
Programming Languages 1

Lesson 8 - Guide

Random numbers

Personal computers cannot generate real random numbers since they are deterministic devices. In this

section we are talking about only pseudo-random numbers, however usually the ‘pseudo’ prefix will

be ignored.

The generation of random numbers means that starting from an initial value (seed) the computer

calculates another value which will be the base of further generations, and so forth. Always the

elements of the same very long cyclic number sequence are determined by a mathematical method

(e.g. linear congruential generator), but these elements of the sequence seem random for human

because the relationship between the neighboring number seems stochastic, thus we suppose they are

random values.

A parameterless function of the stdlih.h header, called rand, is used to do this. Each call of the

function results in an integer number between 0 and RAND_MAX (based on the actual seed value).

The RAND_MAX is a symbolic name, also defined in the stdlib.h, referring to the possible greatest

random number. It is important to know that this value in Linux systems is usually 2 147 483 647,

while in Windows system it is only 32 767, which is a huge difference. (For instance, during the

generation of one-million random number in windows the same sequence is repeated circa 30 times.)

All the integer numbers between zero and RAND_MAX has the same probability

After each call of rand, the seed value of the system changes, but after each start of the given

program, it uses the same initial seed value. Thus a program should always produce the same

numbers. In order to avoid this the seed of the random generator must change at the beginning of the

execution. It is the aim of the srand procedure, its parameter will be set as a new seed value. So it

is enough to call the srand procedure only once at the beginning of the program and then call the rand

function as many times as it is necessary. It worth to initialize the random seed to a value which

changes in case of any execution. In this case, all the runs provide different random sequence. That

is why the recent system time or the process ID (PID) is usually used. (E.g.:

srand(time(NULL));)

Up to the present, we generated random integers within the [0 ; RAND_MAX] closed interval with

equal probability. Everything else is available through mathematical transformations. Here are some

general situations including but not limited to all the possibilities:

Integer random number within [A ; B] closed interval with equal probability:
int x = rand()%(B-A+1)+A;

Real random number within [A ; B] closed interval with equal probability:
double y = (B-A)*(double)rand()/RAND_MAX+A;

Value of X with probability P (0%≤P≤100%), and the value of Y with probability 1-P:

float Q = ((double)rand()/RAND_MAX <= P) ? X : Y;

Dynamic memory management

The memory space of an array is automatically allocated when its program unit is activated and it is

deallocated when we leave the program unit. Between these two time moments (in runtime) the size

of the allocated area cannot be changed. The size of the array can be defined by only a constant

expression according to the ANSI standard. Since all the local variables, so the arrays also stored in

the stack, which size is limited. Thus we cannot allocate a large size array even if there enough RAM.

Arrays are used for continuously represented data structures.

The above facts result in limitation for the programmer, that is why the C provides library functions

for programmer controlled memory management. These are defined in stdlib.h (or in

malloc.h). The allocation takes place not in the stack but in the head which is not so limited.

One of the more important tools is the malloc function. It needs an integer parameter, which tells

the size of the contiguous memory space in bytes to be allocated in the RAM. Its return value is a

pointer to the beginning of the allocated area (or NULL in case of error). The type of the return value

is void*, so it should be converted to a required pointer type. If we need space for 100 integers, but

we are not sure the size of a given type, we can use the sizeof operator in this way:
int* p=(int*)malloc(100*sizeof(int));

The allocated space is not initialized, so it contains memory waste. Since the indexing in C is a pointer

arithmetic operation, the allocated space can be used as a normal array: p[7]=-93;

When we need initialized memory space we can use the calloc function, which sets ‘0’ bits to the

allocated area. (It can be interpreted as fixed-point 0 or floating-point 0.0 or an empty string.) The

first parameter is the number of elements to allocate and the second one is the size of each element in

bytes. In case of success the return value is a void* memeory address. So in a similar situation as

previously but with initialization looks like this:
p=(int*)calloc(100,sizeof(int));

It can happen that we allocate given size memory but later (in runtime) we realize that it is too large

or too small. We have the opportunity to change the size of these memory space by reallocation. It

can be done by the realloc function. Its first parameter is a pointer to the previously allocated

memory area and the second one is the new required size in bytes. If the original area is lagrer than

the new needs, then the “unwanted” closing part of the allocated area is freed (so it will be available

for later allocation). If we need more space than earlier, then there are two possible scenarios. If there

are enough empty spaces beyond the allocation then the system just allocates necessary space from

here and concatenates it to the earlier allocation. So the old locations remain the same, but the new

ones will be uninitialized. On the other hand, if there is no enough space immediately after the end

of the array, then the system looks for enough large free memory area, then copies the old content of

the array to the new addresses and the new part will be uninitialized. Finally, the original array will

be deallocated. After the reallocation, the function returns with the address of the new void* starting

address of the allocation (so sometimes the address remains the same). If we need a double size area

than in the above example, then we write this:
p=(int*)realloc(p,2*100*sizeof(int));

Take care of the runtime, is the size is increased maybe we need a lot of data movement (copy of old

values) in the background, which takes a long time.

The allocated memory does not deallocated automatically, even if we leave the program unit. In order

to avoid running out of the memory programmer must deallocate each area if it is not necessary any

more. This is the goal of the free procedure. Its only one parameter is the starting address of the

allocated area: free(p);

(Uninitialized) memory areas can be filled with certain values by the memset procedure of the

string.h header. Its first parameter is the starting address of the preallocated area. The least

significant byte of the second parameter will be copied to all the bytes of the area. The third parameter

is the number of bytes to be overwritten by the second parameter byte. In this way the
p=(int*)calloc(100,sizeof(int));

instruction is equivalent to the two below instructions
p=(int*)malloc(100*sizeof(int));

memset(p,0,100*sizeof(int));

Distributed data structures are unimaginable without pointers and the above dynamic memory

management. Now the storage unit is a complex type (record, structure). It generally contains one or

more data fields and one or more pointers to other structures allocated in runtime. For example, the

code below means a balanced binary tree of three values (where the payload of leaf elements are 0s):
typdef struct element{

 int data;

 struct element *left, *right;

 } TreeElement;

TreeElement *root = (TreeElement *)calloc(1,sizeof(TreeElement));

root.data = 24;

root.left = (FaElem*)calloc(1,sizeof(TreeElement));

root.right = (FaElem*)calloc(1,sizeof(TreeElement));

References:

 Brian W. Kernighan, Dennis M. Ritchie: The C programming language, Prentece Hall (2012)

 https://www.programiz.com/c-programming/c-dynamic-memory-allocation

 https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

https://www.programiz.com/c-programming/c-dynamic-memory-allocation
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

