
Programming Languages 1

Lesson 6 - Guide

File handling

In a C program one can work with files. It is possible to read something form a file or to write

something into a file. There are two different ways to do this. One of them is based on formatted

input/output to manage simple text files. This lesson restricted to only this.

In a C program files can be referred by a special file descriptor, a FILE type pointer (so the name of

the type is FILE with capital letters). A file descriptor variable obtain value in an opening process.

All files have to be opened first by the special function of the stdio.h header file. For example:
// The “apple.txt” file is opened for reading.

FILE *f1=fopen(“apple.txt”,”r”);

// The “banana.txt” file is opened for writing.

FILE *f2=fopen(“banana.txt”,”w”);

// The “cherry.txt” file is opened for appending.

FILE *f3=fopen(“cherry.txt”,”a”);

Thus the value provided by the fopen function is assigned to a FILE pointer. Later the name of the

file never appears, just the file descriptor variable. If the opening process was not successful the

fopen returns by a NULL pointer value. In case of writing, when the file does not exists the system

creates a new empty file, otherwise all the previous file content will be erased. Appending means

writing to the end of the file keeping the original content. If the first parameter of the fopen is just

a filename, than the file have to be in the same directory as the executable program, but path and

filename can be also used.

If the file is opened for writing, one can use the fprintf function to write something into the file.

The fprintf, works in a similar way, than printf, just is has a new first parameter, a file

descriptor.
fprintf(f2, “%d bananas”, 3+4);

The “7 bananas” text is written into the file referred by f2.

In order to read file content into variable(s), the fscanf function can be used. For example to read

the next integer number from the file referred by f1, into the num integer variable, can be written as

fscanf(f1,“%d”, &num);

After each reading/writing operation the system always know the actual position in the given file for

the next reading/writing operation.

After we finish all the necessary input/output file operations, files must be closed by the fclose

procedure.
fclose(f3);

Sometimes (especially during read) we have to know, whether we reached the end of the input file or

not (is there any more value to read). The feof function is used to help the decision. Its parameter is

a file descriptor and the function returns return by 0 (false) if we are not at the end of file, else it

returns by 1 (true). (Don’t forget the ! operator means the logical negation.)

while(!feof(f1)){…} //iteration until there is further content in f1

 The next short C program copies all the characters from “abc.txt” to the end of “def.txt” in a

character-by-character way.
#include<stdio.h>

int main(){

 char c;

 FILE *source,*destination;

 source=fopen("abc.txt","r");

 if(source==NULL) return 1; //error

 destination=fopen("def.txt","a");

 while(!feof(source)){

 fscanf(source,"%c",&c);

 fprintf(destination,"%c",c);

 }

 fclose(source);

 fclose(destination);

 return 0;

}

Further readings:

 Brian W. Kernighan, Dennis M. Ritchie: The C programming language, Prentece Hall (2012)

 https://www.geeksforgeeks.org/basics-file-handling-c/

 https://www.programiz.com/c-programming/c-file-input-output

https://www.geeksforgeeks.org/basics-file-handling-c/
https://www.programiz.com/c-programming/c-file-input-output

