */, // something

• Datatypes: int, float, char, …

• Constants: 21, 34.5, ’A’, ”alma”, …

• Operators: +, -, *, /, %, =, ==, >=, <=, !=, &&, ||, …

• Branching: if-else, switch-case

• Iterations: while, for, do-while

• Input/output: printf(), scanf() (built in subroutines)

• etc. …

129

Examle C source code

130

Documentation & Maintenance

Documentation

Complete the documentation:

• Always document everything during the program

development.

• What is the solution method?

• What are the solved subproblems?

• What are the necessary inputs and the output?

• How does the implemented algorithm work?

• What are the meaning of the variables? (comments)

• How to use the program? (user manual)

• What are the discovered errors and their solutions.
132

Maintenance

Maintenance the program:

• If the users need correction, extension or changes,

developer must update the application.

• Make documentation

about all changes.

• If too much change is necessary:

Start again from the beginning

Software life cycle

133

Problem definition

Solution design

Solution refinement

Testing strategy development

Program coding and testing

Documentation completion

Program maintenance

